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Abbreviations
ADC	 	apparent	diffusion	coefficient.
BM	 	brain	metastases.
DW-MRI	 	Diffusion	weighted	MRI.
T2PZ	 	T2	peritumoral	borderzone.
GMWMC	 	gray	matter	white	matter	compartment.
MRI	 	Magnetic	Resonance	Imaging.
DS-GPA	 	diagnosis-specific	graded	prognostic	assess-

ment	score.
RPA	 	recursive	partitioning	analysis.
TA	 	texture	analysis.
2SD	 	2	standard	deviations.
CSF	 	cerebrospinal	fluid.
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Abstract
Aims In	 this	 retrospective	 study	we	 performed	 a	 quantitative	 textural	 analysis	 of	 apparant	 diffusion	 coefficient	 (ADC)	
images	derived	from	diffusion	weighted	MRI	(DW-MRI)	of	single	brain	metastases	(BM)	patients	from	different	primary	
tumors	and	tested	whether	these	imaging	parameters	may	improve	established	clinical	risk	models.
Methods We	identified	87	patients	with	single	BM	who	had	a	DW-MRI	at	 initial	diagnosis.	Applying	 image	segmenta-
tion,	volumes	of	contrast-enhanced	lesions	in	T1	sequences,	hyperintense	T2	lesions	(peritumoral	border	zone	(T2PZ))	and	
tumor-free	gray	and	white	matter	compartment	 (GMWMC)	were	generated	and	registered	 to	corresponding	ADC	maps.	
ADC	textural	parameters	were	generated	and	a	linear	backward	regression	model	was	applied	selecting	imaging	features	in	
association	with	survival.	A	cox	proportional	hazard	model	with	backward	regression	was	fitted	for	the	clinical	prognostic	
models	 (diagnosis-specific	graded	prognostic	assessment	score	(DS-GPA)	and	 the	recursive	partitioning	analysis	 (RPA))	
including	these	imaging	features.
Results Thirty	ADC	textural	parameters	were	generated	and	linear	backward	regression	identified	eight	independent	imag-
ing	parameters	which	in	combination	predicted	survival.	Five	ADC	texture	features	derived	from	T2PZ,	the	volume	of	the	
T2PZ,	the	normalized	mean	ADC	of	the	GMWMC	as	well	as	the	mean	ADC	slope	of	T2PZ.	A	cox	backward	regression	
including	the	DS-GPA,	RPA	and	these	eight	parameters	identified	two	MRI	features	which	improved	the	two	risk	scores	
(HR	=	1.14	[1.05;1.24]	for	normalized	mean	ADC	GMWMC	and	HR	=	0.87	[0.77;0.97])	for	ADC	3D	kurtosis	of	the	T2PZ.)
Conclusions Textural	 analysis	 of	ADC	maps	 in	 patients	with	 single	 brain	metastases	 improved	 established	 clinical	 risk	
models.	These	findings	may	aid	to	better	understand	the	pathogenesis	of	BM	and	may	allow	selection	of	patients	for	new	
treatment	options.
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to	allow	a	classification	of	BM	by	their	primary	site	of	ori-
gin	[21].

In	 this	 study	 we	 retrospectively	 performed	 a	 textural	
analysis	of	ADC	images	derived	from	DWI	in	patients	with	
single	brain	metastases	in	order	to	investigate	its	potential	to	
improve	established	clinical	risk	models.

Methods

Study design, setting, participants

This	was	a	retrospective	study	in	a	single	center	of	87	adult	
patients	with	single	brain	metastases	from	different	primary	
tumors	over	a	15	year	period	from	2000	to	2015.	The	ret-
rospective	 data	 analysis	was	 approved	 by	 the	 local	 ethics	
committee	 of	 Innsbruck	 Medical	 University.	 Clinical	 as	
well	 as	 histological	 data	 were	 obtained	 by	 retrospective	
chart	review	and	are	detailed	in	Table	1.	In	this	time	period	
all	cases	with	a	solitary	brain	metastasis	and	sufficient	MRI	
data	(T1	weighted	imaging,	with	and	without	contrast,	T2	or	
FLAIR	weighted	imaging	and	DWI	including	ADC	maps)	
were	 included.	 Patients	who	 had	 radiation	 therapy,	 either	
locally	or	whole	brain,	and	surgery	prior	to	study	enrolment	
were	excluded	as	this	could	have	altered	the	diffusion	char-
acteristics.	Patients	were	excluded	with	single	metastases	of	
a	 diameter	 of	≤	1	 cm	as	 the	 textural	 parameter	 as	well	 as	
the	ADC	maps	analysis	could	be	affected	by	partial	volume	
effects	[22].	Only	patients	with	a	histological	diagnosis	of	
the	primary	tumor	were	included.

