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Abstract
Previous research shows that, in the USA, the elasticity of carbon emissions with respect 
to GDP is greater when GDP declines than when GDP increases. Using monthly US data, 
we examine each individual recession since 1973. We find asymmetric changes in carbon 
emissions in the 1973–1975, 1980, 1990–1991, and 2020 recessions but not in the 1981–
1982, 2001, or 2008–2009 recessions. The former four recessions are associated with nega-
tive oil market shocks. In the first three, there was a supply shock and in 2020, a demand 
shock. Changes in oil consumption that are not explained by changes in GDP explain 
these asymmetries. Furthermore, the asymmetries are due to emissions in the transport 
and industrial sectors, which are the main consumers of oil. We conclude that emissions 
behaved similarly in 2020 to the way they did in recessions associated with oil supply 
shocks, but, actually, this pattern is not inherent to the business cycle itself.

Keywords  COVID-19 · Climate change · Economic growth · Recessions

JEL Classification  Q43 · Q54

1  Introduction

Economic growth is seen as one of the main long-run drivers of carbon dioxide and other 
greenhouse gas emissions (Barrett et al. 2014). However, there is relatively little research 
on how greenhouse gas emissions vary over the course of the business cycle. Business 
cycle fluctuations in emissions could have important effects on projected emissions paths 
used to estimate both future greenhouse gas concentrations and the cost of climate poli-
cies (Sheldon 2017). They also need to be taken into account when attempting to deter-
mine when emissions have peaked or will peak. Finally, understanding these short-run 
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fluctuations may give us theoretical insight into the relationship between emissions and 
economic activity.

Sheldon (2017) found that, in the USA, the elasticity of GDP with respect to emissions 
was greater when GDP declined than when it increased.1 However, she did not investigate 
the reason for this asymmetry. In this article, we investigate whether oil market shocks, 
which have been associated with some, but not all, recessions in the USA, may be respon-
sible. We find that the elasticity of carbon emissions with respect to GDP is greater in 
recessions associated with either negative oil supply shocks or the negative oil demand 
shock caused by the COVID-19 pandemic. We conclude that the asymmetry is mostly due 
to reductions in oil consumption associated with these shocks and is not inherent to the 
business cycle itself. This means that changes in emissions will not be asymmetric in all 
future recessions, which has implications for projecting future emissions and determining 
whether emissions have peaked.

The 2020 COVID-19 driven recession saw a sharp drop in carbon dioxide emissions, as 
transportation and some other energy uses were curtailed, providing new data to test the 
asymmetry hypothesis. On the other hand, this was an unusual recession, as it was driven 
by a pandemic. Carbon emissions fell sharply globally at the onset of the 2020 recession 
(Le Quéré et al. 2020) as did other pollutants (Forster et al. 2020). Researchers estimated 
emissions in near real time and tracked a very rapid rebound (Liu et  al. 2020). Chang 
et al. (2020) predicted that, at least in Taiwan, the response would again be asymmetric. 
Le Quéré et  al. (2021) argued that “the pervasive disruptions from the COVID-19 pan-
demic have radically altered the trajectory of global CO2 emissions” (197) and suggested 
that there was a window of opportunity to continue the slowing of emissions growth that 
they had seen since 2015. The second main contribution of our research is to extend the 
data used in previous research to cover this most recent recession. We find that emissions 
changed similarly to the way they did in those previous recessions associated with oil sup-
ply shocks. This leads us to suggest that the pandemic recession will not be likely to mark a 
break in existing trends, though our empirical analysis only examines the USA.

We follow a similar approach to Sheldon (2017) but use US monthly GDP (Brave et al. 
2019) and carbon emissions data from January 1973 to December 2020 instead of quar-
terly data for an earlier period. We examine the behavior of carbon emissions in each indi-
vidual US recession since 1973. We find that carbon emissions respond asymmetrically to 
changes in GDP in the 1973–1975, 1980, 1990–1991, and 2020 recessions but not in the 
1981–1982, 2001, or 2008–2009 recessions. The 1973–1975, 1980, and 1990–1991 reces-
sions are associated with negative oil supply shocks, while the 2020 recession is associated 
with a negative oil demand shock. In both cases, oil consumption fell sharply. By contrast, 
in the 1981–1982, 2001, and 2008–2009 recessions, carbon emissions fell by the amount 
that would be expected from a symmetric model. We also find that the asymmetries are due 
to emissions in the transport and industrial sectors, which are the main consumers of oil. 
Finally, only emissions from oil combustion behave asymmetrically.

