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Abstract
Weighting climate models has recently become a more accepted approach. However, it 
remains a topic of ongoing discussion, especially for analyses needed at regional scales, 
such as hydrological assessments. Various studies have evaluated the weighting approaches 
for climate simulations. Yet, few case studies have assessed the impacts of weighting 
climate models on streamflow projections. Additionally, the methodological and loca-
tion limitations of previous studies make it difficult to extrapolate their conclusions over 
regions with contrasting hydroclimatic regimes, highlighting the need for further studies. 
Thus, this study evaluates the effects of different climate model’s weighting approaches 
on hydrological projections over hydrologically diverse basins. An ensemble of 24 global 
climate model (GCM) simulations coupled with a lumped hydrological model is used over 
20 North American basins to generate 24 GCM-driven streamflow projections. Six une-
qual-weighting approaches, comprising temperature-, precipitation-, and streamflow-based 
criteria, were evaluated using an out-of-sample approach during the 1976–2005 reference 
period. Moreover, the unequal-weighting approaches were compared against the equal-
weighting approach over the 1976–2005, 2041–2070, and 2070–2099 periods. The out-
of-sample assessment showed that unequally weighted ensembles can improve the mean 
hydrograph representation under historical conditions compared to the common equal-
weighting approach. In addition, results revealed that unequally weighting climate models 
not only impacted the magnitude and climate change signal, but also reduced the model 
response uncertainty spread of hydrological projections, particularly over rain-dominated 
basins. These results underline the need to further evaluate the adequacy of equally weight-
ing climate models, especially for variables with generally larger uncertainty at regional 
scale.
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1 Introduction

Hydrological projections issued from climate change impact assessments are often used 
to inform various applications, such as flood risk assessments (Salman and Li 2018). Such 
projections are commonly produced by using ensembles of post-processed (i.e., down-
scaled and/or bias-adjusted) global or regional climate models’ outputs to force one or mul-
tiple hydrological models. Large ensembles of global climate models (GCMs) and regional 
climate models (RCMs) are often recommended to produce ensembles of GCM- or RCM-
driven streamflow projections that account for the uncertainty associated with climate 
modelling (Giuntoli et al. 2018; Kundzewicz et al. 2018). The management and assessment 
of these large ensembles of hydro-climatic projections is a topic of ongoing discussion, 
especially for decision-making purposes (Kiesel et al. 2020; Knutti et al. 2017; Pechlivan-
idis et al. 2018).

In hydrological impact studies, the dominant approach to manage and assess the large 
ensembles of hydro-climatic projections is the so-called climate models’ democracy. This 
approach consists of giving identical weights to all the climate models of the ensemble, 
assuming that all members are equally plausible (Chen et  al. 2017; Knutti et  al. 2010). 
However, different studies have questioned the climate models’ democracy approach and 
proposed weighting or sub-selecting ensemble members based on their adequacy to pro-
ject a given variable for a specific purpose, especially for climate change impact studies at 
regional and local scales. The arguments supporting this approach include the following: 
(1) many climate models often share or duplicate processes representations (Abramowitz 
et al. 2019; Eyring et al. 2019; Knutti et al. 2017); (2) some climate models have shown 
more difficulties in representing mean regional climate than other climate models (Bracon-
not et al. 2012; Gleckler et al. 2008), especially over extremes (Do et al. 2020; Giuntoli 
et al. 2018). Therefore, weighting or sub-selecting climate models has gained acceptance in 
recent years, particularly for climate change impact studies (Eyring et al. 2019; Kiesel et al. 
2020; Knutti et al. 2017).

Different approaches to weight or sub-select climate models have been proposed and 
assessed on ensembles of climate projections (e.g., Knutti et al. 2017; Räisänen et al. 2010; 
Sanderson et al. 2017; Xu et al. 2010). The main differences among them often include the 
criteria used to favor a given simulation, such as mean annual performance (e.g., Xu et al. 
2010), independence (e.g., Knutti et  al. 2017; Sanderson et  al. 2017), and convergence 
(e.g., Giorgi and Mearns 2002) of one or various climate variables.

In hydrological impact studies, some approaches have assessed weighting or sub-
selecting methods based on mean climate performance (e.g., Chen et al. 2017; Massoud 
et  al. 2019, 2020; Padrón et  al. 2019; Ruane and McDermid 2017), while few others 
have assessed weighting approaches based on mean streamflow (e.g., Wang et  al. 2019; 
Yang et  al. 2017). Among them, Padrón et  al. (2019) evaluated the effects of weighting 
an ensemble of 36 GCM outputs on global precipitation projections. Using a modified 
Bayesian model averaging (BMA) method, higher weights were assigned to simulations 
with better performance against precipitation observations. Their results showed that pro-
jected precipitation extremes of the weighted ensemble were less pronounced in Europe, 
Southern Africa, and Western North America, but more pronounced in the Amazon com-
pared to projections using equal-weighting. Thus, performance-based weighting was rec-
ommended, arguing that simulations that agree better with observations are likely to be 
more reliable. Focusing on GCM-driven streamflow projections at the basin scale, Chen 
et  al. (2017) evaluated the effects of precipitation- and temperature-based weighting on 
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hydrological projections of a snow-dominated basin. Five weighting methods were tested 
over an ensemble of 28 GCM outputs with and without post-processing. Their results 
showed a limited impact of climate models weighting on the GCM-driven streamflow pro-
jections. Thus, the climate model’s democracy approach was suggested.