Imaging acquisition

Patients	have	been	investigated	on	different	scanners	using	
3T	 and	 1,5T	 (Siemens	 Symphony	Vision,	 Siemens	 Sym-
phony	 Tim,	 Siemens	 Avanto,	 Siemens	 Sonata,	 Siemens	
Verio,	 Siemens	 Skyra).	 Importantly,	 diffusion	 weight-
ing	was	applied	with	b-values	at	0	and	1000	s/mm2	 in	all	
patients.	 For	 details	 on	 the	 imaging	 protocol,	 please	 see	
Supplement	1.

MRI processing

Individual	3D	T1	weighted	MRI	were	segmented	into	gray	
matter,	white	matter	and	cerebrospinal	fluid	(CSF)	compart-
ments	 using	 statistical	 parametric	 mapping	 (SPM,	 Well-
come	Department	of	Cognitive	Neurology,	London,	United	
Kingdom).	To	compensate	for	eddy	currents,	DWI	images	
were	 registered	 to	 an	 individual	 reference	 image	 without	
diffusion	weighting.	Registered	DWI	were	visually	verified	
for	correct	calculation	and	reconstruction	for	every	subject.	
In	order	to	standardize	ADC	values	among	MRI	scanners,	

Originality and Presentations	 The	authors	confirm	the	orig-
inality	of	this	study.

Introduction

In	 patients	 with	 systemic	 malignancies,	 brain	 metastases	
(BMs)	are	a	common	complication	affecting	around	20%	of	
patients	 [1].	Despite	multidisciplinary	 treatment	 including	
surgery,	irradiation	and/or	systemic	treatment	[2]	BMs	are	
associated	with	high	morbidity	and	mortality	 [3,	4].	Until	
the	 advent	 of	 cancer	 immunotherapies	 in	 2015,	 imaging	
studies	on	patients	with	brain	metastases	 (BM)	have	been	
scarse.	 However,	 recent	 encouraging	 results	 that	 demon-
strated	intracranial	responses	of	immunotherapy	in	patients	
with	BM	[5],	have	refreshed	the	field	of	BM	research.	So	
far,	cerebral	magnetic	resonance	imaging	(MRI)	investiga-
tions	 contributed	 to	 the	 prognostic	 assessment	 by	mainly	
identifying	the	number	of	BM	[6].	To	this	end,	MRI	texture	
parameters	have	not	been	integrated	in	established	clinical	
prognostic	scores	in	patients	with	BMs	[7,	8].

Diffusion	weighted	imaging	(DWI)	is	a	rapidly	obtained	
and	broadly	available	MRI	sequence	in	clinical	practice	and	
is	an	integral	part	of	standard	brain	tumor	imaging	[9].	It	is	
able	to	yield	ultra-structural	information	on	cellular	density	
[10]	and	properties	of	the	extracellular	matrix	[11,	12]	and	
has	been	linked	to	lesion	aggressiveness	and	tumor	response	
[13].	The	mean	apparent	diffusion	coefficient	(ADC)	in	BM	
correlated	with	survival	and	recurrence	after	surgical	resec-
tion	 [12,	 14]	 and	 survival	 after	 radiosurgery	 [15].	 Lately	
it	 could	be	also	 shown	 that	mean	ADC	 in	 the	 tumor	core	
improved	clinial	risk	models	[14]	and	mean	ADC	changes	
at	the	tumor	edge	indicated	a	more	locally	aggressive	phe-
notype	[16,	17].