The following section provides a review of the previous relevant research. The third sec-
tion presents a brief history of oil price shocks and US recessions. Section 4 presents our 

1  The term elasticity does not necessarily imply a causal relationship. It can simply express the typical per-
centage change in one variable when another changes by 1%. Though, we do think that a causal interpreta-
tion is largely warranted — that if there were exogenous shocks to GDP, carbon emissions would respond 
in a similar way to that estimated here — the exact value of the causal relationship could differ from the 
elasticities that we estimate as explained in Sect. 4.1.
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methods and Section 5 our data and the results. Section 5.2 summarizes our findings and 
provides key conclusions.

2 � Literature review

Using annual data for 160 countries for the period from 1960 to 2008, York (2012) reported 
that the GDP elasticity of carbon emissions is higher during individual years of economic 
expansion than during individual years of economic contraction. He argued that this elasticity 
is likely to be lower during contractions because reductions in the use of durable assets accu-
mulated in booms might be relatively small in contractions. But, using data on 189 countries 
between 1961 and 2010, Burke et al. (2015) concluded that there was no strong evidence that 
emissions behaved differently during years with economic growth compared to years with 
falling GDP. However, they found that there is significant evidence of asymmetry over longer 
periods. Economic growth tends to increase emissions not only in the same year, but also 
in subsequent years. Delayed effects — especially in the road transport sector — mean that 
emissions tend to grow more quickly after booms and more slowly after recessions. On the 
other hand, Doda (2013) noted significant heterogeneity in asymmetry across countries.

Shahiduzzaman and Layton (2015) point out that carbon emissions fell faster in all US 
recessions than they rose in all US expansions since 1973. Inspecting their Table 5, we also 
see that the ratio of the percentage change per annum in CO2 emissions to the percentage 
change in GDP was greater in all contractions than in any expansion. We could explain this 
if changes in CO2 emissions are explained by a time effect and a growth effect:

where ΔlnCt and ΔlnGt denote the first differences of the logs of carbon emissions and 
GDP. Because the dependent variable is in first differences, �0 is the time effect in this 
regression, as it indicates the rate at which carbon emissions change in the absence of 
economic growth. If 𝛽0 < 0 , CO2 emissions will fall faster in recessions than they rise in 
expansions for a given absolute percentage change in GDP even if �1 is the same in both 
contractions and expansions.

Sheldon (2017) estimated an econometric model that expands on (1) using quarterly US 
data. She found that the GDP elasticity of carbon emissions was greater in quarters with 
declining GDP than in quarters with rising GDP. Specifically, she found that a one percent 
increase in GDP was associated with a 0.2% increase in emissions, while a 1% decrease in 
GDP results in a 1.8% fall in emissions. She argued that this means that emissions will rise 
more slowly in the future than predicted by a symmetric model.

Klarl (2020) finds similar results using monthly US data and a rolling regression 
method. Eng and Wong (2017) use a nonlinear autoregressive distributed lag model esti-
mated with monthly US industrial production and CO2 emissions data. They find that CO2 
emissions decline more rapidly in response to a given absolute percentage change in indus-
trial production during recessions than they increase during expansions in the long run. 
However, they found that in the short run the response to changes in industrial production 
is symmetric.2

(1)ΔlnCt = �0 + �1ΔlnGt

2  We replicated Sheldon (2017) with industrial production data instead of GDP data and found that the 
response was symmetric. GDP and industrial production data have different short-run effects on carbon 
emissions. We think this is because transportation, which is not included in industrial production, is the 
most important contributor to the asymmetry.
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The cause of recessions remains a controversial topic (Kilian and Vigfusson 2017). 
Most US recessions since 1973 have been associated with increases in the price of oil. But 
Bernanke et al. (1997) argued that the US Federal Reserve’s response to oil price shocks, 
rather than the shocks themselves, caused US recessions. Kilian and Lewis (2011) counter 
that this really was only the case of the 1979 oil price shock, and it is unclear whether the 
Federal Reserve would have raised interest rates even in the absence of the oil price shock. 
Kilian (2009) and Kilian and Lewis (2011) argue that the effect of increases in the price 
of oil on the economy depends on the causes of those increases. Some oil price increases 
are primarily due to increasing demand — such as the increase from 2003 to 2008 — and 
some due to reduced supply, such as in 1979 (Baumeister and Hamilton 2019). Supply 
shocks lead to a reduction in global economic activity, while positive shocks to oil demand 
do not (Baumeister and Hamilton 2019).