More recently, Kolusu et al. (2021) evaluated the sensitivity of water resources projec-
tions to climate models weighting over two basins in eastern Africa. Four weighting meth-
ods, based on climate model’s performance, independence, and plausibility, were tested 
over an ensemble of 32 bias-adjusted GCM outputs and the 32 GCM-driven streamflow 
projections. Similar to Chen et al. (2017), small effects of climate model’s weighting were 
observed on their risk assessments compared to the overall ensemble spread. However, 
the use of climate-based weighting for streamflow studies has been questioned due to the 
non-linear relationship between climate variables and streamflow (Knutti et al. 2017; Wang 
et al. 2019). Thus, the use of streamflow-based weighting methods has been suggested as 
an alternative (Kiesel et al. 2020; Wang et al. 2019; Yang et al. 2017). For instance, Yang 
et al. (2017) compared equal-weighting against the BMA method to weight an ensemble of 
global monthly runoff projections issued from 31 Earth System Models (ESMs) based on 
decadal mean runoff performance. Significant regional differences, including smaller run-
off increases from the weighted projections compared to equal-weighting, were observed 
over northern latitudes, yet more pronounced runoff decreases in Amazonia and sub-Saha-
ran Africa.

Using a different approach, Wang et  al. (2019) evaluated the use of climate models 
weighting on GCM-driven hydrological projections simulated with a lumped hydrologi-
cal model. Eight weighting methods, based on raw and bias-adjusted mean annual cli-
mate and GCM-driven streamflow performance, were tested on two different basins. The 
results showed that unequal weighting improved the simulation and reduced biases of 
the ensemble mean when using raw GCM outputs during the reference period. However, 
when the GCM-outputs were bias-adjusted, the impact of weighting was limited. Thus, 
equal weighting was still recommended. More recently, Kiesel et al. (2020) compared eight 
different methods to weight or sub-select 16 bias-adjusted climate model outputs from 
EURO-CORDEX over the Upper Danube basin. To evaluate the performance of weighting 
and sub-selection methods, the historical streamflow observations were divided into a ref-
erence and an evaluation period. The results revealed that the choice of method influenced 
the streamflow projections as much as the actual climate change signal. Moreover, their 
results suggested that methods maintaining more information showed better performance 
than methods sub-selecting a single best-performing model.

Contrasting conclusions are observed regarding the use of climate models weighting for 
hydrological projections. For instance, one of the main criticisms of weighting methods, 
similar to those of bias-adjustment approaches, is their strong reliance on climate simula-
tions agreement with historical observations (Wootten et al. 2022). This can be problematic 
as good performance under historical conditions does not guarantee good performance in 
the future, especially if different climate conditions are expected in the future under climate 
change (Merz et al. 2011). At the same time, climate models that show strong difficulties in 
reproducing historical conditions at the regional scale can be hardly considered reliable for 
impact assessments. Currently, the literature shows that there is still no agreement on the 
method or approach to assign weights to climate models, especially for hydrological stud-
ies. This is particularly clear for studies at the regional or basin scale, where previous stud-
ies have shown different impacts depending on the region (Padrón et al. 2019; Yang et al. 
2017). The complexity and variety of dominant processes at the basin scale make it hard 
to extrapolate previous analyses to regions with contrasting hydroclimatic regimes. Thus, 
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to further inform the ongoing discussion, the aim of this study is to evaluate the effects of 
weighting climate models on hydrological projections by analyzing the effects of different 
weighting criteria on future hydrological simulations over basins with contrasting hydro-
meteorological regimes.

2  Study area and data

In this study, 20 North American basins with contrasting flood-generating processes were 
selected (see Fig.  1). The selected basins include 10 snow-dominated basins located in 
the Canadian province of Quebec and 10 rain-dominated basins located in the country 
of Mexico. The upper and lower panels of Fig.  1 show the mean total annual precipita-
tion (mm) and mean annual temperature (°C) for the snow- and rain-dominated basins, 
respectively. As observed in Fig. 1, these two groups of basins represent different climatic 
regimes. Regarding precipitation, the 20 basins show mean total annual precipitation that 
varies from about 500 up to 2110 mm per year and mean annual temperatures ranging from 
about 5 up to 23.6 °C.

The basin data used in this study included daily historical records of minimum tempera-
ture, maximum temperature, precipitation, and streamflow. These datasets were obtained 
from the Hydrometeorological Sandbox – École de Technologie Supérieure (HYSETS) 
database (Arsenault et  al. 2020). All meteorological and hydrometric data consisted of 
time series with a minimum length of 25 years between 1970 and 2013, depending on 
the availability of hydrometric data for each basin. The meteorological data used in this 
study consists of a grid with a resolution of 1/16° (~ 6 km), covering Mexico, the conter-
minous USA, and southern Canada (Livneh et  al. 2015, 2013). For each basin, the data 
points within each catchment area were averaged to obtain a single time series per climate 

Fig. 1  Location of the 10 basins in Quebec (upper panels) and the 10 basins in Mexico (lower panels) used 
in the study. The upper and lower panels show the mean total annual precipitation (mm) and mean annual 
temperature (°C) for the snow-dominated and rainfall-dominated basins, respectively
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variable. Further details about the characteristics of the basins are provided in Table S.1 in 
Online Resource 1.

3  Methodology

The methodology used in this study consisted of four main steps: (1) building an ensem-
ble of GCM simulations, (2) calibrating and validating the hydrological model to couple 
it with the GCM-ensemble outputs, (3) applying six different climate model’s weighting 
approaches, and (4) analyzing the resulting weighted streamflows for a reference period of 
1976–2005 and two future periods of 2041–2070 and 2070–2099.