Texture	analysis	(TA)	attempts	to	provide	a	non-invasive	
comprehensive	quantitative	analysis	of	 image	heterogene-
ity	[18,	19].	A	statistical	based	modelling	is	utilized	involv-
ing	three	orders	of	measure	parameters;	first-order	statistics	
summarize	 voxel	 values	 of	 a	 dedicated	 region	 of	 interest	
and	 report	 on	 descriptive	 parameters	 such	 as	 means	 and	
deviations,	 second-order	 statistics	 explore	 via	 co-occur-
rence	measurements	the	length	of	voxels	consecutively	that	
have	equal	grey-level	intensities,	e.g.	fine	texture	will	have	
shorter	 lengths	 and	 a	more	 consistent	 range	 of	 intensities	
and	 higher-order	 statistics	 explore	 the	 overall	 differences	
between	 pixels	 or	 voxels	within	 the	 context	 of	 the	 entire	
region	of	interest.	Neurooncologic	studies	indicated	that	TA	
has	the	potential	to	outperforme	clinical	and	radiologic	risk	
models	in	predicting	prognosis	e.g.	in	glioblastoma	patients	
[20].	Recently	TA	of	T1	and	T2	weighted	images	has	shown	
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recorded	 clinical	 contact	 and	 last	 follow-up	 (May	 15th	
2020).	The	most	widely	used	clinical	scores,	 the	DS-GPA	
and	the	RPA,	for	predicting	survival	were	calculated	retro-
spectively	using	the	clinical	chart	information.	Supplement	
Table	3	for	indivivual	parameters.

previously	delineated	areas	of	the	tumor	and	edema	as	well	
as	the	compartment	of	the	CSF	were	deduced	from	the	gray	
and	 white	 matter	 compartments.	 Consecutively,	 the	 ratio	
of	ADC	values	of	each	 individual	voxel	within	 the	 tumor	
respectively	 within	 the	 edema	 and	 the	 mean	ADC	 value	
of	the	tumor-free	compartment	was	calculated.	In	order	to	
avoid	contamination	from	CSF	and	non	brain	compartments	
due	to	partial	volume	effects,	ADC	voxel	values	that	were	
outside	 a	 threshold	 of	mean	CSF	ADC	 of	 2SD	 (standard	
deviations),	determined	for	each	individual,	were	excluded.

Image segmentation and registration

T1	weighted	images	as	well	as	T2/FLAIR	weighted	images	
were	co-registered	to	the	corresponding	ADC	map	sequence	
by	using	 the	 software	package	 statistical	 parametric	map-
ping	 (SPM)	 [23].	 Tumor	 segmentation	 was	 done	 by	 one	
person	(LR)	using	a	semi-automated	active	contour	method	
(ITK-SNAP	2.0),	which	demonstrated	excellent	 reliability	
and	high	efficiency	of	3D	segmentation	[24].	The	contrast-
enhancing	 region	 in	 T1	 weighted	 sequences,	 the	 non-
enhancing	T2	hyperintense	 region	 in	T2/FLAIR	weighted	
sequences,	defined	as	peritumoral	region	(T2PZ)	as	well	as	
the	tumor-	and	edema-free	gray	and	white	matter	compart-
ment	(GMWMC)	were	selected,	representing	three	regions	
of	interest.	Contrast	enhancing	tumor	regions	and	necrotic	
areas	 were	 excluded	 from	 the	 T2PZ.	 Within	 these	 three	
regions	 different	 ADC	 parameters	 were	 calculated	 using	
both	 MAtlab	 for	 first	 order	 and	 volumetric	 features	 and	
MaZda	 software	 package	 for	 textural	 features	 [25].	 For	 a	
list	of	first	order,	volumetric	and	textural	features	please	see	
Supplement	 2.	As	 studies	 have	 shown	 that	 the	ADC	may	
differ	within	the	inner	and	outer	border	of	the	peritumoral	
region	[17],	we	subdivided	the	peritumoral	space	into	three	
adjacent	ring-shaped	spaces	with	an	orthogonal	diameter	of	
each	3	mm,	calculated	the	mean	ADC	of	each	ring	Fig.	1.

Textural Analysis

Altogether	thirty	imaging	parameters	were	generated	includ-
ing	first	order	features	(normalized	mean	ADC	and	normal-
ized	5%	ADC	in	 the	contrast	enhancing	 region,	 the	T2PZ	
including	the	3	rings	separately	as	well	as	in	the	GMWMC),	
volumetric	features	(contrast	enhancing	region	and	T2PZ),	
as	well	as	ADC	textural	features	in	the	T2PZ.	To	calculate	
the	change	of	the	ADC	within	the	outer	and	the	inner	ring,	
the	parameter	ADC	slope	was	calculated.

