Skip to main content

Advertisement

Log in

Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Anchorage-independent survival of cancer cells is associated with metastasis as it enables cells to travel to secondary target sites. Tissue integrity is generally maintained by detachment-induced cell death called ‘anoikis’, but cancer cells undergoing the multistep metastatic process show resistance to anoikis. Anoikis resistance enables these cells to survive through the extracellular matrix (ECM) deprived phase, which starts when cancer cells detach and move into the circulation till cells reach to the secondary target site. Comprehensive analysis of the molecular and functional biology of anoikis resistance in cancer cells will provide crucial details about cancer metastasis, enabling us to identify novel therapeutic targets against cancer cell dissemination and ultimately secondary tumor formation. This review broadly summarizes recent advances in the understanding of cellular and molecular events leading to anoikis and anoikis resistance. It further elaborates more about the signaling cross-talk in anoikis resistance and its regulation during metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability supporting data

Not applicable.

Abbreviations

CSC:

Cancer stem cell

CTC:

Circulating tumor cell

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

G-CSF:

Granulocyte-colony stimulating factor

HER2:

Human epidermal growth factor receptor 2

IL:

Interleukin

MAPK:

Mitogen-activated protein kinase

MET:

Mesenchymal-epithelial transition

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

mTOR:

Mammalian target of rapamycin

NK cells:

Natural killer cells

NET:

Neutrophil extracellular traps

p53:

Tumor protein p53

PDAC-:

Pancreatic ductal adenocarcinoma

PCAM-1:

Platelet endothelial cell adhesion molecule-1

PEA15:

Proliferation and Apoptosis Adaptor Protein 15

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PMN:

Polymorphonuclear leukocytes

PPP:

Pentose Phosphate Pathway

PTEN:

Phosphatase and tensin homolog

Smac/DIABLO:

Second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI

SMAD:

Small mothers against decapentaplegic protein 1

T reg:

Regulatory T-cell

TCIPA:

Tumor cell-induced platelet aggregates

TF:

Tissue Factor

TGF-β:

Transforming growth factor-beta

TOPK:

T-lymphokine-activated killer cell-originated protein kinase

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

Wnt:

Wingless-related integration site

References

  1. Hynes ROJS (2009) Extracell matrix: not just pretty fibrils 326(5957):1216–1219

    CAS  Google Scholar 

  2. Lu P et al (2011) Extracell matrix Degrad remodeling Dev disease 3(12):a005058

    Google Scholar 

  3. Fidler IJJCr (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis 38(9):2651–2660

    CAS  Google Scholar 

  4. Sznurkowska MK, Aceto NJTFJ (2021) The gate to metastasis: key players in cancer cell intravasation.

  5. Aceto N et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis 158(5):1110–1122

    CAS  Google Scholar 

  6. Kantara C et al (2015) Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis.95(1): p. 100–112

  7. Taftaf R et al (2021) ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer.12(1): p. 1–15

  8. Martin TA et al (2013) Cancer invasion and metastasis: molecular and cellular perspective, in Madame Curie Bioscience Database [Internet]. Landes Bioscience

  9. Liotta LA, Kohn EJN (2004) Cancer and the homeless cell 430(7003):973–974

    CAS  Google Scholar 

  10. Micalizzi DS et al (2017) A conduit to metastasis: circulating tumor cell biology. 31:1827–184018

  11. Guo W (2004) and F.G.J.N.r.M.c.b. Giancotti. Integrin Signal Dur tumour progression 5(10):816–826

    CAS  Google Scholar 

  12. Chen DS, Mellman IJN (2017) Elem cancer Immun cancer–immune set point 541(7637):321–330

    CAS  Google Scholar 

  13. Chambers AF, Groom AC, I.C.J.N.R C, MacDonald (2002) Dissemination and growth of cancer cells in metastatic sites 2(8):563–572

    CAS  Google Scholar 

  14. Schuster E et al (2021) Better together: Circulating tumor cell clustering in metastatic cancer. 7:1020–103211

  15. Massagué J, Obenauf ACJN (2016) Metastatic colonization by circulating tumour cells 529(7586):298–306

    Google Scholar 

  16. Liu X et al (2021) EGFR Inhib blocks cancer stem cell clustering lung metastasis triple Negat breast cancer 11(13):6632

