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Abbreviations
ADC	 �apparent diffusion coefficient.
BM	 �brain metastases.
DW-MRI	 �Diffusion weighted MRI.
T2PZ	 �T2 peritumoral borderzone.
GMWMC	 �gray matter white matter compartment.
MRI	 �Magnetic Resonance Imaging.
DS-GPA	 �diagnosis-specific graded prognostic assess-

ment score.
RPA	 �recursive partitioning analysis.
TA	 �texture analysis.
2SD	 �2 standard deviations.
CSF	 �cerebrospinal fluid.
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Abstract
Aims  In this retrospective study we performed a quantitative textural analysis of apparant diffusion coefficient (ADC) 
images derived from diffusion weighted MRI (DW-MRI) of single brain metastases (BM) patients from different primary 
tumors and tested whether these imaging parameters may improve established clinical risk models.
Methods  We identified 87 patients with single BM who had a DW-MRI at initial diagnosis. Applying image segmenta-
tion, volumes of contrast-enhanced lesions in T1 sequences, hyperintense T2 lesions (peritumoral border zone (T2PZ)) and 
tumor-free gray and white matter compartment (GMWMC) were generated and registered to corresponding ADC maps. 
ADC textural parameters were generated and a linear backward regression model was applied selecting imaging features in 
association with survival. A cox proportional hazard model with backward regression was fitted for the clinical prognostic 
models (diagnosis-specific graded prognostic assessment score (DS-GPA) and the recursive partitioning analysis (RPA)) 
including these imaging features.
Results  Thirty ADC textural parameters were generated and linear backward regression identified eight independent imag-
ing parameters which in combination predicted survival. Five ADC texture features derived from T2PZ, the volume of the 
T2PZ, the normalized mean ADC of the GMWMC as well as the mean ADC slope of T2PZ. A cox backward regression 
including the DS-GPA, RPA and these eight parameters identified two MRI features which improved the two risk scores 
(HR = 1.14 [1.05;1.24] for normalized mean ADC GMWMC and HR = 0.87 [0.77;0.97]) for ADC 3D kurtosis of the T2PZ.)
Conclusions  Textural analysis of ADC maps in patients with single brain metastases improved established clinical risk 
models. These findings may aid to better understand the pathogenesis of BM and may allow selection of patients for new 
treatment options.
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to allow a classification of BM by their primary site of ori-
gin [21].

In this study we retrospectively performed a textural 
analysis of ADC images derived from DWI in patients with 
single brain metastases in order to investigate its potential to 
improve established clinical risk models.

Methods

Study design, setting, participants

This was a retrospective study in a single center of 87 adult 
patients with single brain metastases from different primary 
tumors over a 15 year period from 2000 to 2015. The ret-
rospective data analysis was approved by the local ethics 
committee of Innsbruck Medical University. Clinical as 
well as histological data were obtained by retrospective 
chart review and are detailed in Table 1. In this time period 
all cases with a solitary brain metastasis and sufficient MRI 
data (T1 weighted imaging, with and without contrast, T2 or 
FLAIR weighted imaging and DWI including ADC maps) 
were included. Patients who had radiation therapy, either 
locally or whole brain, and surgery prior to study enrolment 
were excluded as this could have altered the diffusion char-
acteristics. Patients were excluded with single metastases of 
a diameter of ≤ 1  cm as the textural parameter as well as 
the ADC maps analysis could be affected by partial volume 
effects [22]. Only patients with a histological diagnosis of 
the primary tumor were included.

Imaging acquisition

Patients have been investigated on different scanners using 
3T and 1,5T (Siemens Symphony Vision, Siemens Sym-
phony Tim, Siemens Avanto, Siemens Sonata, Siemens 
Verio, Siemens Skyra). Importantly, diffusion weight-
ing was applied with b-values at 0 and 1000 s/mm2 in all 
patients. For details on the imaging protocol, please see 
Supplement 1.