Outcome parameters

Overall	 survival	 (OS)	was	 calculated	 from	 initial	 diagno-
sis	of	 the	brain	metastasis	until	death,	censored	at	 the	last	

Table 1	 Patient	characteristics
Cohort	(n	=	87)

Variable Median IQ range
age 61.7 14.48

Category Count 
(% of 
count)

gender female 56	(64.4)
male 31	(35.6)

primary	cancer lung 46	(52.9)
melanoma 5	(5.7)
breast 5	(5.7)
kidney 5	(5.7)
GI	cancer 9	(10.3)
other 17	(19.5)

KPS >	70 69	(79.3)
<	70 18	(20.7)

systemic	disease	status progressive	disease 51	(58.6)
stable	disease 27	(31.0)
partial/complete	
response

5	(5.7)

unknown 4	(4.6)
presence	of
extracranial	metastases

yes 62	(71.3)

no 24	(27.6)
unknown 1	(1.1)

RPA	class I 22	(25.3)
II 46	(52.9)
III 18	(20.7)
unknown 1	(1.1)

DS-GPA	score 0-1.5 10	(11.5)
2.0-2.5 41	(47.1)
3.0–4.0 22	(25.3)
no	category 14	(16.1)

surgery yes 65	(74.1)
no 22	(25.3)

stereotactic	radiosurgery yes 21	(24.1)
no 64	(73.6)
unknown 2	(2.3)

WBRT yes 59	(67.8)
no 21	(24.3)
incomplete 5	(5.7)
unknown 2	(2.3)

adjuvant	chemotherapy yes 6	(6.9)
no 80	(92.0)
unknown 1	(1.1)

KPS =	Karnofsky	 performance	 status,	 RPA	=	recursive	 partitioning	
analysis,	DS-GPA	=	disease	 specific	 graded	 prognostic	 assessment,	
IQ	range	=	interquartile	range,	WBRT	=	whole	brain	radio	therapy
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hazard	 models	Akaike’s	 Information	 criterion	 (AIC)	 was	
used,	which	is	a	way	of	measuring	concordance	(how	well	
the	model	 fits	 the	 data)	 [26].	 Low	AIC	 value	 indicates	 a	
more	 accurate	 model.	 Statistical	 analysis	 was	 performed	
with	SPSS	26.0	and	Stata	13.0.

Results

Clinical outcome

Median	 age	 at	 diagnosis	 was	 61.87	 years	 [59.53–64.31].	
Median	OS	was	9.48	months	[17.41–31.52].	A	total	of	75	
deaths	were	observed	in	our	cohort	(86.2%)	during	a	median	
follow	up	of	10.51	years,	minimum	follow	up	5.31	years,	
maximum	follow	up	20.22	years.

Older	age	at	diagnosis	(hazard	ratio	[HR]	for	death	=	2.16,	
[1.35;3.44],	p	=	0.001,	worse	Karnofsky	performance	status	
(KPS,	HR	=	2.35,	[1.3;4.1],	p	=	0.006),	presence	of	extracra-
nial	metastases	(HR	=	1.67,	[0.97;2.87],	p	=	0.05),	systemic	
disease	status	 (partial	 response	and	stable	disease	vs.	pro-
gressive	disease,	HR	=	3.05,	[0.98	vs.	9.98],	p	=	0.001)	were	
significantly	 associated	with	 shorter	 survival	 in	univariate	
analysis.	A	 univariate	 cox	model	with	 cancer	 type	 as	 the	
independent	 predictor	 did	 not	 show	a	 significant	 relation-
ship	between	cancer	type	and	time	to	death	(p	=	0.067).

Diagnosis	 specific	 GPA	 ((0-1.5)	 group	 I	 vs.	 (2.0-
2.5)	 group	 II	 vs.	 (3.0–4.0)	 group	 III)	 revealed	 a	 HR	 for	
death	=	5.90	 (group	 I	 vs.	 III),	 [2.47;1.05]	 and	 a	HR	=	2.06	
[1.14;3.75])	between	group	I	and	II	(all	p	=	0.001).

