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Abstract
Peritoneal metastasis (PM) is a frequent manifestation of advanced abdominal malignancies. Accurately assessing the 
extent of PM before surgery is essential for patients to receive optimal treatment. Therefore, we propose to construct a deep 
learning (DL) model based on enhanced computed tomography (CT) images to stage PM preoperatively in patients. All 168 
patients with PM underwent contrast-enhanced abdominal CT before either open surgery or laparoscopic exploration, and 
peritoneal cancer index (PCI) was used to evaluate patients during the surgical procedure. DL features were extracted from 
portal venous-phase abdominal CT scans and subjected to feature selection using the Spearman correlation coefficient and 
LASSO. The performance of models for preoperative staging was assessed in the validation cohort and compared against 
models based on clinical and radiomics (Rad) signature. The DenseNet121-SVM model demonstrated strong patient dis-
crimination in both the training and validation cohorts, achieving AUC was 0.996 in training and 0.951 validation cohort, 
which were both higher than those of the Clinic model and Rad model. Decision curve analysis (DCA) showed that patients 
could potentially benefit more from treatment using the DL-SVM model, and calibration curves demonstrated good agree-
ment with actual outcomes. The DL model based on portal venous-phase abdominal CT accurately predicts the extent of 
PM in patients before surgery, which can help maximize the benefits of treatment and optimize the patient’s treatment plan.
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Introduction

Peritoneal metastasis (PM) is the most common metastasis 
in advanced abdominal tumors, with a median survival of 
no more than 12 months in some patients, and a worse prog-
nosis than other metastasis, such as the liver or lung [1, 2]. 
In recent years, cytoreductive surgery (CRS) combined with 
hyperthermic intraperitoneal chemotherapy (HIPEC) has 
been widely accepted for treatment of PM, emerging as the 
most effective approach to prolonging survival in the major-
ity of cases [3, 4]. CRS + HIPEC has been endorsed by the 
Peritoneal Surface Oncology Group International (PSOGI) 
as the established standard of care for patients diagnosed 
with peritoneal pseudomyxoma, malignant peritoneal meso-
thelioma, and colorectal peritoneal metastases. Furthermore, 
it is the recommended therapeutic approach for patients with 
peritoneal metastases associated with gastric and ovarian 
cancers [5–10].

However, not all patients may experience positive out-
comes from CRS + HIPEC treatment. The peritoneal car-
cinomatosis index (PCI), together with the cytoreductive 
completeness score (CCS), has been shown to be a major 
determinant of overall patient survival [11–13]. Patients 

with severe PM often have a relatively poor prognosis and 
are unlikely to achieve a clinical cure after CRS treatment 
(CCS of 0 or 1). For instance, in colorectal cancer patients, 
PCI > 20 is considered a contraindication to CRS + HIPEC 
treatment [14], while gastric cancer patients with normal 
tumor markers and PCI ≤ 16 are more likely to benefit 
from surgical treatment [15]. Currently, the gold standard 
for assessing PCI is laparoscopic [16], and some patients 
with extensive metastasis may have to forgo further surgi-
cal treatment after the invasive examination. Open-close 
surgery has been reported in up to 23.4% of cases [17].

Imaging examinations such as CT and MRI have 
become common preoperative procedures for patients with 
PM. While they can provide information about the pres-
ence and extent of metastasis, their low sensitivity may 
result in discrepancies between the imaging results and 
the actual condition of the patient. As a result, CT-PCI and 
MRI-PCI demonstrate limited ability to stratify patients 
for selection when compared to surgical PCI (S-PCI), with 
a concordance index of only 0.47–0.79 [18–21]. Further-
more, the unique anatomical characteristics of the perito-
neum pose a significant challenge in distinguishing it from 
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surrounding visceral fat on imaging, thereby necessitating 
a higher level of expertise from the radiologist.