3.1  Climate simulations

The first step involved selecting diverse raw GCM simulations. The choice to use raw 
GCM outputs was motivated by the intention to avoid the influences of bias-adjustment 
on the evaluation of weighting approaches. In the process of bias-adjustment, climate 
simulations are adjusted to align with observations. As a result, the weighting process is 
directly influenced, given that the same observations are subsequently used to determine 
the weights assigned to the climate simulations. This interaction might explain the limited 
impacts of weighting approaches observed in previous studies using bias-adjusted climate 
simulations. Additionally, it has been suggested that bias-adjustment performance over the 
reference period may not be preserved during future periods (Chen et al. 2020), making it 
problematic to interpret the results over different time frames. Thus, to avoid these issues, 
an ensemble of twenty-four raw GCM simulations issued from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) database (Taylor et al. 2011) was selected. This cli-
mate ensemble includes outputs from fourteen different modeling centers and varied spa-
tial resolutions, providing a diverse set of GCMs from the CMIP5 database. Please refer to 
Table S.2 in Online Resource 1 for further details on the GCM-ensemble members.

The outputs issued from each member of the GCM ensemble comprised three daily 
variables, (1) precipitation, (2) minimum temperature, and (3) maximum temperature. For 
each basin, the grid data points inside each catchment were spatially averaged using sim-
ple mean to obtain a single time series per climate variable. For basins with fewer than 
four grid points within their area, the closest surrounding points were included to ensure 
a minimal of four grid points per basin. The climate parameters issued from the selected 
points were averaged using the Thiessen’s polygons method. Each dataset covered the ref-
erence period of 1976–2005 and two future horizons of 2041–2070 and 2070–2099 under 
the high-emission scenario, the Representative Concentration Pathway (RCP) 8.5.

3.2  Hydrological modelling

The second methodological step comprised the calibration and validation of the selected 
hydrological model, which was then coupled with the GCM-outputs to produce the ensem-
ble of daily GCM-driven streamflow simulations. In this study, the lumped empirical GR4J 
hydrological model (Perrin et  al. 2003) combined with the snow module CemaNeige 
(Valéry et  al. 2014) was used. GR4J is a simple rainfall-runoff model with four param-
eters. However, the snow accumulation, snowmelt, and evapotranspiration processes 
are not directly estimated by GR4J. Thus, the snow module CemaNeige and the Oudin 
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evapotranspiration formulation (Oudin et al. 2005) were added to allow the application of 
the hydrological model over the diverse study area. This addition introduced two param-
eters from the snow module, making a total of 6 parameters to calibrate (i.e., 4 from GR4J 
and 2 from CemaNeige). The inputs required by GR4J-CemaNeige consist of continuous 
series of daily precipitation, mean temperature, and the potential evapotranspiration calcu-
lated with the Oudin formulation. GR4J-CemaNeige combined with the Oudin formulation 
has demonstrated satisfactory performance over a diversity of basins and applications (e.g., 
Coron et al. 2012; Dallaire et al. 2021), supporting its use in this study.

The six parameters of the GR4J-CemaNige hydrological model were calibrated with 
the Shuffled Complex Evolution (SCE) algorithm (Duan et al. 1994) with the Kling-Gupta 
efficiency (KGE) criterion (Kling et  al. 2012) as objective function. According to Kno-
ben et al. (2019), KGE values larger than ≈ − 0.41 indicate that the simulation has higher 
skill than the mean observations. For this study, KGE values above 0.5 were considered 
acceptable. The calibration and validation of the GR4J hydrological model consisted in 
splitting all available data into two parts. The first part was used for the calibration, while 
the second half was used for validation. In addition to the aforementioned validation, the 
GR4J model was evaluated under four contrasting climate conditions: (1) dry, (2) humid, 
(3) cold, and (4) warm climate conditions. These four 8-year-long periods were identified 
based on precipitation and temperature conditions. Mean total annual precipitation from 
each basin was ranked to identify dry and humid years, while mean annual temperature 
was used to identify cold and warm years. This calibration and validation approach is 
based on recent recommendations that highlight the importance of evaluating hydrological 
model parameterizations across contrasting conditions (Gelfan et al. 2020; Krysanova et al. 
2018, 2020). The objective of this process is to ensure the robustness of the parameter sets 
for climate change impact assessment.

3.3  Weighting methods

The third step involved applying different climate- and streamflow-based weighting 
approaches. As previously stated, this study aims at evaluating the effects of different 
weighting criteria on hydrological projections. To address this aim, six unequal-weighting 
approaches were used, including three climate-based approaches comprising temperature 
and/or precipitation criteria, and three streamflow-based approaches. These weighting 
approaches were applied using the GCM outputs and GCM-driven streamflows simulated 
for reference period (i.e., 1976–2005). All unequal-weighting approaches used two main 
weighting methods, the reliability ensemble averaging (REA) and the upgraded REA 
(UREA).

The REA weighting method, developed by Giorgi and Mearns (2002), assigns weights 
to each member of a GCM simulations ensemble to minimize the contribution of members 
with poor performance. The performance criterion is based on reliability factors that con-
sider (1) each simulation’s fit to historical records and (2) a measure of the future projec-
tion convergence to the REA-weighted average. Both elements are often calculated with 
annual mean data. This method was initially applied over ensembles of GCM-temperature 
and -precipitation datasets yet recent applications have also used it over GCM-driven 
streamflow ensembles (e.g., Kiesel et al. 2020; Mani and Tsai 2017).

The UREA method, developed by Xu et al. (2010), proposed two major changes to the 
REA method. Instead of the future projection convergence criterion, the UREA method 
included multiple variables and statistics in the performance criteria. This allowed 
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including two or more variables, such as precipitation and temperature, as well as other 
statistics (e.g., interannual standard deviation and interannual coefficient of variation) to 
define the weights. The UREA method has been applied in various regions and studies for 
climate projections (e.g., Chen et al. 2017; Colorado-Ruiz et al. 2018; Singh and Achuta-
Rao 2020) and GCM-driven streamflow projections (Wang et al. 2019).