RPA	 categories	 were	 also	 signficantly	 associated	 with	
differences	 in	 survival	 using	 a	 univariate	 cox	 model	 (I	
vs.	 II;	 HR	=	2.58,	 [1.43;4.65],	 group	 I	 vs.	 III	 HR	=	3.93,	
[1.92;8.04]).

Adjuvant	 WBRT	 was	 administered	 in	 59	 (67,8%)	
patients	 and	 was	 associated	 with	 significant	 longer	 sur-
vival	 (HR	=	1.70,	 [1.04;2.84],	p	=	0.03).	Neither	surgery	of	
the	brain	metastasis	(p	=	0.06)	nor	stereotactic	radiosurgery	
(p	=	0.42)	nor	adjuvant	chemotherapie	(p	=	0.88)	were	asso-
ciated	with	overall	survival.

Imaging biomarker and influence on survival and 
clinical models

Imaging	 features,	 individually,	 were	 not	 associated	 with	
survival,	 however	 linear	 backward	 regression	 identified	
eight	 independent	 imaging	parameters	which	 in	 combina-
tion	were	significantly	associated	with	survival.	These	fea-
tures	were	 derived	 from	 different	 imaging	 sequences	 and	
regions	of	interest	and	included	first	order	features	and	tex-
ture	features	from	gray	 level	co-occurrence	and	one	volu-
metric	feature,	Table	2.

Statistical methods

Median	with	95%	Conficence	Intervals	[in	brackets]	are	pro-
vided	for	all	parameters.	In	univariate	analysis	differences	
in	OS	were	calculated	using	Kaplan	Meier	analysis	and	log	
rank	test,	based	on	each	of	the	factor	listed	in	Table	1 and 
the	individual	imaging	features.	To	test	for	the	association	
of	a	combination	of	imaging	parameters	on	survival,	a	lin-
ear	 backward	 regression	model	was	 used	 for	 selection	 of	
imaging	features	(dependent	variable:	log	survival	time	for	
deceased	patients).	A	cox	proportional	hazard	model	with	
backward	regression	was	fitted	for	 the	established	clinical	
prognostic	models	(DS-GPA	and	RPA)	separately	and	then	
included	the	remaining	imaging	features	to	test	for	associa-
tion	of	the	imaging	features	on	existing	prognostic	models.	
The	goal	was	to	examine	which	model	best	described	over-
all	 survival.	To	 compare	 the	 best	 fitting	Cox	proportional	

Fig. 1	 Segmentation,	registration	of	T1	contrast	enhancing	MR	images	
as	well	as	T2	images	zo	corresponding	apparent	diffusion	coefficient	
(ADC)	maps.	We	subdivided	the	peritumoral	space	into	three	adjacent	
ring-shaped	 spaces	with	 an	 orthogonal	 diameter	 of	 each	 3	mm	 and	
calculated	the	mean	ADC	of	each	ring	as	well	as	the	ADC	slope	from	
the	outer	to	the	inner	ring
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of	extracranial	metastases.	In	our	retrospective	study	design	
over	 a	 15	 year	 period	we	 could	 confirm	 that	 the	 RPA	 as	
well	as	the	DS-GPA	predict	survival.	Older	age	at	diagno-
sis,	 worse	 KPS,	 presence	 of	 extracranial	 metastases	 and	
systemic	 disease	 status	were	 significantly	 associated	with	
shorter	survival	in	our	analysis.	Interestingly	neither	cancer	
type,	 surgery,	 stereotactic	 radiotherapy	 nor	 adjuvant	 che-
motherapy	were	shown	to	be	an	independent	predictor	for	
survival	allowing	us	to	include	all	tumor	types	into	further	
radiological	 analysis.	 Recently	 also	molecular	 parameters	
were	 included	into	 the	scores	 to	account	for	 the	markedly	
heterogenous	population	of	patients	with	BM	[7,	8,	29–36].	
Due	to	the	retrospective	setting	of	our	study,	however,	we	
could	not	include	any	of	these	molecular	markers.