Radiomics (Rad) is a promising image data analysis 
method that has emerged in recent years, capable of quanti-
fying traditional medical images into structured data features 
and interpreting images from multiple dimensions [22]. It 
has demonstrated potential in determining the benignity and 
malignancy of tumors, staging, and prognosis [23–25]. Simi-
larly, deep learning (DL) can also extract quantified features 
from images with higher dimensionality and more accurate 
performance than Rad features (RF) [26]. Previous studies 
have shown that DL exhibits better performance than RF in 
predicting preoperative occult PM or lymphatic metastasis 
in gastric cancer patients [27, 28]. However, there are cur-
rently no reported studies utilizing DL for the preoperative 
staging of PM patients.

In summary, the purpose of this study was to develop 
and validate a DL model for the preoperative staging of PM 
patients to individualize patient treatment based on accurate 
staging.

Materials and methods

Patient enrolment

This study included 362 PM patients who underwent surgery 
at Zhongnan Hospital of Wuhan University from January 
2014 to December 2021. The inclusion criteria for patients 
were as follows: (1) evaluation of PCI via laparoscopic 
exploration or open surgery, (2) confirmation of PM through 
postoperative pathological examination, and (3) receipt of a 
whole contrast-enhanced abdominal CT within three weeks 
prior to surgery. Patients were excluded if they had poor CT 
imaging quality or incomplete baseline clinical or pathologi-
cal information. Of the initial pool of patients, 168 patients 
were included in the final analysis and categorized into two 
groups: Mild peritoneal involvement (MPI) group (PCI < 18) 
and Heavy peritoneal involvement (HPI) group (PCI ≥ 18), 
based on the S-PCI. This division considered the established 
indications for gastrointestinal CRS, which typically fall 
below the range of 16–20 for PCI. The training and valida-
tion cohorts were randomly divided into an 8:2 ratio. A flow 
chart of this study design is provided in Fig. 1.

The Medical Ethics Committee of Wuhan University 
Zhongnan Hospital approved this study. Since this study was 
retrospective, informed consent from patients was waived.

Intraoperative evaluation

The S-PCI was determined during laparoscopy exploration 
or open surgery by a team of surgeons. The abdominopel-
vic cavity was partitioned into 13 distinct regions, and 

the size of the tumor in each region was used to assign a 
score, with a score of 0 indicating no tumor, 1 for tumor 
diameter < 0.5 cm, 2 for tumor diameter ranging from 0.5 
to 5 cm, and 3 for tumor diameter exceeding 5 cm. The 
summation of scores from all regions yielded the S-PCI, 
which could range from 0 to 39 [29]. All samples obtained 
during surgery were confirmed as PM through postopera-
tive pathological examination.

CT image acquisition

CT examinations were conducted on 128-slice (Siemens 
SOMATOM Definition CT) and 64-channel (GE Discov-
ery CT750, Philips Ingenuity CT) scanners with patients in 
the supine position following a 6-h fasting period. Patients 
were trained to control their breathing before the scan to 
minimize any breathing-related artifacts. The CT scans 
encompassed the region extending from the diaphragm 
to the bony pelvic floor. Prior to undergoing the contrast-
enhanced CT examination, patients were administered 
contrast agents (5.300 mL/kg, iohexol 40 mg I/mL) via 
the anterior elbow vein at a rate of 5.1 mL/s. The following 
parameters were used for the CT scan: tube current rang-
ing from 150 to 350 mA, tube voltage of 120 kVp, field 
of view spanning 30–45 cm, matrix size of 512 × 512, and 
reconstructed slice thickness between 1 and 5 mm.

Image preprocessing and segmentation

We chose CT images of the portal venous-phase for the 
relevant study because they could well separate between 
normal tissues, blood vessels, tumors and non-neoplastic 
organs. To reduce the effect of different volume pixels, we 
used the nearest interpolation method to resample the vox-
els to 1 mm × 1 mm × 1 mm. The 3D peritoneal volume 
of interest (VOI) segmentation was using ITK-SNAP soft-
ware (v.4.0.0, http://​www.​itksn​ap.​org). A novel approach 
to segmenting the 3D peritoneal volume of interest was 
developed in this study. This was achieved by dividing 
the entire abdomen into three sections: upper, middle, 
and lower abdomen. The abdomen was first segmented 
without organs and organs, musculoskeletal and vascular 
areas using semi-automatic segmentation on ITK-SNAP 
(see Supplementary 1 for details), and then by two expe-
rienced imaging physicians manually corrected the VOI 
in the abdominal window (window level: 30HU, window 
width: 700HU) to obtain the peritoneal VOI of the upper, 
middle and lower parts. Thirty patients were randomly 
selected after 30 days to have the VOI segmented again to 
exclude intra- and interobserver variation. The flow in the 
whole study was as in Fig. 2.

