Skip to main content

Advertisement

Log in

Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase

  • Original Research
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Hydrogen peroxide may aggravate the peritoneal dissemination of tumor cells by activating the expression of a variety of genes. In this study, we used pegylated catalase (PEG-catalase) to examine whether prolonged retention of catalase activity within the peritoneal cavity is effective in inhibiting peritoneal dissemination in mouse models. Murine B16-BL6 cells or colon 26 cells labeled with firefly luciferase gene were inoculated intraperitoneally into syngeneic mice. Compared with unmodified catalase, PEG-catalase was retained in the peritoneal cavity for a long period after intraperitoneal injection. A single injection of PEG-catalase just before tumor inoculation significantly reduced the number of the tumor cells at 1 and 7 days. The changes in the expression of molecules involved in the metastasis were evaluated by real time quantitative PCR analysis. Inoculation of the tumor cells increased the expression of intercellular adhesion molecule (ICAM)-1 in the greater omentum, which was inhibited by PEG-catalase. An injection of PEG-catalase at 3 days after tumor inoculation also reduced the number of the tumor cells, suggesting that processes other than the adhesion of tumor cells to peritoneal organs are also inhibited. Daily doses of PEG-catalase significantly prolonged the survival time of tumor-bearing mice. These results indicate that intraperitoneal injection of PEG-catalase inhibits the multiple processes of peritoneal dissemination of tumor cells by scavenging hydrogen peroxide in the peritoneal cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PEG-catalase:

polyethyleneglycol-conjugated catalase

H2O2 :

hydrogen peroxide

ROS:

reactive oxygen species

MMP:

matrix metalloproteinase

ICAM-1:

intercellular adhesion molecule-1

VCAM-1:

vascular cell adhesion molecule-1

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

FBS:

fetal bovine serum

References

  1. Jemal A, Murray T, Ward E et al (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30

    Article  PubMed  Google Scholar 

  2. Sugarbaker PH, Stuart OA, Yoo D (2005) Strategies for management of the peritoneal surface component of cancer: cytoreductive surgery plus perioperative intraperitoneal chemotherapy. J Oncol Pharm Pract 11: 111–119

    Article  PubMed  Google Scholar 

  3. Kelsen DP (1996) Adjuvant and neoadjuvant therapy for gastric cancer. Semin Oncol 23: 379–389

    PubMed  CAS  Google Scholar 

  4. Yu W, Whang I, Averbach A et al (1998) Morbidity and mortality of early postoperative intraperitoneal chemotherapy as adjuvant therapy for gastric cancer. Am Surg 64: 1104–1108

    PubMed  CAS  Google Scholar 

  5. Hamazoe R, Maeta M, Kaibara N (1994) Intraperitoneal thermochemotherapy for prevention of peritoneal recurrence of gastric cancer. Final results of a randomized controlled study. Cancer 73: 2048–2052

    Article  PubMed  CAS  Google Scholar 

  6. Sautner T, Hofbauer F, Depisch D et al (1994) Adjuvant intraperitoneal cisplatin chemotherapy does not improve long-term survival after surgery for advanced gastric cancer. J Clin Oncol 12: 970–974

    PubMed  CAS  Google Scholar 

  7. Fujimoto S, Shrestha RD, Kokubun M et al (1988) Intraperitoneal hyperthermic perfusion combined with surgery effective for gastric cancer patients with peritoneal seeding. Ann Surg 208: 36–41

    Article  PubMed  CAS  Google Scholar 

  8. Yonemura Y, Fujimura T, Fushida S et al (1991) Hyperthermo-chemotherapy combined with cytoreductive surgery for the treatment of gastric cancer with peritoneal dissemination. World J Surg 15: 530–535; discussion 535–6

    Article  PubMed  CAS  Google Scholar 

  9. Lygidakis NJ, Spentzouris N, Theodoracopoulos M et al (1998) Pancreatic resection for pancreatic carcinoma combined with neo- and adjuvant locoregional targeting immuno-chemotherapy–a prospective randomized study. Hepatogastroenterology 45: 396–403

    PubMed  CAS  Google Scholar 

  10. Zhang M, Yao Z, Saga T et al (1998) Improved intratumoral penetration of radiolabeled streptavidin in intraperitoneal tumors pretargeted with biotinylated antibody. J Nucl Med 39: 30–33

    PubMed  CAS  Google Scholar 

  11. Sugarbaker PH (1991) Mechanisms of relapse for colorectal cancer: implications for intraperitoneal chemotherapy. J Surg Oncol Suppl 2: 36–41

    PubMed  CAS  Google Scholar 

  12. Onoda JM, Piechocki MP, Honn KV (1992) Radiation-induced increase in expression of the alpha IIb beta 3 integrin in melanoma cells: effects on metastatic potential. Radiat Res 130: 281–288

    PubMed  CAS  Google Scholar 

  13. Sellak H, Franzini E, Hakim J et al (1994) Reactive oxygen species rapidly increase endothelial ICAM-1 ability to bind neutrophils without detectable upregulation. Blood 83: 2669–2677

    PubMed  CAS  Google Scholar 

  14. Shaughnessy SG, Whaley M, Lafrenie RM et al (1993) Walker 256 tumor cell degradation of extracellular matrices involves a latent gelatinase activated by reactive oxygen species. Arch Biochem Biophys 304: 314–321