Currently,	except	for	the	number	of	BM	no	non-invasive	
biomarker	 is	 included	 into	 the	prognostic	 scores.	 Imaging	
may	overcome	the	heterogeneity	in	space	which	often	lim-
its	molecular	 diagnostics.	 By	 quantitatively	 analysing	 the	
different	 brain	 and	 tumor	 compartments	 in	 patients	 with	
single	 BM	 we	 could	 show	 that	 two	 imaging	 parameters	
derived	 from	ADC	maps	 contribute	 to	 a	 better	 prognosti-
cation	when	put	into	a	cox	regression	model	together	with	
the	established	clinical	scores.	The	first	paramater	was	the	
normalized	mean	ADC	 of	 the	 tumor-and	 edema-free	 sur-
rounding	 brain	 tissue	 (GMWMC).	 This	 region	 represents	
the	presumambly	“healthy”	and	“non-affected”	surrounding	
gray	and	white	matter	compartment	of	the	patients	exclud-
ing	 contrast	 enhancing	 tumor,	 peritumoral	T2	 hyperinten-
sities,	 necrotic	 areas,	 ventricles	 and	 sulci	 including	 CSF.	
The	 changes	 of	 the	 normalized	mean	ADC	 in	 this	 region	
are	 very	 subtle.	 The	 GMWMC	 parameter	 showed	 a	 HR	
of	1.14	 to	 improve	the	prognostic	model.	This	means	 that	
a	1/100	 increase	of	 the	mean	ADC	was	associated	with	a	
14%	higher	risk	of	dying.	Higher	ADC	values	have	shown	
to	be	associated	with	a	decreased	extracellular	matrix	den-
sity	[12]	and	a	greater	degree	of	tumor	differentiation	[16]	
in	BM.	Changes	of	the	white	and	gray	matter	compartment	
and	associations	with	survival	have	not	been	reported	so	far	
in	 patients	with	BM.	These	 data	warrant	 further	 research	
to	 identify	altered	ADC	values	 in	 the	healthy	surrounding	
brain	to	predict	development	of	new	BM.	This	might	help	to	
guide	treatment	(e.g.	radiotherapy,	whole	brain	radiotherapy	
versus	stereotactic	treatment)	in	a	more	personalized	way.

A	multidisciplinary	study	recently	investigated	the	mean	
ADC	within	 the	contrast	enhancing	 tumor	part	 in	patients	
with	single	BMs	showing	that	the	mean	ADC	improves	the	
prediction	of	the	RPA	as	well	as	the	GPA	[14].	Prior	stud-
ies	investigating	ADC	in	patients	with	BM	have	shown	that	
patients	 with	 small	 peritumoral	 edema	 have	 shorter	 sur-
vival	times	and	their	tumors	were	characterized	by	a	more	
brain-invasive	 growth,	 lower	 HIF1a	 expression	 and	 less	
angiogenic	activity	[17].	Similarly,	the	changes	in	diffusion	

To	test	whether	these	imaging	parameters	may	improve	
existing	 clinical	 prognostic	models	 (DS-GPA	 and	RPA)	 a	
cox	backward	regression	for	the	established	clinical	scores	
DS-GPA	 and	RPA	 including	 these	 8	 radiological	 features	
was	 calculated.	Two	MRI	 features	 remained	 -the	 normal-
ized	mean	ADC	of	GMWMC	and	3D	kurtosis	of	ADC	in	
T2PZ-	and	showed	to	 improve	the	 two	prognostic	models	
(HR	=	1.14	 [1.05;1.24],	p	=	0.003)	 for	ADC	GMWMC	and	
HR	=	0.87	[0.77;0.97],	p	=	0.018)	for	3D	kurtosis	in	T2PZ.

To	compare	the	best	fitting	Cox	proportional	hazard	mod-
els	Akaike’s	Information	criterion	(AIC)	was	used.	The	DS-
GPA	alone	yielded	an	AIC	of	476.78	which	was	decreased	
by	 the	 two	 imaging	 parameters	 to	 470.13.	 Similarly,	 the	
RPA	alone	showed	an	AIC	of	585.88	which	was	improved	
by	the	imaging	parameters	to	581.60.