Both the REA and UREA methods have been applied in different studies and have the 
advantage of including the calculation of uncertainty ranges, enabling the measurement 
and comparison of uncertainty spreads for all weighting approaches. More details on the 
weights and uncertainty ranges calculations with the REA and UREA methods can be 
found in Online Resource 2. It is important to underline that in this and following sections, 
uncertainty spread refers to the model response/output uncertainty spread.

The seven weighting approaches used in this study are the following:

EW. The equal weighting method assigns identical weights to all climate models.
W1. This approach uses the REA method to assign weights according to each climate 
model’s historical mean annual temperature performance.
W2. This approach uses the REA method to assign weights according to each climate 
model’s historical mean annual precipitation performance.
W3. This approach uses the UREA method to assign weights according to each climate 
model’s historical mean annual precipitation and temperature performance.
W4. This approach uses the REA method to assign weights according to each climate 
model’s historical mean annual streamflow performance.
W5. This approach uses the UREA method to assign weights according to each climate 
model’s historical mean annual streamflow performance.
W6. This customized approach proposes using the UREA method to assign weights 
according to each climate model’s historical mean seasonal streamflow performance. By 
using a seasonal-based criterion instead of the commonly used annual-based criterion, it 
is expected that the varying dominance of hydrological processes between seasons will 
be better considered and will be more adequate for hydrological studies.

The weights obtained for all methods and basins are presented in Figures S1 and S2 in 
Online Resource 4.

3.4  Data analysis

To investigate the effects of climate models’ weighting on ensembles of hydrological pro-
jections, four metrics were selected and evaluated over the winter (December, January, Feb-
ruary, DJF), spring (March, April, May, MAM), summer (June, July, August, JJA), and fall 
(September, October and November, SON) seasons for a reference period of 1976–2005 
and two future periods of 2041–2070 and 2070–2099. Details on the calculation of each 
metric can be found in Online Resource 3.

The four metrics used in this study are the following:

Mean annual and seasonal hydrograph representation. This metric uses the normalized 
root mean squared error (NRMSE) criterion to compare each weighted-ensemble mean 
hydrograph against the observed mean hydrograph, calculated from historical records. 
This metric allows comparing the mean annual and seasonal streamflow representa-
tions between methods. To ensure an independent assessment of weighting methods, an 
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out-of-sample evaluation is conducted. Thus, the weights calculated for the 1976–1995 
period are then evaluated for the period 1996–2005.
Relative difference in mean seasonal peaks. This metric compares the weighted-ensem-
bles in terms of relative differences RD(%) between the mean seasonal peaks of stream-
flow of a given unequal-weighting approach (i.e., W1–W6) and the equal-weighting 
approach (EW) used as reference. The aim is to evaluate the impact of unequal-weight-
ing on mean seasonal peaks of streamflow compared to the equal-weighting approach 
over reference and future periods.
Climate change signal. This metric compares the climate change signals of all weight-
ing approaches. The climate change signal of each approach is estimated by comparing 
the mean seasonal peak streamflow of a given approach during a future period against 
its mean seasonal peak streamflow during the reference period in terms of relative 
change (%).
Seasonal streamflow spread. This metric compares and measures the seasonal spread of 
the mean hydrographs estimated with the different weighting approaches. The standard 
deviation is used to quantify the seasonal spreads of the mean weighted hydrographs 
over the reference and future periods. The purpose is to compare the impacts of une-
qual- and equal-weighting approaches on the seasonal uncertainty spreads of the simu-
lated streamflows.

4  Results

4.1  Hydrological model performance

In this section, the validation results of the GR4J hydrological model are presented in 
Fig.  2. The figure shows the KGE values obtained from the hydrological model valida-
tion and evaluations over four climate contrasting periods for the snow- (panel a) and rain-
dominated basins (panel b). The distributions of KGE-values for the evaluation under (1) 
the full validation period, (2) warm, (3) cold, (4) humid, and (5) dry 8-year periods, are 
presented from left to right (see Sect. 3.2 for details).

The distribution of KGE values obtained in the five model evaluation steps indicates a 
satisfactory performance overall, with median KGE values of over 0.7 for all cases. How-
ever, it is observed that the KGE values vary among the different contrasting climate con-
ditions. For instance, GR4J tends to face more difficulties in simulating dryer conditions in 
the snow-dominated basins and humid conditions in the rain-dominated basins. The eval-
uation over the full validation period also demonstrates a satisfactory performance, with 
median KGE-values of 0.90 and 0.75 for the snow- and rain-dominated basins, respec-
tively. These satisfactory performance metrics assure the use of the GR4J hydrological 
model for the subsequent methodological stages in this study.

4.2  Mean annual and seasonal hydrograph representation

The comparison between mean annual and seasonal weighted and observed hydrographs 
was performed using the NRMSE over the period of 1995–2006. Figure  3 shows the 
NRMSE values obtained between the weighted and observed mean annual hydrographs for 
the snow- and rain-dominated basins on rows a and b, respectively. The NRMSE values are 
presented for the mean annual and seasonal hydrographs (from left to right). Each panel 
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Fig. 2  Boxplots of the KGE values during the validation and evaluation over climate contrasting periods 
of the GR4J hydrological model are presented for the snow- and rain-dominated basins in a and b, respec-
tively. From left to right, the results for the validation with the full-time series, and the evaluations under 
warm, cold, dry, and humid conditions are presented

Fig. 3  Normalized root mean squared error (NRMSE) values obtained from comparing weighted ensem-
bles mean annual hydrograph against the observed mean annual hydrograph during the reference period 
of 1996–2005 for the snow-dominated basins (a) and the rainfall-dominated basins (b). Each panel shows 
climate weighting approaches on x-axis and basins on y-axis. Basins are ordered according to MAP, from 
lowest to highest
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shows the weighting approaches on the x-axis and all basins are sorted by ascending mean 
annual precipitation (MAP, in mm/year) along the y-axis.