    CAS  Google Scholar 

  17. Liu X et al (2019) Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models.9(1): p. 96–113

  18. Gkountela S et al (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. 176:98–1121–2e14

  19. Balakrishnan A et al (2019) Circulating Tumor Cell cluster phenotype allows monitoring response to treatment and predicts survival 9(1):1–8

    CAS  Google Scholar 

  20. Donato C et al (2020) Hypoxia triggers the intravasation of clustered circulating tumor cells 32(10):108105

    CAS  Google Scholar 

  21. Dobner BC et al (2012) Expression of haematogenous and lymphogenous chemokine receptors and their ligands on uveal melanoma in association with liver metastasis. 90:e638–e6448

  22. Paoli P, Giannoni E, J.B.e.B.A.-M P (2013) Anoikis Mol pathways its role cancer progression 1833(12):3481–3498

    CAS  Google Scholar 

  23. Roche JJC (2018) The epithelial-to-mesenchymal transition in cancer. Multidisciplinary Digital Publishing Institute, p 52

  24. Brabletz T et al (2018) EMT in cancer 18(2):128–134

    CAS  PubMed  Google Scholar 

  25. Chen T et al (2017) Epithelial–mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. 232:3261–327212

  26. Ye X et al (2017) Upholding a role for EMT in breast cancer metastasis. 547:E1–E37661

  27. Yang J, R.A.J.D.c., Weinberg (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis 14(6):818–829

    CAS  Google Scholar 

  28. Yeung KT, Yang JJMo (2017) Epithelial–mesenchymal transition in tumor metastasis 11(1):28–39

    Google Scholar 

  29. Banyard J (2015) D.R.J.C.t.r. Bielenberg, The role of EMT and MET in cancer dissemination. 56:403–4135

  30. Wu Y et al (2009) Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion.15(5): p. 416–428

  31. Giannoni E et al (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. 14:2361–237112

  32. Taddei M et al (2012) Anoikis: an emerging hallmark in health and diseases 226(2):380–393

    CAS  Google Scholar 

  33. Li T et al (2020) Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. 34:9087–91017

  34. Kupferman M et al (2010) TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. 29:2047–205914

  35. Yu X et al (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. 99:543–5523

  36. Thiery JP (2002) J.N.r.c. Epithelial–mesenchymal transitions in tumour progression 2(6):442–454

    CAS  Google Scholar 

  37. Savagner PJ (2015) Epithelial–mesenchymal transitions: from cell plasticity to concept elasticity 112:273–300. C.t.i.d.b

    CAS  Google Scholar 

  38. Ribelles N et al (2014) The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. 40:293–2992

  39. Yang T et al (2016) A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer. 408:7491–750326

  40. Akekawatchai C et al (2016) Protein profiles associated with anoikis resistance of metastatic MDA-MB-231 breast cancer cells. 17:581–5902

  41. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells 133(4):704–715

    CAS  Google Scholar 

  42. Yang L et al (2020) Synergistic therapeutic effect of combined PDGFR and SGK1 inhibition in metastasis-initiating cells of breast cancer. 27:2066–20807

  43. Pan G et al (2021) EMT-associated microRNAs and their roles in cancer stemness and drug resistance. 41:199–2173

  44. Wilson MM et al (2020) Emerging mechanisms by which EMT programs control stemness. 6:775–7809

  45. Kim SY et al (2016) Cancer stem cells protect non-stem cells from anoikis: bystander effects 117(10):2289–2301

    CAS  Google Scholar 

  46. An H et al (2015) Salinomycin promotes anoikis and decreases the CD44+/CD24-stem-like population via inhibition of STAT3 activation in MDA-MB-231 cells. 10:e014191911

  47. Kim Y-J et al (2017) Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. 486:1069–10764

  48. Zhang H et al (2020) SPIB promotes anoikis resistance via elevated autolysosomal process in lung cancer cells. 287:4696–470921