    Article  PubMed  CAS  Google Scholar 

  15. Rajagopalan S, Meng XP, Ramasamy S et al (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98: 2572–2579

    Article  PubMed  CAS  Google Scholar 

  16. Belkhiri A, Richards C, Whaley M et al (1997) Increased expression of activated matrix metalloproteinase-2 by human endothelial cells after sublethal H2O2 exposure. Lab Invest 77: 533–539

    PubMed  CAS  Google Scholar 

  17. van Rossen ME, Stoop MP, Hofland LJ et al (1999) Red blood cells inhibit tumour cell adhesion to the peritoneum. Br J Surg 86: 509–513

    Article  PubMed  Google Scholar 

  18. van Rossen ME, Sluiter W, Bonthuis F et al (2000) Scavenging of reactive oxygen species leads to diminished peritoneal tumor recurrence. Cancer Res 60: 5625–5629

    PubMed  Google Scholar 

  19. Kogawa K, Muramatsu H, Tanaka M et al (1999) Enhanced inhibition of experimental metastasis by the combination chemotherapy of Cu-Zn SOD and adriamycin. Clin Exp Metastasis 17: 239–244

    Article  PubMed  CAS  Google Scholar 

  20. Nishikawa M, Tamada A, Hyoudou K et al (2004) Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clin Exp Metastasis 21: 213–221

    Article  PubMed  CAS  Google Scholar 

  21. Nishikawa M, Tamada A, Kumai H et al (2002) Inhibition of experimental pulmonary metastasis by controlling biodistribution of catalase in mice. Int J Cancer 99: 474–479

    Article  PubMed  CAS  Google Scholar 

  22. Hyoudou K, Nishikawa M, Umeyama Y et al (2004) Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase: quantitative analysis with firefly luciferase-expressing melanoma cells. Clin Cancer Res 10: 7685–7691

    Article  PubMed  CAS  Google Scholar 

  23. Yabe Y, Nishikawa M, Tamada A et al (1999) Targeted delivery and improved therapeutic potential of catalase by chemical modification: combination with superoxide dismutase derivatives. J Pharmacol Exp Ther 289: 1176–1184

    PubMed  CAS  Google Scholar 

  24. Poste G, Doll J, Hart IR et al (1980) In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res 40: 1636–1644

    PubMed  CAS  Google Scholar 

  25. Nishikawa M, Yamauchi M, Morimoto K et al (2000) Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 7: 548–555

    Article  PubMed  CAS  Google Scholar 

  26. Nishikawa M, Hyoudou K, Kobayashi Y et al (2005) Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. J Control Release 109: 101–107

    Article  PubMed  CAS  Google Scholar 

  27. Freije JM, Balbin M, Pendas AM et al (2003) Matrix metalloproteinases and tumor progression. Adv Exp Med Biol 532: 91–107

    PubMed  CAS  Google Scholar 

  28. Tsujimoto H, Hagiwara A, Shimotsuma M et al (1996) Role of milky spots as selective implantation sites for malignant cells in peritoneal dissemination in mice. J Cancer Res Clin Oncol 122: 590–595

    Article  PubMed  CAS  Google Scholar 

  29. Hashimoto S, Takeoka M, Taniguchi S (2003) Suppression of peritoneal dissemination through protecting mesothelial cells from retraction by cancer cells. Int J Cancer 107: 557–563

    Article  PubMed  CAS  Google Scholar 

  30. Sako A, Kitayama J, Koyama H et al (2004) Transduction of soluble Flt-1 gene to peritoneal mesothelial cells can effectively suppress peritoneal metastasis of gastric cancer. Cancer Res 64: 3624–3628

    Article  PubMed  CAS  Google Scholar 

  31. Billing AG, Jochum M, Frohlich D et al (1997) Oxidative autoaggression by phagocytes in human peritonitis. Eur J Clin Invest 27: 1030–1037

    Article  PubMed  CAS  Google Scholar 

  32. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265: 659–665

    PubMed  CAS  Google Scholar 

  33. Baramova EN, Bajou K, Remacle A et al (1997) Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett 405: 157–162

    Article  PubMed  CAS  Google Scholar 

  34. Sato H, Okada Y, Seiki M (1997) Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion. Thromb Haemost 78: 497–500

    PubMed  CAS  Google Scholar 

  35. Habelhah H, Okada F, Kobayashi M et al (1999) Increased E1AF expression in mouse fibrosarcoma promotes metastasis through induction of MT1-MMP expression. Oncogene 18: 1771–1776

    Article  PubMed  CAS  Google Scholar 

  36. Toth M, Chvyrkova I, Bernardo MM et al (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 308: 386–395

    Article  PubMed  CAS  Google Scholar 

  37. Sato H, Takino T, Miyamori H (2005) Roles of membrane-type matrix metalloproteinase-1 in tumor invasion and metastasis. Cancer Sci 96: 212–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by Health and Labor Sciences Research Grants for Research on Hepatitis and BSE from the Ministry of Health, Labor and Welfare of Japan and by the 21st Century COE Program “Knowledge Information Infrastructure for Genome Science”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiya Nishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyoudou, K., Nishikawa, M., Kobayashi, Y. et al. Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase. Clin Exp Metastasis 23, 269–278 (2006). https://doi.org/10.1007/s10585-006-9036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9036-8

Keywords

Navigation