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Abstract

Climate change is a multidimensional phenomenon. As such, no single metric can capture
all trajectories of change and associated impacts. While numerous metrics exist to meas-
ure climate change, they tend to focus on central tendencies and neglect the multidimen-
sionality of extreme weather events (EWEs). EWEs differ in their frequency, duration,
and intensity, and can be described for temperature, precipitation, and wind speed, while
considering different thresholds defining “extremeness.” We review existing EWE metrics
and outline a framework for classifying and interpreting them in light of their foreseeable
impacts on biodiversity. Using an example drawn from the Caribbean and Central Amer-
ica, we show that metrics reflect unequal spatial patterns of exposure across the region.
Based on available evidence, we discuss how such patterns relate to threats to biological
populations, empirically demonstrating how ecologically informed metrics can help relate
EWE:s to biological processes such as mangrove recovery. Unveiling the complexity of
EWE trajectories affecting biodiversity is only possible through mobilisation of a plethora
of climate change metrics. The proposed framework represents a step forward over assess-
ments using single dimensions or averages of highly variable time series.

Keywords Climate change - Vulnerability assessment - Extreme climate - Population
demography - Biodiversity threats

1 Introduction

One defining feature of contemporary climate change is the increasing frequency, intensity
and duration of extreme weather events (EWEs) (Lange et al. 2020; Laufkoétter et al. 2020).
EWEs—including unusual and severe events (Seneviratne et al. 2012)—present a major
challenge to human society and to the long-term persistence of biodiversity, as we know it
today (Lange et al. 2020; Smith 2011; Thompson et al. 2023). Extreme weather events can
affect different levels of biological organisation, ultimately altering ecological and evolu-
tionary processes. Among their known impacts, EWEs can exert strong selection pressures
on organisms (e.g., Grant et al. 2017; Stroud et al. 2020), change individuals’ behaviour
(e.g., Cohen et al. 2021), trigger phenological shifts (e.g., Butt et al. 2015; Jentsch et al.
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2009), cause local population collapses (e.g., Frederiksen et al. 2008; Smale and Wern-
berg 2013), and destabilise community and ecosystem organisation when tipping points are
overcome (e.g., Armstrong McKay et al. 2022; Heinze et al. 2021; Kreyling et al. 2014).
Yet to date vulnerability assessments for climate change have primarily focused on how
changes in central tendencies of climate change are influencing biodiversity (Chapman
et al. 2014; Jones et al. 2016), with only limited attention being paid to the effects of EWEs
on biota (Harris et al. 2018; Sabater et al. 2022; Wethey et al. 2011).

While detection and attribution of climate change effects on biodiversity is challeng-
ing (Gonzalez et al. 2023; Taheri et al. 2021b), with concurrent environmental drivers
affecting species and communities differently across sections of their geographical distri-
butions (Taheri et al. 2021a), the issue is further complicated when dealing with highly
dimensional phenomena such as EWEs. An extreme weather event can be defined accord-
ing to its unusual frequency, intensity and/or duration, and measured from different sets
of variables (e.g., temperature, precipitation, wind speed), while using different thresholds
to determine its “extremeness” (McPhillips et al. 2018; Stephenson 2008). The resulting
combination of EWE measurements can be massive and can often lead to results that are
difficult to interpret.

A plethora of metrics exist to quantify one or more dimensions of extreme climate
change (see, for instance, Zhang et al. 2011; Sillmann et al. 2013; Donat et al. 2013; Per-
kins and Alexander 2013; Garcia et al. 2014; Buckley and Huey 2016; Xu et al. 2019;
McClanahan 2022), but much indeterminacy exists regarding their information content
(Latimer and Zuckerberg 2019; McClanahan 2022): what climate change properties do
different metrics convey? How are different metrics linked to biodiversity’s vulnerability?
Answering these questions is important for anticipating threats to biodiversity. Here, we
first review existing metrics describing EWEs and then develop a conceptual framework
for classifying and interpreting the different metrics of EWEs considering their foresee-
able impacts on biodiversity. We then establish the connection between EWE metrics and
biodiversity threats by drawing on an example from the Caribbean and Central America,
two regions of the world with the highest exposure to extreme climate change (Castella-
nos et al. 2022). We explore the patterns of covariation among 89 metrics calculated for
the region and over a 70-year period. We then link the areal exposure to extreme weather
events and the potential effects on biodiversity. Finally, we conduct a case study to test the
usefulness of ecologically relevant EWE metrics in assessing mangrove’s vulnerability to
heat waves, droughts, and heavy rainfall events in the Caribbean and Central America.