The results show that mean annual and seasonal hydrographs generally exhibit closer 
agreement with observations in snow-dominated basins across all weighting approaches. 
This is particularly evident in panel a, where almost all NRMSE values for the snow-dom-
inated basins are lower compared to those of the rain dominated basins when comparing 
row by row. Among the weighting approaches, it is observed that W6 followed by W3, 
consistently display better annual and seasonal performance with lower NRMSE values 
than other approaches for most snow- and rain-dominated basins. Rain-dominated basins 
show more diverse results, with the driest basins showing generally larger NRMSE values, 
especially during dry months (DJF and MAM). Additionally, these drier basins show the 
overall worse mean annual hydrograph representation (All NRMSE values can be found in 
Tables S3 to S7 of Online Resource 4).

4.3  Impact on mean seasonal peak streamflow

Figures 4 and 5 show the relative bias between the mean seasonal peak streamflow of the 
unequally weighted ensembles (W1–W6) against the equally weighted (EW) ensemble 

Fig. 4  Relative bias (%) between the unequally weighted mean seasonal peak streamflows of the three cli-
mate-based (in green) and the three streamflow-based (in blue) ensembles and the equally weighted ensem-
ble for the snow-dominated basins over the 1976–2005, 2041–2070, and 2070–2099 periods (from left to 
right panels). By row, results for the winter (a), spring (b), summer (c), and fall (d) months are presented
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over the snow- and rain-dominated basins, respectively. The results are organized by 
season (top to bottom) and time period (left to right).

Across most snow-dominated basins, the unequally weighted ensembles consistently 
show smaller mean seasonal peak streamflow values compared to the equally weighted 
ensemble during winter, summer, and fall seasons (panels a, c, and d) over both refer-
ence and future periods. The negative relative biases vary among weighting approaches, 
with the streamflow-based approach W6 showing the largest differences against EW. 
However, during the spring flood, a shift is observed, as more basins show a positive 
relative bias. This is especially observed during the reference period, where most basins 
show median relative biases of about + 10% when using W6. It is also observed that 
relative differences decrease when moving into future periods across all seasons. Par-
ticularly with W6, several basins changed from positive to negative relative biases.

Over the rain-dominated basins (see Fig.  5), most basins show smaller mean sea-
sonal peak streamflows with the six unequal-weighting approaches than with the 
equal-weighting approach. Similar to the snow-dominated basins, W6 shows the larg-
est differences against EW. However, the rain-dominated basins show generally larger 
relative differences, with median values reaching up to − 60%. During winter and 
spring months (panels a and b), W6 shows notably greater differences than the other 

Fig. 5  Relative bias (%) between the unequally-weighted mean seasonal peak streamflows of the three cli-
mate-based (in green) and the three streamflow-based (in blue) ensembles and the equally weighted ensem-
ble for the rain-dominated basins over the 1976–2005, 2041–2070, and 2070–2099 periods (from left to 
right panels). By row, results for the winter (a), spring (b), summer (c), and fall (d) months are presented
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approaches. Conversely, during summer and fall months (panels c and d), both W4 
and W6 show similar medians and distribution spreads, especially during the summer 
months.

Overall, the unequally weighted hydrological projections over snow-dominated regions 
showed, on average, median differences (i.e., relative biases) of about 3 to 5% with 
W1–W5, and 12 to 22% median differences with W6 across the different periods. Over 
the rain-dominated basins, the average of median differences showed values of about 16 to 
18% with W1–W3, while approaches W4–W6 showed average differences of about 34 to 
37%.

4.4  Impacts on the climate change signal

Figures 6 and 7 show the climate change signals, measured as relative changes (%) between 
the reference and future mean seasonal peak streamflows, for all weighting approaches over 
the snow- and rain-dominated basins, respectively. The results are presented by season (top 
to bottom) and future horizon (left to right). Each panel displays the weighting approaches 
along the x-axis and the basins sorted by ascending mean annual total precipitation (MATP, 
in mm/year) along the y-axis. The climate change signals over the snow-dominated basins 
show relatively consistent outcomes across most weighting approaches. Nevertheless, W6 
differs from the other approaches during specific seasons across both future horizons. This 
is especially observed during the spring flood (panel b), where W6 shows clear differences 
from the other approaches in certain basins. During winter and summer months (panels a 
and c, respectively), most approaches agree on the signal direction, showing overall peak 
flow increases in the winter and decreases in the summer. However, different signal magni-
tudes are observed, with certain approaches showing slightly larger peak flow increases in 
the winter (panel a) and smaller peak flow decreases in the summer (panel c), particularly 
W6. In the fall season (panel d), smaller differences between weighting approaches are 
observed between weighting approaches.

Over the rain-dominated basins (Fig.  7), a broader range of climate change signals 
is observed across basins, periods, and weighting approaches. No clear differences are 
observed between unequal-weighting approaches and equal-weighting, as climate change 
signals often disagree among various basins and future periods. This variability is particu-
larly evident during summer and fall months (panels c and d). Nevertheless, it is observed 
that unequally weighted ensembles increased/decreased the magnitude of the climate 
change signal in some basins. In other words, peak flow increases or decreases projected 
with the equal-weighting approach are further accentuated with some unequal-weighting 
approaches (e.g., W6) in certain basins.