  49. Yan G, Elbadawi M, J.W.A.o.S T (2020) Multiple cell death modalities and their key features 2(2):39–48

    Google Scholar 

  50. Galluzzi L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. 25:486–5413

  51. Frisch SM (2001) and R.A.J.C.o.i.c.b. Screaton. Anoikis Mech 13(5):555–562

    CAS  Google Scholar 

  52. Muganda PM (2016) Apoptosis methods in toxicology. Springer

  53. Li J, Yuan JJO (2008) Caspases in apoptosis and beyond 27(48):6194–6206

    CAS  Google Scholar 

  54. Elmore SJTp (2007) Apoptosis: a review of programmed cell death 35(4):495–516

    CAS  Google Scholar 

  55. Khan SU et al (2022) Activation of lysosomal mediated cell death in the course of autophagy by mTORC1 inhibitor. 12:1–131

  56. Wani A et al (2021) Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. 17:3813–383211

  57. Liu Y, Levine BJCD, Differentiation (2015) Autosis and autophagic cell death: the dark side of autophagy 22(3):367–376

    CAS  Google Scholar 

  58. Wang S et al (2021) Acidic extracellular pH induces autophagy to promote anoikis resistance of hepatocellular carcinoma cells via downregulation of miR-3663-3p.12(12): p. 3418

  59. Mowers EE, Sharifi MN, Macleod KFJO (2017) Autophagy in cancer metastasis 36(12):1619–1630

    CAS  Google Scholar 

  60. Fung C et al (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival 19(3):797–806

    CAS  Google Scholar 

  61. Zhao B et al Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis.Genes & development.26(1): p.54–68

  62. Kakavandi E et al (2018) Anoikis Resist oncoviruses 119(3):2484–2491

    CAS  Google Scholar 

  63. van Zijl F, Krupitza G, Mikulits W Initial steps of metastasis: cell invasion and endothelial transmigration.Mutation Research/Reviews in Mutation Research.728(1–2): p.23–34

  64. D’Amato NC et al A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer.Cancer research: p. canres. 2011.2015.

  65. Hiraki M et al (2016) MUC1-C stabilizes MCL-1 in the oxidative stress response of triple-negative breast cancer cells to BCL-2 inhibitors. 6:1–111

  66. Galante JM et al (2009) ERK/BCL-2 pathway in the resistance of pancreatic cancer to anoikis. 152:18–251

  67. Walsh N et al (2009) Alterations in integrin expression modulates invasion of pancreatic cancer cells 28(1):1–12

    Google Scholar 

  68. Favaloro B et al (2012) Role of apoptosis in disease 4(5):330

    CAS  Google Scholar 

  69. Ke FF et al (2018) Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. 173:1217–12305e17

  70. Lopez J (2015) S.J.B.j.o.c. Tait. Mitochondrial apoptosis: killing cancer using the enemy within 112(6):957–962

    CAS  Google Scholar 

  71. Pfeffer CM (2018) and A.T.J.I.j.o.m.s. Singh, Apoptosis: a target for anticancer therapy. 19:4482

  72. Aoudjit F (2001) K.J.T.J.o.c.b. Vuori, Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. 152:633–6443

  73. Frisch SMJCB (1999) Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. 9:1047–104918

  74. Kerr JF, Winterford CM, Harmon BVJC (1994) Apoptosis Its significance in cancer and cancer therapy 73(8):2013–2026

    CAS  Google Scholar 

  75. Thomsen ND, Koerber JT, J.A.J (2013) .P.o.t.N.A.o.S. Wells, Structural snapshots reveal distinct mechanisms of procaspase-3 and-7 activation. 110:8477–848221

  76. Van De Craen M et al (1999) The proteolytic procaspase activation network: an in vitro analysis. 6:1117–112411

  77. RytoÈmaa M, Lehmann K, Downward JJO (2000) Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. 19:4461–446839

  78. Sun C-Y et al (2002) Expression of the bcl-2 gene and its significance in human pancreatic carcinoma.1(2): p. 306–308