2 Metrics describing extreme weather events

Climate is a complicated phenomenon, and no single measurement can describe all its mul-
tiple dimensions. While the climate of a region represents “the finite distribution of climate
variables over time relative to a regime of varying external conditions” (Werndl 2016),
there are several approaches to measuring changes in climate over space and time. These
approaches, referred to as “climate change metrics,” can be used to summarise the cen-
tral tendencies or the variability of extreme values in meteorological time series (Buenafe
et al. 2023; Garcia et al. 2014). Our review of the literature enables identification of several
metrics commonly used by researchers to characterise EWEs (Table 1). Although under
different names, all existing metrics represent a measurement of one or two dimensions of
extreme weather events using different climate parameters and thresholds. As a first step
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towards understanding the metrics’ properties, we propose categorising EWE metrics hier-
archically according to their dimensions, variables, and types of thresholds considered.

The first hierarchical level describes the dimensions of change captured by the met-
rics. These can measure the “Intensity” of the EWE, i.e., the excess over the threshold;
the “Frequency,” i.e., the number of times that the threshold is exceeded in a period, often
referred as probability or empirical probability of an extreme event; or the “Duration,” i.e.,
the time span between the start and end of the extreme weather event. It is important to
acknowledge that metrics typically characterise one or two dimensions of climate change
but rarely, if ever, characterise three or more dimensions (by more than three, we mean
dimensions resulting from interactions among the three main dimensions described earlier)
(see Fig. 1).

The second and third levels of the categorisation of EWE are the variables and thresh-
olds utilised to determine “extremeness,” respectively. Any calculation of EWE metrics
requires a time series of meteorological variables so that excesses beyond an established
threshold can be quantified. For example, among the most widespread metrics, we found
those describing heat waves and warm spells, which are metrics that capture the inten-
sity and duration of EWEs by using a combination of maximum temperatures and upper
percentiles of the distribution as thresholds (McClanahan 2022; Zhang et al. 2011). How-
ever, metrics can be computed using other variables, such as precipitation or wind speed,
as well as different types of thresholds (see Table 1). Different approaches to establishing
thresholds exist, some of which focus on the statistical descriptions of the climatic vari-
ables of interest (henceforth termed statistically-derived threshold), while others focus on
the thresholds known to trigger biological responses to climate changes (henceforth termed
mechanistically-informed threshold) (see, for instance, van de Pol et al. 2017).

Intensity
EWR
MSA S
neSA HV D
/", DHW DHM
4 " MClpe
[ \ RT
FEE REpe MRTpe
REE FEpe LRTpe CTpe
Frequency Duration

Fig.1 A conceptual classification of metrics according to their ability to capture one or more dimensions
of EWEs (see Table 1 for a description of the metrics). neSA - Number of extreme standardised anomalies;
MSA - Mean standardised anomalies; HS Anomalies above the seasonal mean; dV — Daily variability; D -
Intraseasonal difference in the most extreme values; EWR - Inter-seasonal extreme weather range; DHW or
DHM - Heating degree weeks (or months); MClIpe - Cumulative intensity of persistent climate extremes;
RT - Extreme weather residence time; MRTpe or LRT - Duration of persistent climate extremes; CTpe -
Change in timing of persistent climate extremes; FEE - Frequency of climate extremes; REE - Recurrence
of climate extremes; FEpe - Frequency of persistent climate extremes; REpe - Recurrence of persistent cli-
mate extremes
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Thresholds based on statistical analysis of climatic drivers over time are established
under the principle that extreme events are those events occurring in the tails of a fre-
quency distribution of meteorological data values (Davison and Huser 2015; Stephenson
2008). Distributions are usually built using the maximum or minimum values of a climate
variable per unit of time (e.g., per day, month, year) in a time series encompassing at least
30 years (as recommended by the World Meteorological Organisation). The lower (1%, 5"
or 10™) or upper (90, 95™ or 99 percentiles of the distribution are computed to deter-
mine the size of the tail. In turn, mechanistically informed thresholds are established based
on prior knowledge of the value, or range of values, at which an event can qualitatively
alter the state or development of the biological system of interest (Lenton et al. 2008). For
example, wind speeds above 100km/h represent a mechanistically informed threshold that
would likely lead to mangrove die-off (Amaral et al. 2023; Servino et al. 2018). Critical
temperatures over 45—47°C are deadly for most eukaryotes and plants (Aradjo et al. 2013),
although complex interactions with water availability in terrestrial systems can alter per-
ceived heat stress (Herrando-Pérez et al. 2020). Likewise, the occurrence of a high number
of days with 1 or 2°C above the Monthly Maximum Mean (MMM) or climatological mean
of the warmest month (McClanahan 2022) likely leads to mass mortality events in Corals
due to high physiological stress (e.g., coral bleaching, quenching reaction, diseases) (Baker
et al. 2008; Randall and van Woesik 2017).