3 � Oil price shocks and recessions

Figure 1 presents the history of oil prices and recessions in the US since 1973. There have 
been three main oil supply crises in US history since 1973 (Hamilton 2009). The first 
oil shock erupted in October 1973 when the Organization of Arab Petroleum Exporting 

Fig. 1   Monthly US oil prices. The nominal price is the composite refiner acquisition cost of crude oil (US 
EIA July 2021 Monthly Energy Review, Table 9.1). The real price is deflated by the US consumer price 
index (Bureau of Labor Statistics). The average annual nominal price is shown for 1973. Recessions are 
marked with blue shading
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Countries (OAPEC) decided to place an embargo on some western countries, including the 
USA, perceived as supporting Israel during the Yom Kippur War. The embargo lasted from 
October 1973 to March 1974. A recession followed in the USA from December 1973 to 
March 1975 (Table 1).

The second shock started in early1979 following the Iranian Revolution in January and 
worsened following Iraq’s invasion of Iran in September 1980. A recession followed from 
February to July 1980. Kilian (2008) and Güntner and Henssler (2021) describe this as 
two separate shocks. For our purpose, the key fact is that the price of oil rose before and 
through the 1980 recession but peaked and began to fall before the 1981–1982 recession 
(Fig. 1).

There was a third spike in oil prices starting in August 1990 after Iraq invaded Kuwait, 
resulting in a shortfall of almost 9% of world oil production (Hamilton 2003). A US reces-
sion started in August 1990 and lasted till March the next year after a coalition of forces led 
by the USA defeated the Iraqi army and liberated Kuwait.

The 1981–1982 recession was primarily triggered by tight monetary policy under Fed-
eral Reserve chair Paul Volcker in response to continuously high inflation (Kilian and 
Lewis 2011). The federal funds rate was raised to more than 19% in June 1981 from around 
9% when Volcker took office in August 1979 (Fig. 2).

In 2001, a recession bracketed the September 11 terrorist attack. Stock markets — 
especially the NASDAQ market — began to fall in early 2000 in the so-called dot.com 
bust. These are usually seen as the causes of this recession (Bernanke 2010). The Federal 
Reserve raised interest rates from the beginning of 1999 to the end of 2000. The price of 
oil did rise from the Asian Financial Crisis in 1997–1998 till late 2000 as demand bounced 
back. But the price of oil began to fall from September 2000. The price of oil fell particu-
larly strongly following the attack.

The price of oil rose following this recession and peaked in July 2008 at its all-time 
high. This increase is understood to have been driven by increasing demand mainly fueled 
by the rise of China and India (Kilian 2009; Hamilton 2009). Hamilton (2009) argued that 
the rise in the price of oil was also partly due to stagnation of world oil production. The 
Great Recession in 2008 and 2009 is usually considered to have been caused by the finan-
cial crisis that started in the US housing and mortgage market. Hamilton (2009), however, 
argued that the 2008–2009 recession was also partly due to the spike in the oil price.

The 2020 recession was unprecedented, as it was the result of the breakout of the 
COVID-19 pandemic. The global recession, and particularly restrictions on personal 

Table 1   US recessions 
(1973–2020)

Recessions defined by the National Bureau of Economic Research 
(NBER). The first month of the recession is the month following the 
“peak month” given by the NBER

Recession First month Last month

1 1973–1975 recession December 1973 March 1975
2 1980 recession February 1980 July 1980
3 1981–1982 recession August 1981 November 1982
4 1990–1981 recession August 1990 March 1991
5 2001 recession April 2001 November 2001
6 2008–2009 recession January 2008 June 2009
7 2020 recession March 2020 April 2020
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mobility, led to decreased demand for oil, triggering a sharp fall in the price of oil. The 
demand shock was exacerbated by the eruption of a price war between Saudi Arabia and 
Russia. West Texas Intermediate Crude Futures even became negative in May 2020, falling 
as low as − $40.32 (Mulder and Tooze 2020).