Discussion

In	 this	 retrospective	 study	we	 investigated	 different	 brain	
and	 tumor	 compartments	 in	 patients	 with	 single	 BM	 by	
ADC	texture	analysis.	We	could	show	that	eight	 indepen-
dent	imaging	parameters	(5	ADC	textural	features	generated	
within	the	peritumoral	region,	the	volume	of	the	peritumoral	
region,	the	normalized	mean	ADC	in	the	GMWMC	as	well	
as	the	mean	ADC	slope	within	the	peritumoral	region)	pre-
dict	survival.	Furthermore,	in	Cox	regression	analysis,	 the	
mean	ADC	of	the	GMWMC	as	well	as	3D	kurtosis,	a	tex-
tural	ADC	feature	of	the	peritumoral	border	zone,	improved	
the	 two	 established	 clinical	 risk	models,	 the	RPA	and	 the	
DS-GPA.

Assessment	 of	 prognostic	 and	 predictive	 biomarkers	
is	 a	 major	 goal	 in	 neurooncologic	 studies	 for	 better	 risk	
stratification	and	prediction	of	response	to	treatment.	Many	
clinical	scales	exist	for	predicting	survival	in	patients	with	
BM	[7,	27].	The	RPA	score	and	the	DS-GPA	score	are	the	
most	frequently	used	scores	to	guide	treatment	decisions	in	
BM	[8,	27,	28].	Clinical	parameters	that	are	integrated	into	
these	scores	are	the	KPS,	age	of	the	patient,	type	of	the	pri-
mary	 tumor,	 number	 of	BM	 and	 the	 presence	 or	 absence	

Table 2	 Imaging	Parameters	significantly	associated	with	survival
ADC	texture	features	from	T2PZ
	 -	3D	skewness
	 -	3D	kurtosis
	 -	Mean	contrast
	 -	Mean	entropy
	 -	Mean	difference	in	entropy
Volume	of	T2PZ
Normalized	mean	ADC	of	GMWMC
Mean	ADC	slope	of	the	3	rings	in	T2PZ
T2PZ =	peritumoral	 border	 zone,	GMWMC	=	gray	matter	white	
matter	compartment,	ADC	=	apparent	diffusion	coefficient
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of	glioblastomas	compared	with	metastases	differentiating	
them	with	a	sensitivity	of	80%	and	specificity	of	90%	[42].

A	major	limitation	of	this	study	is	the	lacking	of	a	valida-
tion	cohort.	However,	the	statistical	model	used	in	our	study	
is	 conservatively	 chosen	 in	 order	 not	 to	 overfit	 the	 data	
existing	data.	Backward	regression	is	a	stepwise	regression	
approach	that	begins	with	a	full	model	(including	all	data)	
and	 at	 each	 step	 gradually	 eliminates	 variables	 from	 the	
regression	model	to	find	a	reduced	model	that	best	explains	
the	data	 (inour	 case	 the	DS-GPA	and	RPA)	 [43,	44].	The	
stepwise	 approach	 is	 useful	 because	 it	 reduces	 the	 num-
ber	 of	 predictors,	 reducing	 the	 multicollinearity	 problem	
and	it	is	one	of	the	ways	to	resolve	the	overfitting.	By	this	
approach	 we	 reduced	 the	 number	 of	 imaging	 parameters	
to	 identify	 the	 imaging	features	 that	 really	added	value	 to	
the	prognostic	models,	DS-GPA	and	RPA.	A	second	limita-
tion	is	the	lacking	of	molecular	parameters.	Until	recently,	
Sperdutos	 [7,	 8]	 group	 has	 published	 a	 series	 of	 articles	
regarding	 diagnosis-specific	 prognostic	 factors	 including	
also	molecular	 parameters	 for	 the	markedly	 heterogenous	
population	of	patients	with	BM,	e.g.	HER2	and	estrogen/
progesterone	 receptor	 status	 in	 breast	 cancer	 [29],	 BRAF	
mutation	in	melanoma	[32,	33]	or	EGFR	and	Alk	status	in	
NSCLC	[30,	31].	Unfortunately,	these	parameters	were	not	
available	in	our	retrospective	patient	cohort.