MRI processing

Individual 3D T1 weighted MRI were segmented into gray 
matter, white matter and cerebrospinal fluid (CSF) compart-
ments using statistical parametric mapping (SPM, Well-
come Department of Cognitive Neurology, London, United 
Kingdom). To compensate for eddy currents, DWI images 
were registered to an individual reference image without 
diffusion weighting. Registered DWI were visually verified 
for correct calculation and reconstruction for every subject. 
In order to standardize ADC values among MRI scanners, 

Originality and Presentations  The authors confirm the orig-
inality of this study.

Introduction

In patients with systemic malignancies, brain metastases 
(BMs) are a common complication affecting around 20% of 
patients [1]. Despite multidisciplinary treatment including 
surgery, irradiation and/or systemic treatment [2] BMs are 
associated with high morbidity and mortality [3, 4]. Until 
the advent of cancer immunotherapies in 2015, imaging 
studies on patients with brain metastases (BM) have been 
scarse. However, recent encouraging results that demon-
strated intracranial responses of immunotherapy in patients 
with BM [5], have refreshed the field of BM research. So 
far, cerebral magnetic resonance imaging (MRI) investiga-
tions contributed to the prognostic assessment by mainly 
identifying the number of BM [6]. To this end, MRI texture 
parameters have not been integrated in established clinical 
prognostic scores in patients with BMs [7, 8].

Diffusion weighted imaging (DWI) is a rapidly obtained 
and broadly available MRI sequence in clinical practice and 
is an integral part of standard brain tumor imaging [9]. It is 
able to yield ultra-structural information on cellular density 
[10] and properties of the extracellular matrix [11, 12] and 
has been linked to lesion aggressiveness and tumor response 
[13]. The mean apparent diffusion coefficient (ADC) in BM 
correlated with survival and recurrence after surgical resec-
tion [12, 14] and survival after radiosurgery [15]. Lately 
it could be also shown that mean ADC in the tumor core 
improved clinial risk models [14] and mean ADC changes 
at the tumor edge indicated a more locally aggressive phe-
notype [16, 17].

Texture analysis (TA) attempts to provide a non-invasive 
comprehensive quantitative analysis of image heterogene-
ity [18, 19]. A statistical based modelling is utilized involv-
ing three orders of measure parameters; first-order statistics 
summarize voxel values of a dedicated region of interest 
and report on descriptive parameters such as means and 
deviations, second-order statistics explore via co-occur-
rence measurements the length of voxels consecutively that 
have equal grey-level intensities, e.g. fine texture will have 
shorter lengths and a more consistent range of intensities 
and higher-order statistics explore the overall differences 
between pixels or voxels within the context of the entire 
region of interest. Neurooncologic studies indicated that TA 
has the potential to outperforme clinical and radiologic risk 
models in predicting prognosis e.g. in glioblastoma patients 
[20]. Recently TA of T1 and T2 weighted images has shown 
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recorded clinical contact and last follow-up (May 15th 
2020). The most widely used clinical scores, the DS-GPA 
and the RPA, for predicting survival were calculated retro-
spectively using the clinical chart information. Supplement 
Table 3 for indivivual parameters.

previously delineated areas of the tumor and edema as well 
as the compartment of the CSF were deduced from the gray 
and white matter compartments. Consecutively, the ratio 
of ADC values of each individual voxel within the tumor 
respectively within the edema and the mean ADC value 
of the tumor-free compartment was calculated. In order to 
avoid contamination from CSF and non brain compartments 
due to partial volume effects, ADC voxel values that were 
outside a threshold of mean CSF ADC of 2SD (standard 
deviations), determined for each individual, were excluded.