3 Linking dimensions of change to threats to biodiversity

The best use of EWE metrics is achieved when their information content is analysed in
light of the expected biological responses they are likely to trigger. Yet linking multidi-
mensional patterns of climate change with biological responses is not straightforward since
organisms’ sensitivity to climate dynamics (whether species, populations, communities,
ecosystems, or biomes) involves responses that can be sometimes reported as individual-
istic (Baselga and Aradjo 2009; Mcgeoch et al. 2006), while on other occasions they may
be qualified as collective (Gilman et al. 2010; Mendoza and Aratjo 2019). Individualis-
tic responses are interpreted as the responses of the constituent parts of a system and are
rooted in the view that organisms seek to maximise their own fitness, hence responding
individually to external environmental pressures (Dawson et al. 2011). In contrast, collec-
tive biological responses are system-wide responses affecting the constituent parts of the
system, and are easier to forecast once the rules of the system are understood (Gilman et al.
2010; Mestre et al. 2022). A comprehensive account of both, organismal or system-wide,
responses before, during, and after EWESs is thus needed to gain understanding on the
implications of extreme climate change on biodiversity. However, to date, empirical and
quantitative evidence of such interactions is rather limited, requiring a number of simplify-
ing assumptions linking measurements of climate change and biodiversity change (Buenafe
et al. 2023; Garcia et al. 2016).

To begin structuring thinking about the links between extreme weather events and bio-
logical impacts, we classify impacts into critical dynamic population features, such as birth
rates, growth rates, and mortality rates (Table 2). In contrast with gradual changes in cli-
mate, an increase in one or more dimensions of EWEs can cause abrupt demographic col-
lapses and rapid disassembling of community dynamics, while preventing species adapta-
tion as might be expected with gradual tracking of climate conditions (Hof et al. 2011;
Hughes et al. 2018). We prioritise the demographic aspects of populations as their response
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encompasses both the direct impacts of EWEs on physiology, behaviour, and life history
traits of organisms (Cerini et al. 2023; Sergio et al. 2018), as well as the indirect impacts
caused by changes in biological interactions (Haberstroh and Werner 2022). Hence, all else
being equal, increasing exposure to EWEs is likely to decrease the fitness of local popula-
tions, particularly when (i) organisms cannot tolerate changes in any dimension of extreme
weather events exceeding known historical baselines (Allen et al. 2021; Hansen et al. 2022)
or physiological limits (Jiguet et al. 2006; Valladares et al. 2014); (ii) individuals’ adap-
tive capacity is surpassed by compounded EWEs that shorten recovery times (Artigas et al.
2013; Fivash et al. 2021); (iii) biological populations have lower growth rates and narrower
distributional ranges (Boyce et al. 2022); and (iv) other highly competitive or pathogenic
species increase their abundances owing to EWEs (Haberstroh and Werner 2022; Morley
and Lewis 2014).