In conclusion, we argue that four US recessions appear to be primarily associated with 
negative (reduced supply or reduced demand) shocks in the oil market: 1973–1975, 1980, 
1990–1991, and 2020.

4 � Methods

4.1 � Basic specification

Our simplest model of the relationship between carbon dioxide emission changes and GDP 
growth is generated by adding a random error term, �t , and weather variables to (1):

where Ht is heating degree days and Kt cooling degree days. The constant term, �0 , is, 
therefore, the mean of ΔlnCt when there is no economic growth (Stern et al. 2017) or cli-
mate change, and is the time effect in this regression. In contrast to Sheldon (2017), GDP is 
not lagged in this baseline model. Sheldon lagged GDP because she was concerned about 
reverse causality. However, we are only interested in the association between growth and 
emissions rather than in precisely measuring the causal relationship. On the other hand, 
Csereklyei and Stern (2015) argue that the causal effect of GDP on energy use is only a 

(2)ΔlnCt = �0 + �1ΔlnGt + �HΔHt + �KΔKt + �t

Fig. 2   Effective federal funds rate. Recessions are marked with blue shading.  Source: https://​fred.​stlou​
isfed.​org/​series/​FEDFU​NDS
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little smaller than the reduced form estimate. This argument should extend to the causal 
effect of GDP on carbon emissions. We also estimate models with a distributed lag specifi-
cation, as described below, to test for a lagged relationship between carbon emissions and 
GDP.

4.2 � Asymmetric specifications

We specify:

where D− denotes a dummy variable that equals one when GDP growth is negative, and 
zero otherwise. The coefficient �2 measures the difference in the elasticity of carbon 
emissions with respect to GDP between recession and expansion periods. A t test for the 
hypothesis that this coefficient is zero is a direct test for asymmetry. �1 is then the elasticity 
during expansions and �1 + �2 the elasticity during recessions. Essentially, we are allowing 
for a piecewise linear relationship between emissions and GDP with a kink at zero GDP 
growth.

Monthly data can be somewhat noisy, as it is possible to have some months of posi-
tive growth within a recession. Therefore, we also estimate the following regression which 
replaces the negative economic growth dummy in (3) with a dummy variable for NBER 
recessions, DR , which is equal to one if the month is included in an NBER recession and 
zero otherwise:

4.3 � Recession comparison

Next, we investigate whether the 2020 recession was different to past recessions in terms of 
the GDP elasticity of carbon emissions:

where Dpast denotes the past recession dummy, equal to one when a month is within a 
recession prior to 2020 and zero otherwise. D2020 is equal to one when a month occurs dur-
ing the 2020 recession and zero otherwise.

Since past recessions may differ in their characteristics, we also investigate each reces-
sion individually:

There are seven DRi

t  dummy variables – each represents a recession since 1973. 
D

R1

t = D1973−5
t

 equals one for months during the 1973–1975 recession and zero otherwise. 
Similarly, DR2

t = D1980
t

 equals one for months during the 1980 recession and zero other-
wise, and so forth for the remaining dummies. The months when recessions start and end 
are listed in Table 1.

(3)ΔlnCt = �0 + �1ΔlnGt + �2D
−
t
ΔlnGt + �HΔHt + �KΔKt + �t

(4)ΔlnCt = �0 + �1ΔlnGt + �3D
R
t
ΔlnGt + �HΔHt + �KΔKt + �t

(5)ΔlnCt = �0 + �1ΔlnGt + �4D
past

t ΔlnG
t
+ �12D

2020

t
ΔlnGt + �HΔHt + �KΔKt + �t

(6)ΔlnCt = �0 + �1ΔlnGt +

7
∑

i=1

�4+iD
Ri

t ΔlnGt
+ �HΔHt + �KΔKt + �t
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To address the potential concern that there might be insufficient statistical power to test 
for asymmetry in each individual recession, we also pooled the recessions into two groups 
each with a common dummy variable:

The dummy variable DShock
t

 equals one for the four recessions identified as being asso-
ciated with oil market shocks in Section 3 and zero otherwise, and the dummy variable 
DNoShock

t
 equals one for the three other recessions.