Image segmentation and registration

T1 weighted images as well as T2/FLAIR weighted images 
were co-registered to the corresponding ADC map sequence 
by using the software package statistical parametric map-
ping (SPM) [23]. Tumor segmentation was done by one 
person (LR) using a semi-automated active contour method 
(ITK-SNAP 2.0), which demonstrated excellent reliability 
and high efficiency of 3D segmentation [24]. The contrast-
enhancing region in T1 weighted sequences, the non-
enhancing T2 hyperintense region in T2/FLAIR weighted 
sequences, defined as peritumoral region (T2PZ) as well as 
the tumor- and edema-free gray and white matter compart-
ment (GMWMC) were selected, representing three regions 
of interest. Contrast enhancing tumor regions and necrotic 
areas were excluded from the T2PZ. Within these three 
regions different ADC parameters were calculated using 
both MAtlab for first order and volumetric features and 
MaZda software package for textural features [25]. For a 
list of first order, volumetric and textural features please see 
Supplement 2. As studies have shown that the ADC may 
differ within the inner and outer border of the peritumoral 
region [17], we subdivided the peritumoral space into three 
adjacent ring-shaped spaces with an orthogonal diameter of 
each 3 mm, calculated the mean ADC of each ring Fig. 1.

Textural Analysis

Altogether thirty imaging parameters were generated includ-
ing first order features (normalized mean ADC and normal-
ized 5% ADC in the contrast enhancing region, the T2PZ 
including the 3 rings separately as well as in the GMWMC), 
volumetric features (contrast enhancing region and T2PZ), 
as well as ADC textural features in the T2PZ. To calculate 
the change of the ADC within the outer and the inner ring, 
the parameter ADC slope was calculated.

Outcome parameters

Overall survival (OS) was calculated from initial diagno-
sis of the brain metastasis until death, censored at the last 

Table 1  Patient characteristics
Cohort (n = 87)

Variable Median IQ range
age 61.7 14.48

Category Count 
(% of 
count)

gender female 56 (64.4)
male 31 (35.6)

primary cancer lung 46 (52.9)
melanoma 5 (5.7)
breast 5 (5.7)
kidney 5 (5.7)
GI cancer 9 (10.3)
other 17 (19.5)

KPS > 70 69 (79.3)
< 70 18 (20.7)

systemic disease status progressive disease 51 (58.6)
stable disease 27 (31.0)
partial/complete 
response

5 (5.7)

unknown 4 (4.6)
presence of
extracranial metastases

yes 62 (71.3)

no 24 (27.6)
unknown 1 (1.1)

RPA class I 22 (25.3)
II 46 (52.9)
III 18 (20.7)
unknown 1 (1.1)

DS-GPA score 0-1.5 10 (11.5)
2.0-2.5 41 (47.1)
3.0–4.0 22 (25.3)
no category 14 (16.1)

surgery yes 65 (74.1)
no 22 (25.3)

stereotactic radiosurgery yes 21 (24.1)
no 64 (73.6)
unknown 2 (2.3)

WBRT yes 59 (67.8)
no 21 (24.3)
incomplete 5 (5.7)
unknown 2 (2.3)

adjuvant chemotherapy yes 6 (6.9)
no 80 (92.0)
unknown 1 (1.1)

KPS = Karnofsky performance status, RPA = recursive partitioning 
analysis, DS-GPA = disease specific graded prognostic assessment, 
IQ range = interquartile range, WBRT = whole brain radio therapy
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hazard models Akaike’s Information criterion (AIC) was 
used, which is a way of measuring concordance (how well 
the model fits the data) [26]. Low AIC value indicates a 
more accurate model. Statistical analysis was performed 
with SPSS 26.0 and Stata 13.0.

Results

Clinical outcome

Median age at diagnosis was 61.87 years [59.53–64.31]. 
Median OS was 9.48 months [17.41–31.52]. A total of 75 
deaths were observed in our cohort (86.2%) during a median 
follow up of 10.51 years, minimum follow up 5.31 years, 
maximum follow up 20.22 years.

Older age at diagnosis (hazard ratio [HR] for death = 2.16, 
[1.35;3.44], p = 0.001, worse Karnofsky performance status 
(KPS, HR = 2.35, [1.3;4.1], p = 0.006), presence of extracra-
nial metastases (HR = 1.67, [0.97;2.87], p = 0.05), systemic 
disease status (partial response and stable disease vs. pro-
gressive disease, HR = 3.05, [0.98 vs. 9.98], p = 0.001) were 
significantly associated with shorter survival in univariate 
analysis. A univariate cox model with cancer type as the 
independent predictor did not show a significant relation-
ship between cancer type and time to death (p = 0.067).