It is also important to recognise that biological responses to extreme weather events
depend on the specific dimension of change involved. Different threats can be inferred from
the individual or joint assessment of the dimensions of change (see Table 2). Events char-
acterised by extreme intensity, for instance, are likely to increase mortality rates across all
the developmental stages of a population, triggering mass mortality events and decreasing
post-disturbance survival rates (Buckley and Huey 2016; Frederiksen et al. 2008; Smale
and Wernberg 2013). Events involving an increase of frequency are likely to impact popu-
lation dynamics in the long-term by reducing recruitment and impacting growth rates, such
that has been consistently observed across populations of plants, corals, insects and reptiles
(Enright et al. 2015; Hughes et al. 2018; Maxwell et al. 2019; Neilson et al. 2020; Yu et al.
2022). Finally, events of increasing duration are likely to impact population dynamics by
gradually altering the ratio between birth and mortality rates. For example, prolonged, but
not necessarily more intense, EWEs have been shown to affect the recruitment process in
corals and their symbionts by increasing mortality rates and decreasing birth rates as long
as the event endures (Baker et al. 2008; Glynn 1996).

Interactions among multiple dimensions and variables can magnify the impact over the
different features of population dynamics. Evidence from marine systems shows that pro-
longed ocean heat waves decrease the size of populations and make them more vulnerable
to events of greater intensity in temperature or other climatic variables (Hughes et al. 2019;
Kendrick et al. 2019). Likewise, evidence from terrestrial systems shows that the frequency
and duration of droughts and heat waves interact to trigger population-level die-offs or
magnify the impacts on the reproductive phenology of trees (Breshears et al. 2021). In the
Tropics, such an impact on trees, together with water- and temperature-related stress, have
been shown to change the population demography of mammals that rely on fruits and seeds
(Butt et al. 2015; Campos et al. 2020; Marcelino et al. 2020).

4 Characterising multiple dimensions of EWEs across Central America
and the Caribbean region

Central America and the Caribbean have been dubbed a “miner’s canary” of climate
change due to the marked increase in extreme weather events. Nowhere in the world coin-
cide so many climate hazards over a global hotspot of biodiversity, within a background
of marked human socioeconomic vulnerability (Castellanos et al. 2022; Gould et al. 2020;
Reyer et al. 2017). The region is known for its hurricanes and cyclones but droughts and
heat waves are not unusual (Cook et al. 2022; Taylor et al. 2012). Documented impacts of
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such extreme events include direct economic losses (Devis-Morales et al. 2017; Lewsey
et al. 2004), and erosion of human health (Di Napoli et al. 2022) and biodiversity (Amaral
et al. 2023; Muiiiz-Castillo et al. 2019). Yet a comprehensive assessment of EWEs, across
their multiple dimensions and climatic variables, has not yet been undertaken.

To begin addressing this gap, we implement 89 EWE metrics, using ERAS-Land clima-
tological time series (daily records at 0.1-degree spatial resolution, Hersbach et al. 2020),
across the Caribbean and Central America over the last 70 years (1950-2020). ERAS is
a reanalysis product that effectively combines model data with global observations using
the laws of physics to create a comprehensive gridded dataset spanning the entire globe.
Despite the high uncertainty in some estimates for the Tropics, due to limited data availa-
bility (Hersbach et al. 2020), recent studies have demonstrated the ability of ERAS5 to accu-
rately capture spatiotemporal changes in climatic variables for Central and South America
(Balmaceda-Huarte et al. 2021; Gouveia et al. 2022), including changes in extreme values
(Avila-Diaz et al. 2023; Bian et al. 2021). The ERAS5 dataset is thus a valuable resource for
investigating regional patterns of exposure, and spatiotemporal concordance between dif-
ferent types of EWEs. Nevertheless, it should be noted that achieving more accurate assess-
ments may require a systematic quantification of the uncertainty associated with every met-
ric, particularly in those capturing the intensity since reanalysis data might underestimate
the actual daily value (Tan et al. 2023).