  79. Campani D et al (2001) Bcl-2 expression in pancreas development and pancreatic cancer progression. 194:444–4504

  80. Thomas S et al (2013) Targeting the Bcl-2 family for cancer therapy.17(1): p. 61–75

  81. García-Aranda M, Pérez-Ruiz E (2018) J.I.j.o.m.s. Redondo, Bcl-2 inhibition to overcome resistance to chemo-and immunotherapy. 19:395012

  82. Um H-DJO (2016) Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species.7(5): p. 5193

  83. Chadha KS et al (2006) Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma. 13:933–9397

  84. Schafer ZT et al (2009) Antioxid oncogene rescue metabolic defects caused loss matrix attachment 461(7260):109–113

    CAS  Google Scholar 

  85. Hindupur SK et al (2014) Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. 16:1–164

  86. Ng T et al (2012) The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. 19:501–5103

  87. Hamurcu Z et al (2018) Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. 144:415–4303

  88. Jacquemet G et al (2016) L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling.7(1): p. 1–17

  89. Adorno-Cruz V, Liu HJG (2019) Dis Regul Funct integrin α2 cell Adhes disease 6(1):16–24

    CAS  Google Scholar 

  90. Vitillo L (2017) J.J.C.s.c.r. Kimber. Integrin and FAK regulation of human pluripotent stem cells 3(4):358–365

    CAS  Google Scholar 

  91. Alanko J et al (2015) Integrin endosomal signalling suppresses anoikis 17(11):1412–1421

    CAS  Google Scholar 

  92. Anderson LR, Owens TW (2014) J.B.r. Naylor. Struct Mech Funct integrins 6(2):203–213

    CAS  Google Scholar 

  93. Burridge K (2016) C.J.E.c.r. Guilluy, Focal adhesions, stress fibers and mechanical tension. 343:14–201

  94. Morse EM, Brahme NN, Calderwood DAJB (2014) Integrin cytoplasmic tail interactions 53(5):810–820

    CAS  Google Scholar 

  95. Hanks SK et al (2003) Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility.8(1–3): p. d982-d996

  96. Qin J (2012) and C.J.C.o.i.c.b. Wu, ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling.24(5): p. 607–613

  97. Mitra SK (2006) and D.D.J.C.o.i.c.b. Schlaepfer, Integrin-regulated FAK–Src signaling in normal and cancer cells. 18:516–5235

  98. Zhong X, F.J.J (2012) .C.s. Rescorla, Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. 24:393–4012

  99. Adeshakin FO et al (2021) Mech modulating anoikis Resist cancer relevance metabolic reprogramming 11:528

    Google Scholar 

  100. Rennebeck G, Martelli M, Kyprianou NJCr (2005) Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis?. 65:11230–1123524

  101. Ayla S (2019) and S.J.C.R.i.O. Karahüseyinogluc,Cancer stem cells, their microenvironment and anoikis.24(1)

  102. Mowers EE, Sharifi MN, Macleod KFAutophagy in cancer metastasis. Oncogene.36(12): p.1619

  103. Chen W et al (2019) Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization 520(2):263–268

    CAS  Google Scholar 

  104. Yang SX, Polley E (2016) J.C.t.r. Lipkowitz, New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. 45:87–96

  105. Schempp CM et al (2014) V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells.13(4): p. 926–937

  106. Nelson CM, M.J.J.A.R.C.D B, Bissell (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer.22: p. 287–309

  107. Wang C et al (2019) Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial–mesenchymal transition.10(1): p. 1–16

  108. Hu P et al (2019) Acidosis enhances the self-renewal and mitochondrial respiration of stem cell-like glioma cells through CYP24A1-mediated reduction of vitamin D. 10:1–141

  109. Peppicelli S et al (2019) Anoikis resistance as a further trait of acidic-adapted melanoma cells.2019

  110. Corbet C et al (2020) TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. 11:1–151

  111. Du S et al (2018) NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. 9:1–1810

  112. Maurer GD et al (2019) Loss of cell-matrix contact increases hypoxia-inducible factor-dependent transcriptional activity in glioma cells.515(1): p. 77–84

  113. Caneba CA et al (2012) Pyruvate uptake is increased in highly invasive ovarian cancer cells under anoikis conditions for anaplerosis, mitochondrial function, and migration. 303:E1036–E10528