http://www.itksnap.org


496	 Clinical & Experimental Metastasis (2023) 40:493–504

1 3

Radiomics feature extraction

RF extraction of peritoneal VOI was performed using PyRa-
diomics (v3.1.0) based on the Python (3.9.7) open-source 
platform. The types and distribution of RF areshown in 
the supplementary material. The extraction process aligns 
with the Imaging Biomarker Standardization Initiative 
(IBSI) [30]. The reproducibility of RF was assessed by 
the intraclass correlation coefficient (ICC), and features 
with ICC ≥ 0.75 proved to have low variance and high 
reproducibility.

Deep learning feature extraction

The layer with the largest peritoneal area from the three 
abdominal VOI of patients were selected as the patient’s DL 
region of interest (ROI). DenseNet, InceptionV3, ResNet18, 
ResNet50, and ResNet101 were pre-trained convolutional 

neural network models based on ImageNet. In the present 
study, DL models were utilized to extract DL features (DLF) 
from the ROI. To obtain the DLF, the last fully connected 
layer of the model was removed and global maximum pool-
ing was applied to extract the maximum value of each fea-
ture layer. The original value of the output image features 
was used as the DLF. To visualize the DLF, the guided class 
activation map (Grad-CAM) was used. Grad-CAM is a visu-
alization technique utilized to identify the key regions within 
an input image that significantly influenced the output of the 
neural network [31]. The PyTorch 1.4.1 library in Python 
3.7.0 (https://​pytor​ch.​org) was used to implement the neural 
network.

Feature selection and model construction

Normalization of data is a common step in machine learning 
to scale and center the data, which helps in improving the 

Fig. 1   Flow chart of the study 
cohort recruitment

https://pytorch.org
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accuracy of the model. In this study, the Z-Score method 
was used for normalization, which transforms the features 
to have a mean of zero and standard deviation of one. After 
normalization, Spearman correlation coefficient was calcu-
lated to identify highly correlated features, and one of the 
features with a strong correlation was retained (correlation 
coefficient > 0.9). To further select the most representative 
features, the least absolute shrinkage and selection operator 
(LASSO) regularization was introduced, which shrinks the 
regression coefficients towards zero and selects the features 
with non-zero coefficients. The regularization parameter λ 
was determined using five-fold cross-validation.

Nine machine learning methods (Table 2) were used to 
construct the classification model. The training and valida-
tion cohorts were randomly split in an 8:2 ratio, and the opti-
mal model was selected based on the area under the receiver 
operating characteristic (ROC) curve (AUC). Finally, the 
performance of the model was evaluated using the decision 
curve analysis (DCA) and calibration curve.

Statistical analysis

Statistical analyses were performed using the Python 3.9.7 
platform (https://​www.​python.​org/). Continuous variables 
were presented as mean values and standard deviations, and 

analyzed using either Mann-Whitney U test or Student t-test. 
Categorical variables were reported as absolute number and 
analyzed using chi-square test or Fisher’s exact test. The 
Delong test was utilized to determine the statistical differ-
ence between the AUC values. A significance level of 0.05 
was chosen for all tests, meaning that a p value below this 
level was considered statistically significant.