The number of selected metrics (n=89) results from combining multiple dimensions
(intensity, frequency, and duration) and variables (wind speed, precipitation, and temper-
ature), as well as interactions amongst such combinations (see Figure SM1.1 and Table
SM1.1). Interactions were described by counting the number and duration of events of dif-
ferent nature (i.e., distinct climatic parameters) occurring within the same season or year.
Metrics were computed separately for 0.1 x 0.1° grid cells using daily values of wind
speed, precipitation and temperature for the dry season (DJFMA, i.e., December to April)
and the wet season (JJASO, i.e., June to October), using as climatic thresholds the 5th (or
95th) percentiles for the daily minimum or maximum values obtained in every grid cell
during the baseline period (1951-1981). EWE patterns for the last 40 years—excluding the
30-years baseline—were characterised by computing the average, frequency, or maximum
value per grid cell (see Table 3). In an exploratory analysis, we found that a considerable
proportion of these metrics showed low (54.4% with Spearman rho < 0.03) and/or non-sig-
nificant correlation (24.5% with p < 0.05) with other metrics (Figure SM1.2). An extended
version of the methods can be found as Supplementary Material (SM1). Data and code,
as well as a dynamic overview of the spatiotemporal of EWE in the region is available
in a GitHub repository (https://github.com/jdgonzalezt/multipleDimensionsExtremeClima
teChange).

To understand the internal variability of EWE, as measured with the 89 metrics, we
employed a Principal Components Analysis (PCA) on the standardised outputs of all met-
rics (with mean 0 and standard deviation 1). We then use PCA results to group metrics and
grid cells sharing a similar EWE profile, explore the geographical patterns displayed by
EWE profiles, and hypothesise links between the distribution of EWEs and biodiversity
based on the conjectures developed in the conceptual framework (Section 4).

The PCA revealed exceptionally high variability among EWE metrics calculated for the
Caribbean and Central America in the past 40 years. Specifically, the first Principal Com-
ponent (PC) captured just 19% of the total variation among metrics, with 21 additional
principal components being needed to account for ca. 80% of the variance (Figure SM1.3
and Table SM1.2). Should metrics display a greater level of redundancy, as one would
expect in low-dimensional phenomena, the PCA would reduce metrics variability into a
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few components. In several ecological studies examining patterns of covariation among
climate variables, two to three components are typically identified (Aragjo et al. 2001;
Petitpierre et al. 2017) with the first component accounting for a disproportionately high
proportion of the total variation.

To identify areas where biodiversity is likely at risk due to increasing trends of EWE
occurrence, and for simplicity, we focus on describing the spatial patterns captured by the
first four principal components (Fig. 2, amounting ca. 43% of the total variance). The geo-
graphical patterns of the metrics with the highest correlation to these four principal compo-
nents are included in the supplementary material (Figures SM1.3-6). Note that PCA groups
together variables that have a similar relationship with each other. It then calculates a linear
function that summarises the trends shared by the variables within each group, or compo-
nent. This procedure ensures that the components have low correlation among themselves
(also known as "quasi-orthogonal," Jolliffe and Cadima 2016) and, as a result, describe
distinct types of EWEs.

Geographically, the first component specifies areas of Central America and the South-
ern Caribbean that were highly exposed to more frequent and intense warm days during the
historical baseline period studied (cells in red in PC-1 of Fig. 2), and areas highly exposed
to heavy precipitation and cold days towards the north of the region (cells in grey in PC-1
Fig. 2). Heat waves and cold spells can compromise population persistence by increasing
mortality, reducing birth rates, and altering sex ratios (Mazzotti et al. 2016; Wiederholt
and Post 2010; Wright et al. 2015). Under limited dispersal conditions, the threat might
be greatest for those small-sized populations at the edge of their physiological limits or
distributional ranges (DeCarlo et al. 2017; Gutschick and BassiriRad 2003). As described
by the second principal component, the threat for populations with such characteristics
can be further exacerbated around the margins of Central and North America, where com-
pounded events were detected (i.e., extreme wind, temperature, or precipitation occurring
at the same location within the same year or season, cells in red in PC-2 of Fig. 2). Recent
evidence indicates that the synergistic interaction between heat waves and meteorological
droughts, for example, will result in more lethal events, which jeopardise the long-term
survival of several species across the globe (Breshears et al. 2021; Sheppard et al. 2020).