Diagnosis specific GPA ((0-1.5) group I vs. (2.0-
2.5) group II vs. (3.0–4.0) group III) revealed a HR for 
death = 5.90 (group I vs. III), [2.47;1.05] and a HR = 2.06 
[1.14;3.75]) between group I and II (all p = 0.001).

RPA categories were also signficantly associated with 
differences in survival using a univariate cox model (I 
vs. II; HR = 2.58, [1.43;4.65], group I vs. III HR = 3.93, 
[1.92;8.04]).

Adjuvant WBRT was administered in 59 (67,8%) 
patients and was associated with significant longer sur-
vival (HR = 1.70, [1.04;2.84], p = 0.03). Neither surgery of 
the brain metastasis (p = 0.06) nor stereotactic radiosurgery 
(p = 0.42) nor adjuvant chemotherapie (p = 0.88) were asso-
ciated with overall survival.

Imaging biomarker and influence on survival and 
clinical models

Imaging features, individually, were not associated with 
survival, however linear backward regression identified 
eight independent imaging parameters which in combina-
tion were significantly associated with survival. These fea-
tures were derived from different imaging sequences and 
regions of interest and included first order features and tex-
ture features from gray level co-occurrence and one volu-
metric feature, Table 2.

Statistical methods

Median with 95% Conficence Intervals [in brackets] are pro-
vided for all parameters. In univariate analysis differences 
in OS were calculated using Kaplan Meier analysis and log 
rank test, based on each of the factor listed in Table 1 and 
the individual imaging features. To test for the association 
of a combination of imaging parameters on survival, a lin-
ear backward regression model was used for selection of 
imaging features (dependent variable: log survival time for 
deceased patients). A cox proportional hazard model with 
backward regression was fitted for the established clinical 
prognostic models (DS-GPA and RPA) separately and then 
included the remaining imaging features to test for associa-
tion of the imaging features on existing prognostic models. 
The goal was to examine which model best described over-
all survival. To compare the best fitting Cox proportional 

Fig. 1  Segmentation, registration of T1 contrast enhancing MR images 
as well as T2 images zo corresponding apparent diffusion coefficient 
(ADC) maps. We subdivided the peritumoral space into three adjacent 
ring-shaped spaces with an orthogonal diameter of each 3 mm and 
calculated the mean ADC of each ring as well as the ADC slope from 
the outer to the inner ring
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of extracranial metastases. In our retrospective study design 
over a 15 year period we could confirm that the RPA as 
well as the DS-GPA predict survival. Older age at diagno-
sis, worse KPS, presence of extracranial metastases and 
systemic disease status were significantly associated with 
shorter survival in our analysis. Interestingly neither cancer 
type, surgery, stereotactic radiotherapy nor adjuvant che-
motherapy were shown to be an independent predictor for 
survival allowing us to include all tumor types into further 
radiological analysis. Recently also molecular parameters 
were included into the scores to account for the markedly 
heterogenous population of patients with BM [7, 8, 29–36]. 
Due to the retrospective setting of our study, however, we 
could not include any of these molecular markers.

Currently, except for the number of BM no non-invasive 
biomarker is included into the prognostic scores. Imaging 
may overcome the heterogeneity in space which often lim-
its molecular diagnostics. By quantitatively analysing the 
different brain and tumor compartments in patients with 
single BM we could show that two imaging parameters 
derived from ADC maps contribute to a better prognosti-
cation when put into a cox regression model together with 
the established clinical scores. The first paramater was the 
normalized mean ADC of the tumor-and edema-free sur-
rounding brain tissue (GMWMC). This region represents 
the presumambly “healthy” and “non-affected” surrounding 
gray and white matter compartment of the patients exclud-
ing contrast enhancing tumor, peritumoral T2 hyperinten-
sities, necrotic areas, ventricles and sulci including CSF. 
The changes of the normalized mean ADC in this region 
are very subtle. The GMWMC parameter showed a HR 
of 1.14 to improve the prognostic model. This means that 
a 1/100 increase of the mean ADC was associated with a 
14% higher risk of dying. Higher ADC values have shown 
to be associated with a decreased extracellular matrix den-
sity [12] and a greater degree of tumor differentiation [16] 
in BM. Changes of the white and gray matter compartment 
and associations with survival have not been reported so far 
in patients with BM. These data warrant further research 
to identify altered ADC values in the healthy surrounding 
brain to predict development of new BM. This might help to 
guide treatment (e.g. radiotherapy, whole brain radiotherapy 
versus stereotactic treatment) in a more personalized way.