4.5  Impacts on the streamflow‑ensemble spread

Figures  8 and 9 show the boxplots of standard deviations (SD;  m3/s) that quantify the 
ensemble spreads of the different weighted streamflow ensembles over the snow- and rain-
dominated basins, respectively. The results are presented by season (top to bottom) and 
period (left to right). It is generally observed, over both figures, that all unequally weighted 
ensembles reduced the streamflow ensemble spread across all seasons. These effects are 
consistent over reference and future periods. Over the snow-dominated basins, the results 
show that unequal-weighting approaches can reduce the ensemble spread, with median 
standard deviations ranging from approximately 50 to 60% smaller compared to the EW 
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approach. These basins also show slightly smaller median standard deviations with the W6 
approach, especially during summer and fall months (panels c and d). This behavior is also 
observed over the rain-dominated basins, with median standard deviations reaching values 

Fig. 6  Climate change signal measured as relative changes (%) between the reference and future mean sea-
sonal peak streamflows of all equally and unequally weighted ensembles for the snow-dominated basins 
over the 2041–2070 and 2070–2099 periods (from left to right panels). By row, results for the winter (a), 
spring (b), summer (c), and fall (d) months are presented. Shades of red indicate positive relative bias and 
shades of blue indicate negative relative biases
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Fig. 7  Climate change signal measured as relative changes (%) between the reference and future mean sea-
sonal peak streamflows of all equally and unequally weighted ensembles for the rain-dominated basins over 
the 2041–2070 and 2070–2099 periods (from left to right panels). By row, results for the winter (a), spring 
(b), summer (c), and fall (d) months are presented. Shades of red indicate positive relative bias and shades 
of blue indicate negative relative biases
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Fig. 8  Standard deviation  (m3/s) of the equally weighted streamflow-ensemble (in grey), the three climate-
based (in green), and the three streamflow-based (in blue) unequally weighted streamflow ensembles for 
the snow-dominated basins over the 2041–2070 and 2070–2099 periods (from left to right panels). By row, 
results for the winter (a), spring (b), summer (c), and fall (d) months are presented

Fig. 9  Standard deviation  (m3/s) of the equally weighted streamflow ensemble (in grey), the three climate-
based (in green), and the three streamflow-based (in blue) unequally weighted streamflow ensembles for 
the rain-dominated basins over the 2041–2070 and 2070–2099 periods (from left to right panels). By row, 
results for the winter (a), spring (b), summer (c), and fall (d) months are presented
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of up to 80% smaller than the ensemble spreads using the EW approach. These effects are 
consistently observed across all seasons and periods, especially with the W6 approach.

5  Discussion

5.1  Impacts of climate models weighting

Using large ensembles of climate simulations has become a standard approach for assess-
ing climate change impacts on hydrology. To deal with these large ensembles, different 
studies have proposed weighting climate simulations based on their ability to reproduce the 
variable of interest. Thus, to further inform on the impacts of weighting strategies, different 
weighting approaches were tested on an ensemble of GCM-driven streamflow simulations 
over 20 basins with contrasting hydroclimatic regimes. The findings, in line with other 
studies (e.g., Kiesel et al. 2020; Wang et al. 2019), showed that weighting climate models 
can improve the representation of mean annual and seasonal hydrographs during the refer-
ence period. This improvement is evident in Fig. 3, where certain weighting approaches 
showed lower NRMSE values compared to the equal-weighting approach. Among the 
evaluated weighting approaches, W6 (the seasonal streamflow-based weighting approach) 
demonstrated a generally robust performance. This NRMSE reduction is not only observed 
over snow-dominated basins, where EW already showed a generally good hydrograph rep-
resentation. It is also observed over warmer and dryer rain-dominated basins. It is impor-
tant, however, to highlight that the selected methods and datasets add uncertainty to these 
findings. For instance, the calculation of weights over a limited period (1976–1995) and 
their subsequent evaluation over the 1996–2005 period add uncertainty to the present 
study, as natural variability is overlooked when using relatively short periods. Thus, future 
studies using longer evaluation periods are recommended.

The analyses also highlighted that weighting climate models can impact the magnitude 
of mean seasonal peak streamflows, climate change signal, and model response uncertainty 
spread of hydrological projections. In particular, unequally weighted hydrological projec-
tions showed peak streamflows of about 3 to 5% different than EW with W1–W5, and 12 to 
22% different with W6, across snow-dominated basins. The rain-dominated basins showed 
larger peak streamflow differences of approximately 16 to 18% with W1–W3, and 34 to 
37% with W4–W6. However, the direction and magnitude of these changes varied across 
seasons, periods, basins, and, notably, between weighting approaches. This was observed 
over Figs. 4 and 5, where W6 showed the largest mean peak differences in comparison to 
the equal-weighting approach.

The climate change signals showed diverse impacts across basins and weighting 
approaches. In certain snow-dominated basins, the climate change signal for the spring 
months changed from projected seasonal peak flow increases to decreases when using 
the W6 approach, while in others, the climate change signal was clearly attenuated (i.e., 
the three driest basins). These notable effects can be explained by the higher mean spring 
peak streamflows obtained during the reference period when using the W6 method (as 
observed in Fig.  4b), which consequently modified the difference against the projected 
peak streamflows. In contrast, larger peak flow increases and smaller peak flow decreases 
were observed during winter and summer months, respectively. Over the rain-dominated 
basins, no systematic effect of weighting was observed. However, climate change signals 
sometimes exhibited opposite projected changes between approaches, especially during the 
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flooding summer-fall months. Additionally, some basins showed peak flow decreases and 
increases compared to the ones projected with the EW approach. These results emphasize 
the fact that the choice of weighting approach can not only impact the magnitude of the 
signal, but also change the projected signal in the opposite direction.