Results

Clinical characteristics of the patients

In this study, a total of 168 patients were recruited and allo-
cated randomly into either the training cohort (n = 134) or 
the validation cohort (n = 34) at an 8:2 ratio. Table 1 presents 
the characteristics of all patients. Among the patients, 79 
(47.02%) were male and 89 (52.98%) were female, while 
89 (52.98%) belonged to the MPI group, and 79 (47.02%) 
were in the HPI group (Table 1). The distribution of each 
clinical information was balanced between the two cohorts. 
Chi-square and t tests indicated that Primary tumor, CA125, 
CA199, and L/M were significantly correlated with PCI in 
patients (P < 0.05). Subsequently, univariate and multi-
variate regression analyses were conducted, revealing that 

Fig. 2   The workflow in this study. Firstly, the clinical and imaging 
data of the patients were collected. Subsequently, ITK-SNAP was 
employed to outline the imaging data and obtain the region of inter-
est (ROI). The features of the ROI were then extracted using both 
radiomics and deep learning techniques. Finally, a machine learning-

based peritoneal carcinomatosis index (PCI) prediction model was 
constructed based on filtered features. The direct predictive ability of 
different models was compared through evaluation metrics including 
area under the curve (AUC), confusion matrix, and decision curve 
analysis (DCA)

https://www.python.org/


498	 Clinical & Experimental Metastasis (2023) 40:493–504

1 3

Primary tumor (P = 0.004), CA125 (P < 0.001), and L/M 
(P = 0.001) could serve as effective diagnostic indicators of 
PCI staging in patients preoperatively.

Feature extraction and selection for model 
construction

A total of 4683 RF were extracted from the upper, mid-
dle, and lower peritoneal ROIs, with 1561 features in each 
part. After excluding 1231 features with poor reproducibility 
(ICC < 0.75) based on ICC reproducibility assessment, 35 

RF (as shown in Fig. 3A) were obtained for model construc-
tion through further screening with Spearman correlation 
coefficient and Lasso to exclude features with weak correla-
tion. The Rad-SVM model demonstrated the best prediction 
performance (as demonstrated in Table 2), and the AUC in 
the validation cohort was 0.906 (95% CI 0.804–1.000).

Regarding the combination of six DL models and nine 
machine learning methods used for feature extraction, 
DenseNet121-SVM demonstrated the best performance 
(as shown in Table 3), with 4704 DLF extracted (1568 

Table 1   Characteristics of 
patients

CEA carcinoembryonic antigen, CA carbohydrate antigen, N neutrocyte, L lymphocyte, M monocyte, PCI 
peritoneal cancer index
*P value < 0.05

Characteristics Training cohort (n = 134) Validation cohort (n = 34)

MPI
(n = 71)

HPI
(n = 63)

P value MPI
(n = 18)

HPI
(n = 16)

P value

Age, years 54.46 ± 12.15 53.84 ± 13.02 0.775 55.44 ± 11.80 54.06 ± 12.98 0.747
Gender 0.724
 Female 36(50.70%) 30 (47.62%) 12 (66.67%) 11(68.75%) 0.901
 Male 35(49.30%) 33 (52.38%) 6(33.33%) 5(31.25%)

Primary tumor < 0.001* 0.013*
 Stomach 44 (61.97%) 22 (34.92%) 11 (61.11%) 5(31.25%)
 Colon and Rectum 21 (29.58%) 23 (36.51%) 6(33.33%) 4(25.00%)
 Others 6(8.45%) 18 (28.57%) 1(5.56%) 7(43.75%)

Period of metastasis 0.046 0.901
 Synchronous 58 (81.69%) 42 (66.67%) 16 (88.89%) 11(68.75%)
 Heterochronic 13 (18.31%) 21 (33.33%) 2(11.11%) 5(31.25%)

CEA 0.959 0.339
 Normal 51 (71.83%) 45 (71.43%) 12 (66.67%) 8(50.00%)
 Elevated 20(28.17%) 18 (28.57%) 6(33.33%) 8(50.00%)

CA125 < 0.001* 0.035*
 Normal 53 (74.65%) 16(25.40%) 11 (61.11%) 4(25.00%)
 Elevated 18(25.35%) 47(74.60%) 7 (38.89%) 12(75.00%)

CA199 0.020* 0.692
 Normal 49 (69.01%) 31 (49.21%) 8 (44.44%) 6(37.50%)
 Elevated 22 (30.99%) 32 (50.79%) 10 (55.56%) 10(62.50%)