A multidisciplinary study recently investigated the mean 
ADC within the contrast enhancing tumor part in patients 
with single BMs showing that the mean ADC improves the 
prediction of the RPA as well as the GPA [14]. Prior stud-
ies investigating ADC in patients with BM have shown that 
patients with small peritumoral edema have shorter sur-
vival times and their tumors were characterized by a more 
brain-invasive growth, lower HIF1a expression and less 
angiogenic activity [17]. Similarly, the changes in diffusion 

To test whether these imaging parameters may improve 
existing clinical prognostic models (DS-GPA and RPA) a 
cox backward regression for the established clinical scores 
DS-GPA and RPA including these 8 radiological features 
was calculated. Two MRI features remained -the normal-
ized mean ADC of GMWMC and 3D kurtosis of ADC in 
T2PZ- and showed to improve the two prognostic models 
(HR = 1.14 [1.05;1.24], p = 0.003) for ADC GMWMC and 
HR = 0.87 [0.77;0.97], p = 0.018) for 3D kurtosis in T2PZ.

To compare the best fitting Cox proportional hazard mod-
els Akaike’s Information criterion (AIC) was used. The DS-
GPA alone yielded an AIC of 476.78 which was decreased 
by the two imaging parameters to 470.13. Similarly, the 
RPA alone showed an AIC of 585.88 which was improved 
by the imaging parameters to 581.60.

Discussion

In this retrospective study we investigated different brain 
and tumor compartments in patients with single BM by 
ADC texture analysis. We could show that eight indepen-
dent imaging parameters (5 ADC textural features generated 
within the peritumoral region, the volume of the peritumoral 
region, the normalized mean ADC in the GMWMC as well 
as the mean ADC slope within the peritumoral region) pre-
dict survival. Furthermore, in Cox regression analysis, the 
mean ADC of the GMWMC as well as 3D kurtosis, a tex-
tural ADC feature of the peritumoral border zone, improved 
the two established clinical risk models, the RPA and the 
DS-GPA.

Assessment of prognostic and predictive biomarkers 
is a major goal in neurooncologic studies for better risk 
stratification and prediction of response to treatment. Many 
clinical scales exist for predicting survival in patients with 
BM [7, 27]. The RPA score and the DS-GPA score are the 
most frequently used scores to guide treatment decisions in 
BM [8, 27, 28]. Clinical parameters that are integrated into 
these scores are the KPS, age of the patient, type of the pri-
mary tumor, number of BM and the presence or absence 

Table 2  Imaging Parameters significantly associated with survival
ADC texture features from T2PZ
  - 3D skewness
  - 3D kurtosis
  - Mean contrast
  - Mean entropy
  - Mean difference in entropy
Volume of T2PZ
Normalized mean ADC of GMWMC
Mean ADC slope of the 3 rings in T2PZ
T2PZ = peritumoral border zone, GMWMC = gray matter white 
matter compartment, ADC = apparent diffusion coefficient
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of glioblastomas compared with metastases differentiating 
them with a sensitivity of 80% and specificity of 90% [42].