The observed effects of weighting approaches on the projected signals can be attrib-
uted to the observed volatility of the hydrological change signal among different combi-
nations of climate models (Melsen et al. 2018), as well as the various factors involved in 
the overall weighting process. For instance, one crucial aspect of weighting methods is 
the underlying assumption of stationary climate simulation performance. In comparison to 
bias-adjustment methods, climate simulation biases (in this case, weights) are assumed to 
be stationary. However, studies suggest that biases vary over time (Chen et al. 2020), and 
it can be expected that weights will also vary. Moreover, it has been suggested that climate 
change might impact streamflow seasonality, such as earlier snowmelt and/or shifted rain 
seasons (Eisner et al. 2017; Vormoor et al. 2015). This can pose a challenge when apply-
ing the seasonal weighting method W6, as future peak streamflows may occur in different 
months, each with different weights. This highlights the need to improve existing weight-
ing methods by incorporating more flexible performance evaluations, such as distribution-
based weighting.

Regarding the uncertainty-spread analysis, both basin groups showed clear reductions 
in seasonal spread of the streamflow ensembles when using unequal-weighting approaches 
compared to the seasonal spreads estimated with the EW approach across all seasons and 
periods. This outcome was expected, as some previous studies have shown reductions in 
both global and regional uncertainty spreads through the process of weighting climate 
model ensembles (Exbrayat et al. 2018; Multsch et al. 2015). These reductions were par-
ticularly pronounced over rain-dominated basins, where seasonal uncertainty spread 
reductions reached up to 80%. These generally larger reductions in seasonal spreads over 
rain-dominated basins, along with the larger peak streamflow differences described in Sec-
tion 4.3, may be explained by the larger uncertainty associated with climate modelling in 
regions or seasons characterized by relatively heavy rainfall (Woldemeskel et  al. 2016). 
Consequently, larger effects can be expected in areas or periods where streamflow is pri-
marily driven by rainfall. However, it is important to highlight that this study was limited 
by the employed weighting methods (i.e., REA and UREA). Thus, if different methods are 
used to estimate uncertainty spreads, contrasting results can be expected.

5.2  Effects of climate model’s weighting criteria

Precipitation-, temperature-, and streamflow-based criteria were used and compared across 
all basins, with some approaches relying on a single climate/streamflow variable while oth-
ers incorporated multiple climate/streamflow variables. The results showed that the degree 
of impact from the weighting approaches varied depending on the selected criteria. This 
variability is clear when comparing W6 with the other approaches across the different 
analyses, as well as in Figures S1 and S2, this particular method exhibits more variabil-
ity in weights compared to other approaches (refer to Online Resource 4). This weight-
ing approach not only diminished the NRMSE against mean observations in comparison 
to all the other approaches during the reference period but also showed the largest differ-
ences against the equal-weighting approach. This behavior can be explained by the vari-
able and multi-criteria used for evaluation. This approach is based on streamflow perfor-
mance, which, in line with Wang et al. (2019), generally shows better annual streamflow 
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representation than climate-based weighting due to the non-linear relationship of climate 
variables and streamflow. Additionally, this approach does not solely rely on annual indi-
cators but also incorporates multiple seasonal indicators. This means that climate mod-
els showing better seasonal agreement with observed streamflow seasonality will receive 
higher weights. While annual indicators have been previously used for weighting climate 
and streamflow projections, they can be misleading for streamflow due to the diverse pro-
cesses that drive streamflow throughout the year. This effect is also observed in Fig.  3, 
where some basins show improved mean seasonal hydrograph representation with tem-
perature- or precipitation-based weighting approaches. For instance, over snow-dominated 
basins, temperature-based approaches sometimes outperform others, as flood peaks are 
strongly influenced by temperature during spring melt. These results underscore the impor-
tance of selecting weighting criteria based on the needs of the studied variable.

However, it is important to note that while objective metrics are chosen to evaluate cli-
mate model performance, the selection of weighting criteria unavoidably involves subjec-
tivity, as there is no universally accepted approach for such evaluation in the hydrologi-
cal community. For instance, other criteria such as observed trend representation, spatial 
patterns, climate model independence, or signal-to-noise ratio have been suggested in the 
literature to evaluate the overall GCMs performance (Meher et al. 2017). However, these 
criteria were not incorporated into any of the studied approaches. Integrating these types 
of criteria with mean annual and seasonal representations can help identify more robust 
methods for ranking and weighting GCMs in climate change impact studies, relying not 
solely on performance metrics. For example, it is noteworthy that certain GCMs consist-
ently received higher weights than others across the different weighting methods and basins 
in this study. These patterns are highlighted in Table  S2, where the cumulative weights 
assigned to each GCM across all basins and weighting approaches indicated a general pref-
erence for GCMs #19 and #5 over the snow- and rain-dominated basins, respectively.

It is important to underscore that this study is limited by the criteria and methods cho-
sen to evaluate and weight the GCMs. Therefore, further studies that assess the potential 
impacts of alternative criteria, as conducted in this study, are necessary to provide a clearer 
understanding of the adequacy of weighting criteria for specific purposes, as well as their 
implications for climate change impact studies.

5.3  The implications of bias‑adjustment, hydrological modelling, and weighting

In this study, raw GCM outputs were combined with a lumped hydrological model to 
generate streamflow simulations that were used to weight the GCM-driven streamflow 
simulations. However, the absence of bias-adjustment can impact the results. To explore 
these potential issues, Fig.  10 presents a comparison of mean annual hydrographs for a 
snow- (panel a) and a rain-dominated basin (panel b), derived from raw and bias-adjusted 
GCM-outputs (upper and lower panels, respectively). Additional details regarding the 
two selected basins are provided in Table S.1 of Online Resource 1. For each basin, the 
uncertainty spreads and means of the mean annual hydrographs derived from EW, W3, 
and W6 are presented for both the reference and future periods. The W3 and W6 methods 
were chosen to compare one climate-based and one streamflow-based approach, respec-
tively. In addition, these methods were identified as having some of the largest effects over 
both basin groups. Bias-adjustments were performed using the quantile mapping approach 
described in (Chen et al. 2020).