N/L 4.85 ± 12.64 5.31 ± 10.21 0.819 1.83 ± 1.17 2.89 ± 2.20 0.083
L/M 3.21 ± 1.33 2.34 ± 0.98 < 0.001* 3.41 ± 1.24 2.66 ± 1.33 0.099
Pathology 0.277 0.246
 Adenocarcinoma 57 (80.28%) 55(87.30%) 17 (94.44%) 13 (81.25%)
 Signet ring and 

mucinous cell 
carcinoma

14 (19.72%) 8(12.70%) 1(05.56%) 3(18.75%)

Differentiation 0.879 0.403
 Poor 51 (71.83%) 46 (73.02%) 11 (61.11%) 12(75.00%)
 Moderate and well 20(28.17%) 17 (26.98%) 7 (38.89%) 4(25.00%)

Ascites 0.767 0.162
 No (≤ 300mL) 56 (78.87%) 51(80.95%) 12 (66.67%) 14 (87.50%)
 Yes (> 300mL) 15(21.13%) 12 (19.05%) 6(33.33%) 2(12.50%)

Surgical PCI 8.80 ± 4.74 26.59 ± 6.89 7.94 ± 3.90 28.38 ± 6.51
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features each in the upper, middle, and lower abdomen). 
After filtering, 53 DLF were finally selected (as shown 
in Fig. 3B), and the AUC of the constructed model in the 
validation cohort was 0.951 (95% CI 0.887–1.000).

Performance of diagnostic models

We developed three pre-procedural diagnostic models 
for predicting PCI using clinical data, RF, and DLF. It is 
worth noting that the AUC of both Rad and DL models 

Fig. 3   Histogram of filtered feature weighting coefficients. A RF; B DLF
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was significantly higher than Clinic model. In the train-
ing cohort, the AUC of DL model was 0.996, which was 
higher than Clinic model (AUC = 0.851, P < 0.001) and Rad 
model (AUC = 0.986, P = 0.1468). In the validation cohort, 
the AUC of DL model was 0.951, which was higher than 
Clinic model (AUC = 0.797, P = 0.074) and Rad model 
(AUC = 0.906, P = 0.4654), as shown in Fig. 4A and D.

The results of the DCA demonstrated that patients could 
derive greater net benefits from DL model in comparison to 
both Clinic and Rad models (Fig. 4B and E). Additionally, 

the calibration curves indicated a superior level of agreement 
between predicted and actual groupings within DL models 
(Fig. 4C, F).

We also constructed a Clinic-Rad-DL model, which had 
an AUC of 0.962 (95% CI 0.901–1.000) in the validation 
cohort. However, the Clinic-Rad-DL model did not result 
in a substantial improvement in efficacy compared to DL 
model alone (P = 0.695).

While the features extracted by DL may be challeng-
ing to interpret in practical terms, the study implemented 

Table 2   Performance of radiomics models constructed by different machine learning methods

AUC​ area under the receiver operating characteristic curve, CI  confidence interval, LR  logistic regression, SVM  support vector machines, 
KNN K- nearest neighbor, XGBoost eXtreme gradientbosting, LightGBM light gradient boosting machine, MLP multilayer perceptron

AUC (95% CI) Accuracy Sensitivity Specificity

Training 
cohort

Validation 
cohort

Training 
cohort

Validation 
cohort

Training 
cohort

Validation 
cohort

Training 
cohort

Validation 
cohort

LR 0.991 (0.982–
1.000)

0.833 (0.684–
0.986)

0.955 0.824 0.921 0.812 0.983 0.882

SVM 0.986 (0.974–
0.999)

0.906 (0.804–
1.000)

0.940 0.882 0.905 0.812 0.972 0.944

KNN 0.922 (0.879–
0.964)

0.804 (0.651–
0.957)

0.843 0.735 0.762 0.875 0.915 0.611

RandomForest 1.000 (1.000–
1.000)

0.842 (0.697–
0.988)

1.000 0.824 1.000 0.778 1.000 0.778

ExtraTrees 1.000 (1.000–
1.000)

0.830 (0.697–
0.963)

1.000 0.735 1.000 0.938 1.000 0.556

XGBoost 1.000 (1.000–
1.000)

0.875 (0.758–
0.992)

1.000 0.794 1.000 0.875 1.000 0.722

LightGBM 0.973 (0.952–
0.994)

0.884 (0.771–
0.996)