  114. Cho ES et al (2018) The pentose phosphate pathway as a potential target for cancer therapy. 26:291

  115. Patra KC (2014) and N.J.T.i.b.s. Hay. The pentose phosphate pathway and cancer 39(8):347–354

    CAS  Google Scholar 

  116. Yang L et al (2018) Regulation of AMPK-related glycolipid metabolism imbalances redox homeostasis and inhibits anchorage independent growth in human breast cancer cells. 17:180–191

  117. O’Neill S et al (2019) 2-Deoxy-D-Glucose inhibits aggressive triple-negative breast cancer cells by targeting glycolysis and the cancer stem cell phenotype.9(1): p. 1–11

  118. Lahiri V, Hawkins WD, D.J.J (2019) .C.m. Klionsky, Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. 29:803–8264

  119. Chen JL et al (2017) Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease. 15:26–341

  120. Berezovskaya O et al (2005) Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. 65:2378–23866

  121. Marconi A et al (2007) Survivin identifies keratinocyte stem cells and is downregulated by anti-β1 integrin during anoikis. 25:149–1551

  122. Tiberio R et al (2002) Keratinocytes enriched for stem cells are protected from anoikis via an integrin signaling pathway in a Bcl-2 dependent manner. 524:139–1441–3

  123. Huaman J, Ogunwobi OOJC (2020) Circulating tumor cell migration requires fibronectin acting through integrin B1 or SLUG. 9:15947

  124. Végran F, Boidot RJO (2013) Survivin-3B promotes chemoresistance and immune escape by inhibiting caspase-8 and-6 in cancer cells. 2:e2632811

  125. Yie S-M et al (2006) Detection of Survivin-expressing circulating cancer cells in the peripheral blood of breast cancer patients by a RT-PCR ELISA. 23:279–2895

  126. Palumbo JS et al (2005) Platelets and fibrin (ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumor cells.105(1): p. 178–185

  127. Palacios-Acedo AL et al (2019) Platelets, thrombo-inflammation, and cancer: collaborating with the enemy. : p. 1805

  128. Tormoen GW et al (2012) Do circulating tumor cells play a role in coagulation and thrombosis?2: p. 115

  129. Evans CE et al (2017) Modelling pulmonary microthrombosis coupled to metastasis: distinct effects of thrombogenesis on tumorigenesis. 6:688–6975

  130. Kim E-S, Kim M-S, Moon AJC (2005) Transforming growth factor (TGF)-β in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. 29:84–912

  131. Guo S-W, Du Y, Liu XJHR (2016) Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. 31:1462–14747

  132. Leblanc R, Peyruchaud OJB (2016) The Journal of the American Society of Hematology. Metastasis: new functional implications of platelets and megakaryocytes 128(1):24–31

    CAS  Google Scholar 

  133. Thomas DA, Massagué JJCc (2005) TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. 8:369–3805

  134. Sugiura D et al (2019) Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. 364:558–5666440

  135. Cai J et al (2019) The role of PD-1/PD-L1 axis in treg development and function: implications for cancer immunotherapy. 12:8437

  136. Blank C, Gajewski TF, Mackensen AJCI, Immunotherapy (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. 54:307–3144

  137. Loustau M et al (2020) HLA-G neo-expression on tumors.11: p. 1685

  138. González Á et al (2012) The immunosuppressive molecule HLA-G and its clinical implications. 49:63–843

  139. He X et al (2010) HLA-G expression in human breast cancer: implications for diagnosis and prognosis, and effect on allocytotoxic lymphocyte response after hormone treatment in vitro. 17:1459–14695

  140. Anvari S, Osei E, Maftoon NJSr (2021) Interact platelets circulating tumor cells contribute cancer metastasis 11(1):1–16

    Google Scholar 

  141. Kong D et al (2008) Platelet-derived growth factor‐D overexpression contributes to epithelial‐mesenchymal transition of PC3 prostate cancer cells. 26:1425–14356