The third and fourth principal component show that areas in the Caribbean islands and
Central American corridor have been highly exposed to extreme winds and temperatures
(red cells in PC-3 and PC-4 of Fig. 2). Hurricanes, cyclones and heat waves have imme-
diate and lagged effects on population growth by simultaneously decreasing survival and
fecundity (Morcillo et al. 2020; van den Burg et al. 2022). Given the available evidence,
the increased exposure to more intense and frequent extreme winds, and prolonged high-
temperature events, can potentially threaten species with lower fecundity, smaller popula-
tion sizes, and narrow distributional ranges (Maxwell et al. 2019). In the case that dispersal
of individuals from the mainland is restricted, the population size of such species would be
reduced and likely lead to local extinctions across the islands and across fragments with
low connectivity in the corridor. A similar process can occur in montane systems, in which
extreme (and novel) climatic conditions may increase local extinction risks for high-alti-
tude populations by exceeding the tolerances of individuals and increasing climatic barri-
ers to their dispersal (Kerr 2020).

The fourth principal component also reveals that a wide extension of Central Amer-
ica and the Southern Caribbean has been exposed to sharp deficits of precipitation (grey
cells in PC-3 of Fig. 2). While droughts and megadroughts are common to the Ameri-
can continent (Cook et al. 2022), and tropical species exhibit different adaptations to water
deficit (Oliveira et al. 2021), there are different groups of species that can be at risk due
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Fig.2 Spatial variability across the multiple EWE metrics as summarised by Principal Component Analy-
sis (PCA). To facilitate visualisation, PCA scores and loadings are represented individually on the left and
central sides of the figure. Loadings describe the correlation of the metrics with every PC, where metrics
with the highest loadings exhibit similar variability across space. Scores describe the position of grid cells
along the principal components. Colours represent their association with the group of metrics correlated
with each PC. To simplify interpretation, only the six metrics exhibiting the highest negative (red) and posi-
tive (grey) loadings are shown (names and correlation values are included in the tables on the right). Radar
plots help identify the number, dimension, and climatic parameter (T - temperature, P - precipitation, and
W - wind) of the 12 metrics with the highest loadings in each PC. Compounded metrics are represented
with a circle. Full names of metrics can be found in Table 1

to direct and indirect drought-induced effects. Population size of fast-growing plant spe-
cies, for example, is directly affected by droughts because they do not invest resources in
forming hydraulically-safe tissues that protect their structures from coping with water con-
straints (Gonzalez-M et al. 2021; Guillemot et al. 2022). Likewise, population growth rate
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of frugivores, such as small primates, can be directly affected by water deficits and higher
temperatures, or indirectly by food deficits resulting from tree die-off (Campos et al. 2020).

5 Linking multiple dimensions of EWEs to mangrove recovery
in the Caribbean and Central America

The high dimensionality of the EWE metrics, revealed by 21 principal components needed
to summarise 80% of the data, demonstrates that extreme weather events cannot be fully
characterised unless a multidimensional analysis is performed. However, such high dimen-
sionality further complicates the establishment of links between metrics and biodiversity.
Instead of using “brute force” to navigate the “jungle” of metrics, i.e., computing several
metrics before undertaking a ‘post hoc’ evaluation of their patterns of covariation to iden-
tify non-redundant patterns, an alternative is to select a set of metrics based on a priori
knowledge of their ecological relevance.

To illustrate the principle, we select a subset of metrics to evaluate how greater expo-
sure to heatwaves, droughts, and unusual rainfalls in the dry season (December to May)
might have interfered with the post-hurricane recovery of mangrove populations in the
North Atlantic Basin (NAB). Available evidence suggests that increased exposure to the
intensity, frequency, and duration of such EWEs could be preventing mangrove recovery
via direct and indirect effects on tree growth, resprouting, and seedling production (Amaral
et al. 2023; Harris et al. 2010; Jimenez et al. 1985; Lagomasino et al. 2021). Decreas-
ing individuals’ fitness is a direct effect of extremely intense temperatures and prolonged
droughts, particularly for species such as Avicennia germinans or Laguncularia racemosa,
or in poorly drained areas with lower fertility, such as in the Yucatdn peninsula (Harris
et al. 2010; Imbert 2018; Lagomasino et al. 2021; Vogt et al. 2012). In addition, both heat
waves and droughts can induce indirect changes to biotic and abiotic conditions for biodi-
versity, via both natural and human induced processes. Natural processes include changes
in the occurrence of early-successional plant species, which facilitate the establishment
of mangrove propagules after disturbances, especially in the case of Rhizophora mangle
(Donnelly and Walters 2014).