Climatic Change (2023) 176:170 

1 3

Page 19 of 24 170

Overall, Fig.  10 shows narrower spreads in the bias-corrected GCM-driven mean 
annual hydrographs. This behavior is clearly observed over both basins and all weighting 
approaches. However, it is notable that while the uncertainty ranges of W3 and W6 esti-
mated from the raw GCM-driven mean annual hydrographs remain relatively constant over 
time, the bias-adjusted uncertainty ranges show clear spread changes over the future peri-
ods. Such differences were expected, as bias-adjustment methods may not preserve their 
performance over future periods (Chen et al. 2020).

Fig. 10  Mean annual hydrographs of one snow- (a) and one rain-dominated basins (b), estimated from raw 
and bias-adjusted GCM-outputs (upper and lower panels, respectively). For each basin, the EW, W3, and 
W6 mean annual hydrographs uncertainty spreads and means are presented for the reference and future 
periods (from left to right). Selected basins are highlighted in Table S.1 in Online Resource 1
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Regarding the weighted means, the snow-dominated basin generally shows similar 
means among all methods, excluding the reference period where EW presents larger dif-
ferences against W3 and W6. Nonetheless, similar means are observed when consider-
ing the raw and bias-adjusted GCM-driven hydrographs. Conversely, the rain-dominated 
basin shows more pronounced differences between weighting methods, particularly with 
W6. For instance, when examining the highest peak flow, both approaches (i.e., with and 
without bias-adjustment) show increases over future horizons. However, the bias-adjusted 
approach shows a clearly larger peak flow increase. This behavior can be linked to the bias-
adjustment process, which adjusts the simulation to fit the highest observed peak within 
the reference period. These biases are assumed to remain constant throughout the future 
periods, potentially leading to these amplified peaks during the same months. Another con-
tributing factor might be the coarse resolution of certain GCM/ESM simulations included 
in the study. Post-processing techniques serve not only to adjust inherent biases in climate 
simulations but also allow downscaling coarser GCM simulations, a process expected to be 
more adequate for basin-scale studies that unavoidably adds uncertainty to the results.

The larger effects and differences observed in the rain-dominated basin could also be 
linked to the greater uncertainty spreads in regions or seasons where streamflow produc-
tion is influenced by convective precipitation events (Castaneda-Gonzalez et  al. 2022). 
This larger spread becomes evident when comparing the snow- and rain-dominated basins.

The rationale behind using raw GCM outputs was to isolate the effects of weighting 
methods, solely focusing on quantifying their impacts on hydrological projections across 
various basins. Nonetheless, it is clear that this methodology produces interactions between 
raw GCM outputs and the calibrated hydrological model, which could impact the weight-
ing process, particularly when strongly biased GCM outputs are fed to a calibrated hydro-
logical model. Therefore, further studies that explore alternative methods to integrate these 
approaches could offer insights into more adequate applications for basin-scale assess-
ments. For instance, using weighting methods to rank the most suitable climate simulations 
before and after bias-adjustments can be suggested, given that bias-adjustment methods 
can mask fundamental modelling deficiencies (Chen et al. 2021).

6  Conclusions

In this study, six approaches of unequal-weighting of climate models were tested and 
compared against the most common equal-weighting approach to analyze their impacts 
on hydrological projections. An ensemble of 24 raw GCM simulations was combined 
with a simple lumped hydrological model to produce 24 GCM-driven streamflows for 20 
river basins located in Canada and Mexico for a reference and two future periods. Differ-
ent weighting methods and criteria were first evaluated using the NRMSE metric in an 
out-of-sample approach during the reference period. Subsequently, all weighting methods 
were applied to explore their effects on hydrological projections across two distinct basin 
groups: (1) 10 rain-dominated and (2) 10 snow-dominated basins.

Overall, the results suggest that weighting climate models can impact the magnitude of 
projected mean seasonal peak streamflows, climate change signal, and uncertainty spread 
of the ensemble of river discharge projections. Although the primary objective of this 
study was not to evaluate the performance of different weighting methods, but rather to 
inform on the potential effects of their application on hydrological projections, various key 
findings emerged:
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1. The unequal weighting of climate models can improve the representations of mean 
annual and seasonal hydrographs during the reference period. Among the different 
weighting approaches evaluated using an out-of-sample assessment during the reference 
period, the approach based on mean seasonal streamflows often outperformed the other 
approaches relying on mean annual streamflow, precipitation, or temperature data.

2. The choice of climate model’s weighting approach can strongly impact the magnitude 
and direction of climate change signal in terms of mean seasonal peak streamflow. 
These effects vary across seasons and, more notably, between regions with different 
hydroclimatic regimes. Over both snow- and rain-dominated basins, the climate change 
signal often changed to an opposite direction during their main flood seasons (spring 
and summer-fall, respectively).

3. Rain-dominated basins generally exhibited larger impacts on mean seasonal peak 
streamflows and streamflow-ensemble spread when climate models were unequally 
weighted compared to snow-dominated basins.

4. Weighting climate simulations can lead to a reduction in the uncertainty spread of peak 
flow and streamflow projections.

While our study provides valuable insights, its limitations underscore the importance 
of further investigations to determine suitable approaches for weighting climate simula-
tions in hydrological applications. For instance, future efforts might involve including 
more recent global/regional climate simulations at higher resolutions and/or physically 
based hydrological models to better gauge the adequacy of hydro-climatic simulations 
for hydrological applications. Additionally, it could be recommended that future studies 
focus on the development of weighting methods capable of estimating weighted uncer-
tainty spreads. This would allow for a more thorough assessment of the potential reduc-
tions in uncertainty spreads.
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