  142. Gay LJ, Felding-Habermann BJNRC (2011) Contribution of platelets to tumour metastasis 11(2):123–134

    CAS  Google Scholar 

  143. Lou X-L et al (2015) Interaction between circulating cancer cells and platelets: clinical implication. 27:4505

  144. Wirtz D, Konstantopoulos K, C.J.N.R P (2011) Phys cancer: role Phys Interact Mech forces metastasis 11(7):512–522

    CAS  Google Scholar 

  145. Burdick MM (2004) K.J.A.j.o.p.-C.p. Konstantopoulos, Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. 287:C539–C5472

  146. Wojtukiewicz MZ et al (2017) Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past?. 36:305–3292

  147. Bendas G (2012) and L.J.I.j.o.c.b. Borsig, Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins.2012

  148. Lucotti S et al (2019) Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A 2. 129:1845–18625

  149. Liu Q, Liao Q, Zhao YJMH (2016) Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. 87:34–39

  150. Gruber I et al (2013) Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. 33:2233–22385

  151. Kim M-Y et al (2009) Tumor self-seeding by circulating cancer cells 139(7):1315–1326

    Google Scholar 

  152. Zhang Y et al (2016) Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells. Hum osteosarcoma nude mouse model 7(1):446

    CAS  Google Scholar 

  153. Xiao Y-C et al (2015) CXCL8, overexpressed in colorectal cancer, enhances the resistance of colorectal cancer cells to anoikis. 361:22–321

  154. Koslawsky D et al (2018) A bi-specific inhibitor targeting IL-17A and MMP-9 reduces invasion and motility in MDA-MB-231 cells. 9:2850047

  155. Zhang F et al (2011) Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. 93:296–3052

  156. Sakurai T et al (2016) Essential role of mitogen-activated protein kinases in IL-17A-induced MMP-3 expression in human synovial sarcoma cells. 9:1–91

  157. Tseng J-Y et al (2014) Interleukin-17A modulates circulating tumor cells in tumor draining vein of colorectal cancers and affects metastases. 20:2885–289711

  158. Coumans FA et al (2012) Challenges in the enumeration and phenotyping of CTC 18(20):5711–5718

    Google Scholar 

  159. Ward MP et al (2021) Platelets, immune cells and the coagulation cascade; friend or foe of the circulating tumour cell?. 20:1–171

  160. Li J et al (2016) Genetic Eng platelets neutralize circulating tumor cells 228:38–47

    CAS  Google Scholar 

  161. Au SH et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels.113(18): p. 4947–4952

  162. Haratani K et al (2020) U3-1402 sensitizes HER3-expressing tumors to PD-1 blockade by immune activation. 130:374–3881

Download references

Acknowledgements

We would also like to thank -Dr. Abubakar Wani and Dr. Cherise Guess (St. Jude Children’s Research Hospital) for critically reading the manuscript, our colleagues particularly Dr. Baseerat Hamza, Dr. Reyaz Hassan, Dr. Asiya Batool and Yasir Dar (University of Kashmir) for their fruitful discussions and for keeping our science moving forward during pandemic times. Figures 1 and 2 was created with BioRender.com.

Funding

for FM laboratory was provided by Council of Scientific and Industrial Research (CSIR) India fellowship, a grant from the Department of Biotechnology Ministry of Science and Technology (DBT) (BT/IN/Swiss/48/FM/2018-19). CSIR-SRF budget head for providing fellowship to SUK. Institutional publication number (CSIR-IIIM/IPR/00368).

Author information

Authors and Affiliations

Authors

Contributions

FM contributed to the direction and guidance of this review. SUK drafted, conceptualized the study and wrote the manuscript. SUK and KF prepared the Figures. All authors provided intellectual contributions and edited and approved the manuscript.

Corresponding author

Correspondence to Fayaz Malik.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares there are no competing interests.

Author information

Council of Scientific and Industrial research- Indian Institute of Integrative Medicine (CSIR-IIIM) Sanat Nagar Srinagar, Jammu and Kashmir-190005; India. Sameer Ullah Khan, Kaneez Fatima, Fayaz Malik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Fatima, K. & Malik, F. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metastasis 39, 715–726 (2022). https://doi.org/10.1007/s10585-022-10172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-022-10172-9

Keywords

Navigation