We asked whether the exposure to such EWE:s in the dry season was lower in grid cells that
exhibited some degree of recovery in mangrove forest coverage than in cells where no signs
of recovery were evidenced. To assess exposure differences, we first identified grid cells with
hurricane-damaged and recovered mangrove forests between 1998 and 2018. The geographic
positions and status (damaged or recovered) of grid cells were retrieved from Amaral et al.’s
(2023) study on the drivers of mangrove vulnerability and resilience to tropical cyclones in
the NAB. For damage estimation, Amaral and colleagues traced changes in the Normalized
Difference Vegetation Index (NDVI) over time. Specifically, they classified grid cells as ‘dam-
aged’ if the mean ex-ante NDVI value (2 years before disturbance) differed from the mean
ex-post NDVI value (after the disturbance) by more than -0.2, a threshold that had been field-
validated for tree death (Lagomasino et al. 2021). For recovery estimation, on the other hand,
they used the ex-post NDVI slope trend 1 year after the disturbance. Specifically, they clas-
sified cells with negative or zero NDVI trends as “not recovered,” while those with positive
trends were classified as “recovered.” For further details on the NDVI-based analysis, includ-
ing image pre-processing for water reflectance, refer to Taillie et al. (2020), Lagomasino et al.
(2021) and Amaral et al. (2023).
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We then estimated the degree of exposure to droughts, heat waves and heavy rainfall in both
recovered and non-recovered grid cells. As proxies of such EWEs, we computed a set of metrics
capturing the intensity (MClpe), duration (RTpe) and frequency (FEpe) using two climate vari-
ables (temperature and precipitation) and two climatic thresholds (percentiles 95th and 5th of the
baseline distribution: 1951 to 1981) (see Table SM1.3). We also quantified the occurrence of mul-
tiple events at the same location and year (Cpe). To determine the statistical difference between the
two groups of grid cells (recovered vs. non-recovered), we used Wilcoxon signed-rank tests, and
the Cliff’s delta (Cliff 1993) effect size to assess the magnitude and direction of the differences.
Cliff’s delta estimates the probability that a value selected from one of the groups being compared
is greater than a value selected from the other group. It varies from —1 to +1, with values farther
from zero indicating the absence of overlap between the two groups. In our analysis, negative val-
ues indicate that non-recovered cells had greater exposure to extreme climate than recovered cells,
whereas positive values indicated the opposite.

In the last two decades, mangrove forests exhibited low short-term resilience in areas that
were damaged by hurricanes, with half of the affected areas (48%) showing no recovery signs 12
months after hurricane made landfall (Amaral et al. 2023). EWEs such as droughts, heat waves
and intense rainfalls have been suggested as major factors delaying forest recovery, but a formal
quantification of exposure has not been performed to date. By using a meaningful combination of
climate change metrics, we show that exposure to EWEs during the dry season was significantly
higher in grid cells with less mangrove recovery (Fig. 3a). We also identified the geographical
areas where increased exposure has coincided with a lack of recovery (Fig. 3b—f). Such results
suggest that post-cyclone recovery in mangrove forests can be reduced by the occurrence of indi-
vidual or compounded events of extreme temperature and lack of precipitation in the dry season.

However, it is important to note that the assessment provided represents only an approxi-
mation of the effect of increased climate exposure. For more robust estimates, it is essential
to consider other environmental and biological factors alongside extreme climate. Key envi-
ronmental factors, including land use, slope, distance from the coast, and soil depth, play a
crucial role in determining the magnitude of hurricane damage and the post-landfall recovery
process (Amaral et al. 2023). Moreover, greater exposure does not necessarily indicate greater
risk, as species with similar levels of exposure might experience greater or lesser impacts due
to species’ intrinsic sensitivity and adaptive capacity (e.g., Bailey et al. 2019; Valladares et al.
2014). Future studies should explore how adaptive responses (i.e., tolerance, migration, or
evolutionary adaptation) can modulate mangrove vulnerability to the multiple dimensions of
EWE:s. The results presented herein can guide the establishment of a network of distributed
experiments to assess such responses of mangroves across sites exposed to different stressors,
including EWEs. They also provide a glimpse on the variables and dimensions that need to
be accounted for when assessing the impacts of extreme climate change in the Caribbean and
Central America regions.