0.910 0.853 0.937 0.750 0.887 0.944

Gradient-
Boosting

0.997 (0.993–
1.000)

0.854 (0.723–
0.985)

0.970 0.853 0.968 0.812 0.972 0.889

AdaBoost 0.984 (0.969–
0.998)

0.856 (0.719–
0.993)

0.940 0.824 0.889 0.750 0.986 0.889

Table 3   Performance of SVM diagnostic models constructed based on different DLF

AUC (95% CI) Accuracy Sensitivity Specificity

DL model Training 
cohort

Validation 
cohort

Training 
cohort

Validation 
cohort

Training 
cohort

Validation 
cohort

Training 
cohort

Validation 
cohort

DenseNet121 0.996 (0.990–
1.000)

0.951 (0.887–
1.000)

0.978 0.912 1.000 0.875 0.958 0.944

DenseNet169 0.957 (0.922–
0.992)

0.919 (0.798–
1.000)

0.911 0.909 0.891 0.867 0.930 0.944

InceptionV3 0.990 (0.980–
1.000)

0.956 (0.895–
1.000)

0.948 0.909 0.968 0.875 0.931 0.941

ResNet18 0.996 (0.990–
1.000)

0.920 (0.829–
1.000)

0.978 0.882 0.984 0.750 0.972 1.000

ResNet50 0.990 (0.980–
1.000)

0.886 (0.774–
0.998)

0.948 0.848 0.968 0.812 0.931 0.882

ResNet101 0.978 (0.950–
1.000)

0.890 (0.762–
1.000)

0.941 0.879 0.889 0.750 0.986 1.000
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Grad-CAM to provide interpretability to the DL model. This 
involved characterizing the distribution of contributions to 
the output prediction results (Fig. 5).

Furthermore, we assessed the generalization ability of 
the DL model in practical applications by dividing patients 
into different subgroups. The DL model showed strong gen-
eralization ability in the stratified analysis according to age, 
gender, primary tumor, presence or absence of ascites, and 
different CT layer thicknesses (Table 4).

Discussion

The purpose of this study was to develop and validate a DL 
model using preoperative enhanced abdominal CT to deter-
mine the degree of preoperative peritoneal involvement in 
PM patients. The results demonstrated that the model had 
satisfactory performance in stratifying patients and could 
potentially aid in treatment decision-making for PM patients.

Clinically, PM patients are usually at the end stage of the 
disease. Among the limited treatment options, CRS + HIPEC 
can maximize the overall survival time of patients, but this 
is only for patients with a small PM load [32, 33]. How-
ever, accurate preoperative staging of patients can avoid 
unnecessary surgical damage. Imaging examination, the 
most commonly used noninvasive diagnostic modality, has 
a limited ability to identify PM [34, 35]. CT combined with 

DL analysis in patients with PM has been widely used in 
predicting occult metastasis and recurrence of PM, demon-
strating a strong predictive capability [27, 36, 37]. In a study 
of 163 patients, Zhang and colleagues [38] attempted to use 
radiomics rather than DL for preoperative PCI scoring, and 
used an external validation cohort to assess the applicability 
of the model. In their study, limited by intact peritoneal seg-
mentation, only 6 regions were selected as representatives. 
In our study, we are the first to segment the complete perito-
neum and use DL analysis of CT images for staging patients 
with preoperative PM. The results demonstrate the superior 
discriminatory performance of the Rad and DL models over 
clinical data alone. The DL model demonstrated superior 
AUC performance compared to the Rad model in both train-
ing and validation cohorts, while the DCA curve indicated 
that both models could enhance patient outcomes following 
CRS + HIPEC treatment. Additionally, Grad-CAM was used 
to address the black box problem of DL and provide clini-
cians with explanations. The focus on mesenteric heteroge-
neity in DL is consistent with what clinicians see intraopera-
tively, as the mesentery is a common site for PM.