A major limitation of this study is the lacking of a valida-
tion cohort. However, the statistical model used in our study 
is conservatively chosen in order not to overfit the data 
existing data. Backward regression is a stepwise regression 
approach that begins with a full model (including all data) 
and at each step gradually eliminates variables from the 
regression model to find a reduced model that best explains 
the data (inour case the DS-GPA and RPA) [43, 44]. The 
stepwise approach is useful because it reduces the num-
ber of predictors, reducing the multicollinearity problem 
and it is one of the ways to resolve the overfitting. By this 
approach we reduced the number of imaging parameters 
to identify the imaging features that really added value to 
the prognostic models, DS-GPA and RPA. A second limita-
tion is the lacking of molecular parameters. Until recently, 
Sperdutos [7, 8] group has published a series of articles 
regarding diagnosis-specific prognostic factors including 
also molecular parameters for the markedly heterogenous 
population of patients with BM, e.g. HER2 and estrogen/
progesterone receptor status in breast cancer [29], BRAF 
mutation in melanoma [32, 33] or EGFR and Alk status in 
NSCLC [30, 31]. Unfortunately, these parameters were not 
available in our retrospective patient cohort.

In conclusion, we could show that ADC textural features 
of different brain and tumor compartments in patients with 
single BM improve established clinical risk models. The 
radiologic characterization of the peritumoral region as well 
as the region of the surrounding brain tissue might help to 
guide treatment at first diagnosis of the disease, allowing for 
better prognostication and earlier detection of new BM. In 
addition, these findings might add to better assess response 
of targeted therapies and immunomodulatory therapies.
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across the tumor border and in peritumoral brain tissue were 
associated with survival. It could be shown that BM with a 
sharp change in diffusion across their border showed shorter 
overall survival compared to those with a more diffuse edge 
[16]. Our study supports these findings by showing that the 
volume of the peritumoral edema as well as the ADC slope, 
which is a good quantitative parameter to detect changes 
of ADC at the peritumoral border, were among the 8 radio-
logic parameters that were associated with survival in linear 
backward regression analysis.

In addition to the prognostic role of the GMWMC we 
identfied 3D kurtosis, a textural parameter of the peritu-
moral edema as a second prognostic factor which improved 
the two clinical scores. 3D kurtosis is a measure of the 
tailedness of values and describes the shape of a probability 
distribution. The higher the kurtosis, hence the more peaked 
the distribution of the ADC values in the peritumoral edema 
was, the lower was the survival in our study (HR 0.87). A 
peaked curve also implies a more homogeneous ADC value 
distribution. Studies on tumor-infiltrating lymphocytes 
(TILs) in BM showed that the density of TILs correlated 
positively with the extent of peritumoral edema and showed 
a positive correlation with favorable median OS [37]. It 
might be hypothesized that TILs cause a change in the tex-
tural composition of the peritumoral region. The more TILs, 
the more heterogenous the ADC distribution might get. In 
context with these findings, we hypothesize that the 3D kur-
tosis of the peritumoral edema may reflect the amount of 
TILs and might serve as a potential biomarker for immuno-
therapy in cancer patients affecting the CNS.

In a retrospective study [38] of 88 patients treated by 
immunotherapy due to melanoma BM, T1 contrast enhanced 
lesions were investigated by radiomic analysis in order to 
detect predictive biomarkers for survival. Multiple features 
were associated with increased overall survival, however 
in multivariate analysis no significant association with sur-
vival could be detected. In this context ADC analysis may 
be more useful, because in contrast to T1 and T2 weighted 
imaging, ADC values are quantitative parameters allowing 
for good comparisons between scanners. Entropy values of 
ADC maps derived from DWI consistently showed promis-
ing results for differentiating low-grade gliomas from high-
grade gliomas [39, 40]. 3D TA appears also more accurate 
than 2D, given the high spatial resolution of the acquired 
data. Similarly, results based on a volumetric analysis appear 
more reliable than those based on a single slice [41]. Despite 
the heterogeneity of the data and software available, most 
studies demonstrate the robustness of the texture analysis 
and its clinical transferability for diagnostic use [41]. TA on 
DTI-derived fractional anisotropy and ADC maps showed 
significantly higher heterogeneity in peritumoral edema 
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