6 Concluding remarks and outlook

Climate change is affecting living systems worldwide and we lack the models to appropri-
ately characterise and forecast such changes. Weaknesses are particularly striking when it
comes to modelling the effects of extreme events on biological systems. In the absence of
comprehensive models that mechanistically link extreme climate dynamics to biodiversity
dynamics, a first approach is to conduct a comprehensive analysis of extreme weather event
patterns, while conceptually linking them with biodiversity threats.
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Fig.3 Comparison of exposure to the multiple dimensions of extreme climate change between grid cells
with recovered and non-recovered mangrove forests from 1998 to 2018. (A) The effect size estimations
using Cliff’s delta are shown here for metrics describing the intensity, duration, frequency, and compounded
occurrence of EWEs. Lines to the left and right of the circles indicate the 95% confidence intervals of
the calculated Cliff’s delta. Asterisks indicate significant differences between groups using the Wilcoxon
signed-rank test (alpha < 0.05). (B-F) Levels of exposure to different dimensions and variables in grid cells
where mangrove forests showed no recovery signs after cyclones made landfall. ‘Intensity’ is described as
the cumulative intensity of five (or more) consecutive days with values exceeding the established threshold
(MClpe); “Duration” as the number of consecutive days with values exceeding the established threshold
(RTpe); and “Frequency” as the maximum number of persistent events (five or more days exceeding the
threshold) that occurred (FEpe). Thresholds were established as the percentiles 95th and 5th of maximum
and minimum values from 1951 to 1981

Numerous climate change metrics exist to conduct such pattern analysis. Our review
focused on metrics capturing different dimensions of extreme climate change (see Table 1).
Using an example drawn from the Caribbean and Central American regions, we show
that existing climate change metrics reveal extremely high dimensionality, meaning that
no reduced set of metrics can describe the multiple patterns of change that follow from
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extreme weather events. Metrics capturing different dimensions (intensity, duration, and
frequency), considering different variables (wind speed, temperature, and precipitation)
and using distinct thresholds for defining “extremeness,” often lead to dissimilar assess-
ments of exposure to EWE across different regions.

Although empirical evidence is patchy and vastly incomplete, we provide a coherent
framework linking critical population dynamic features (e.g., birth, growth, and mortality
rates) to the multiple dimensions of extreme climate change, thus overcoming some of the
limitations of sparse observational data for predicting future threats to biodiversity. In addi-
tion, when more ecological information is available, the framework can help guide assess-
ments of the underlying threats to species persistence under different scenarios of future
climate change. As shown in our case study, interpreting exposure patterns in the context
of EWE dimension, variable and threshold provide insight into factors impacting the recov-
ery of mangrove populations after hurricanes made landfall. While connections have been
established at the population level, achieving a comprehensive understanding requires sys-
tematic establishment of links at the community and ecosystem level.

Our review provides evidence supporting the usefulness of climate change metrics for
studying environmental risks associated with EWEs. It also reinforces the view that the
metrics provide an exploratory tool to examine past, current, and future consequences of
EWE. The proposed framework can also guide the selection of metrics in empirical stud-
ies addressing the impacts of the multiple dimensions of extreme weather events on bio-
logical systems. As we move forward, it is essential for future studies to address potential
biases and uncertainties specific to each metric, particularly concerning climatic data. In
regions with limited long-term observations, the representation of extreme climatic val-
ues in datasets from reanalyses and model projections (both CMIP5 and CMIP6) may be
inaccurate in space and time (Avila-Diaz et al. 2023; Gouveia et al. 2022; Ortega et al.
2021), leading to potential over- or underestimation of the intensity, frequency, and dura-
tion of EWEs. By undertaking sensitivity analyses, researchers can gain insights into the
reliability and accuracy of these metrics in assessing the potential threats to biodiversity
(see, for instance, Buenafe et al. 2023). Such analyses can provide valuable information
for making more informed decisions and developing robust strategies for conservation and
mitigation efforts, ensuring the protection and preservation of biodiversity in the face of
climate change challenges. By addressing uncertainties in climate change forecasts, we
can enhance the applicability and reliability of climate change metrics, strengthening our
ability to effectively manage and respond to environmental risks associated with extreme
weather events.
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