In	conclusion,	we	could	show	that	ADC	textural	features	
of	different	brain	and	tumor	compartments	in	patients	with	
single	 BM	 improve	 established	 clinical	 risk	 models.	 The	
radiologic	characterization	of	the	peritumoral	region	as	well	
as	the	region	of	the	surrounding	brain	tissue	might	help	to	
guide	treatment	at	first	diagnosis	of	the	disease,	allowing	for	
better	prognostication	and	earlier	detection	of	new	BM.	In	
addition,	these	findings	might	add	to	better	assess	response	
of	targeted	therapies	and	immunomodulatory	therapies.
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across	the	tumor	border	and	in	peritumoral	brain	tissue	were	
associated	with	survival.	It	could	be	shown	that	BM	with	a	
sharp	change	in	diffusion	across	their	border	showed	shorter	
overall	survival	compared	to	those	with	a	more	diffuse	edge	
[16].	Our	study	supports	these	findings	by	showing	that	the	
volume	of	the	peritumoral	edema	as	well	as	the	ADC	slope,	
which	 is	 a	 good	 quantitative	 parameter	 to	 detect	 changes	
of	ADC	at	the	peritumoral	border,	were	among	the	8	radio-
logic	parameters	that	were	associated	with	survival	in	linear	
backward	regression	analysis.

In	 addition	 to	 the	 prognostic	 role	 of	 the	GMWMC	we	
identfied	 3D	 kurtosis,	 a	 textural	 parameter	 of	 the	 peritu-
moral	edema	as	a	second	prognostic	factor	which	improved	
the	 two	 clinical	 scores.	 3D	 kurtosis	 is	 a	 measure	 of	 the	
tailedness	of	values	and	describes	the	shape	of	a	probability	
distribution.	The	higher	the	kurtosis,	hence	the	more	peaked	
the	distribution	of	the	ADC	values	in	the	peritumoral	edema	
was,	the	lower	was	the	survival	in	our	study	(HR	0.87).	A	
peaked	curve	also	implies	a	more	homogeneous	ADC	value	
distribution.	 Studies	 on	 tumor-infiltrating	 lymphocytes	
(TILs)	 in	BM	 showed	 that	 the	 density	 of	TILs	 correlated	
positively	with	the	extent	of	peritumoral	edema	and	showed	
a	 positive	 correlation	 with	 favorable	 median	 OS	 [37].	 It	
might	be	hypothesized	that	TILs	cause	a	change	in	the	tex-
tural	composition	of	the	peritumoral	region.	The	more	TILs,	
the	more	heterogenous	the	ADC	distribution	might	get.	In	
context	with	these	findings,	we	hypothesize	that	the	3D	kur-
tosis	 of	 the	peritumoral	 edema	may	 reflect	 the	 amount	 of	
TILs	and	might	serve	as	a	potential	biomarker	for	immuno-
therapy	in	cancer	patients	affecting	the	CNS.

In	 a	 retrospective	 study	 [38]	 of	 88	 patients	 treated	 by	
immunotherapy	due	to	melanoma	BM,	T1	contrast	enhanced	
lesions	were	 investigated	by	radiomic	analysis	 in	order	 to	
detect	predictive	biomarkers	for	survival.	Multiple	features	
were	 associated	 with	 increased	 overall	 survival,	 however	
in	multivariate	analysis	no	significant	association	with	sur-
vival	could	be	detected.	In	this	context	ADC	analysis	may	
be	more	useful,	because	in	contrast	to	T1	and	T2	weighted	
imaging,	ADC	values	are	quantitative	parameters	allowing	
for	good	comparisons	between	scanners.	Entropy	values	of	
ADC	maps	derived	from	DWI	consistently	showed	promis-
ing	results	for	differentiating	low-grade	gliomas	from	high-
grade	gliomas	[39,	40].	3D	TA	appears	also	more	accurate	
than	2D,	given	 the	high	 spatial	 resolution	of	 the	acquired	
data.	Similarly,	results	based	on	a	volumetric	analysis	appear	
more	reliable	than	those	based	on	a	single	slice	[41].	Despite	
the	heterogeneity	of	 the	data	and	software	available,	most	
studies	 demonstrate	 the	 robustness	 of	 the	 texture	 analysis	
and	its	clinical	transferability	for	diagnostic	use	[41].	TA	on	
DTI-derived	fractional	anisotropy	and	ADC	maps	showed	
significantly	 higher	 heterogeneity	 in	 peritumoral	 edema	
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