In previous studies on using Rad or DL for PM, one 
of the main challenges was the segmentation of the ROI. 
Manual segmentation of ROI is subjective and can vary 
among different imaging physicians. Furthermore, the 
complexity of the peritoneum makes it difficult to manu-
ally sketch the entire peritoneum, and most studies [3, 27, 

Fig. 4   The performance evaluation of Clinic, RF and DL signatures. The ROC, DCA and calibration curves of the training (A–C) and validation 
cohort (D–F)
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Fig. 5   Grad-CAM visualization for DenseNet121 feature extraction. A–C shows the upper, middle and lower abdominal CTs of a patient with 
PM. The degree of contribution to the predicted results gradually increases from red to blue. (Color figure online)

Table 4   Enhanced performance 
evaluation of the DL model 
across various subgroups

Training cohort
AUC (95% CI)

P value Validation cohort
AUC (95% CI)

P value

Age, years
 ≤ 55 0.998 (0.941–1.000) 0.721 0.922 (0.676–0.996) 0.540
 > 55 0.997 (0.941–1.000) 0.975 (0.773–1.000)

Gender
 Female 0.995 (0.937–1.000) 0.853 0.962 (0.789–0.999) 0.937
 Male 0.997 (0.940–1.000) 0.967 (0.664–1.000)

Primary tumor
 Stomach 0.995 (0.936–1.000) 0.926 0.909 (0.660–0.994) 0.457
 Others 0.995 (0.938–1.000) 0.974 (0.771–1.000)

Ascites
 No (≤ 300 mL) 0.993 (0.954–1.000) 0.149 0.964 (0.808–0.999) 0.244
 Yes (> 300 mL) 1.000 (0.872–1.000) 1.000 (0.631–1.000)

Image thickness, mm
 1–1.5 1.000 (0.955–1.000) 0.227 0.983 (0.823–1.000) 0.347
 5 0.990 (0.914–1.000) 0.875 (0.546–0.992)
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36, 39] only assess the status of the peritoneum in primary 
foci ROI or a portion of the peritoneum, which may not 
represent the entire peritoneum. Additionally, there is sig-
nificant variation in the primary foci in patients with PM 
from numerous sources, and using only the primary foci 
ROI does not generalize the entire model to all patients 
with PM of tumor origin. To address these issues, we seg-
mented the entire peritoneal region of patients semi-auto-
matically using ITK-SNAP to segment the 3D peritoneal 
VOI for the first time. This approach allows us to accu-
rately and comprehensively assess the peritoneal status of 
PM patients efficiently. Moreover, we divided the whole 
abdomen into three parts, and found that the majority of 
PM patients of gastric origin in our cohort and the major-
ity of the finally screened RF and DLF also originated 
from the upper and middle abdomen. Clinically, gastric 
cancer PM is rarely found in the lower abdomen. This 
finding suggests that we can select different abdominal 
partitions for the classification of primary tumor origin 
to further optimize the efficacy of the model. Overall, the 
semi-automatic segmentation of the peritoneal VOI pro-
vides a more objective and comprehensive assessment of 
PM patients, and dividing the abdomen into different parti-
tions may improve the model’s efficacy in identifying the 
primary tumor origin.

In our study cohort, a significant proportion of patients 
(47.0%) with S-PCI scores of 18 or higher underwent surgi-
cal exploration but did not receive any further surgical treat-
ment, indicating that our DL model can potentially optimize 
available surgical options. Furthermore, our model holds 
promise for application in patients with higher PM load, 
where multi-stage HIPEC may be a viable option for achiev-
ing surgical indications similar to preoperative neoadjuvant 
chemotherapy [3]. As such, we anticipate that our model can 
enable selection of patients for surgical treatment and evalu-
ation of HIPEC-treated SIP patients in the future.

However, there are limitations to our study that must 
be considered. First, fewer patients were evaluated for the 
S-PCI procedure, and larger samples may be needed to 
improve the reliability. Second, as our study was retrospec-
tive and based on a single-center cohort, the generalizabil-
ity of the model must be validated with prospective and 
multicenter data. Finally, while DL analysis in medical 
imaging is primarily based on 2D imaging, the potential 
for future models utilizing 3D imaging analysis has the 
capacity to further optimize model performance.

In summary, our study presents a promising CT-based 
DL model for preoperative staging assessment of PM 
patients, providing a non-invasive means to optimize clini-
cal treatment decisions.
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