4.4 � Effects of oil consumption and other energy use

As we argued in Section  2, four US recessions are associated with important negative 
shocks in the oil market. Could large falls in oil consumption associated with these shocks 
cause the response of emissions to changes in GDP to appear to be larger in recessions than 
expansions? We add the time series of the log of each of the three fossil fuels to the forego-
ing regressions for ΔlnCt to see whether the asymmetric effect of recessions disappears or 
not. If adding log oil use, lnPt , removes the asymmetry but adding the logs of the other two 
fossil fuels does not, we argue that the asymmetry is explained by the part of the decline in 
oil use that is greater than would be expected due to the decline in GDP alone.

4.5 � Sectoral and individual fossil fuels emissions

Is asymmetry particularly pronounced in some sectors of the economy? If asymmetry is 
greater in sectors that predominantly use oil, this will provide further support to the idea 
that asymmetry is due to changes in oil use. We apply (4) to emissions from the residential, 
commercial, industrial, transportation, and electric power sectors while still using econ-
omy-wide economic growth as the explanatory variable. We test for asymmetry in the sec-
toral GDP elasticity of emissions to see which sectors contribute to the overall asymmetry. 
We also test the effect of adding oil and other fossil fuel residuals to these regressions as 
outlined in the previous subsection.

Finally, we can directly test our hypothesis that the asymmetry is related primarily 
to reductions in oil consumption rather than coal and natural gas, by estimating Eq. (4) 
while replacing the dependent variable with emissions from each of the three fossil fuels 
individually.

4.6 � Distributed‑lag model

Our primary interest is the contemporaneous relationship between carbon emissions and 
changes in GDP because it shows whether emissions fall faster relative to the fall in GDP 
in recessions than they rise in expansions. However, there are undoubtedly lagged effects 
of changes in GDP on emissions, for example due to investment in energy-using durable 
goods. To estimate the dynamic relationship between CO2 emissions and GDP, we use a 
distributed-lag model to compare the short- and long-run elasticities of carbon dioxide 
emissions with respect to GDP during recessions and expansions:

(7)
ΔlnCt = �0 + �1ΔlnGt + �SD

Shock
t

ΔlnG
t
+ �ND

NoShock
t

ΔlnGt + �HΔHt + �KΔKt + �t
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The �3,j coefficients measure the difference in the elasticity of carbon emissions with 
respect to GDP between recession and expansion periods in month t–j; the coefficients �1,j 
are the elasticities in month t–j if that month is in an expansion. Then the long-run GDP elas-
ticity of emissions during expansions is 

∑m

j=0
�1,j and the difference in the long-term GDP 

elasticity of emissions between recessions and expansions is 
∑m

j=0
�3,j . Finally, the long-run 

elasticity of carbon emissions with respect to GDP during recessions is 
∑m

j=0

�

�1,j + �3,j
�

.
To specify the distributed-lag model, we use the Akaike information criterion (AIC) to 

find the optimal lag length. We use a maximum lag length of 12 months in addition to the 
contemporaneous terms.

We also test whether the logs of CO2 and GDP cointegrate. If they do not cointegrate, 
then the dynamic model in first differences is valid, and we do not need to include an error 
correction term. For the Johansen test, we first regressed each variable on cooling and heat-
ing degree days, while for the other two procedures we include the exogenous variables 
in the first stage regressions. Using the Engle and Granger (1987) approach and the aug-
mented Dickey Fuller test with 7 lags, the test statistic is − 0.33, which clearly does not 
reject the null of non-cointegration. Using the Phillips and Ouliaris (1990) version of this 
test, we obtain a test statistic of − 2.95. The critical value at the 10% level is − 3.05, and so 
again we cannot reject the null. Again using 7 lags, the Johansen (1991) trace statistic is 
8.06 compared to a critical value of 15.41 at the 5% level.

5 � Results

5.1 � Data

The Appendix presents the sources of the data. The data for our main analysis start in Janu-
ary 1973 and end in December 2020. We seasonally adjust the carbon dioxide emissions 
and energy consumption data using the X-13ARIMA-SEATS program (Census Bureau 
US 2017). Degree days data are seasonally adjusted with the X-11 additive decomposi-
tion method. The GDP series is already seasonally adjusted. According to the augmented 
Dickey–Fuller test, the first differences of the logarithms of carbon dioxide emissions and 
GDP are stationary.

In March and April 2020, GDP fell by 3.98% and 5.91%, respectively. These extreme 
outliers potentially greatly affect the relationship between changes in carbon emissions and 
GDP. Figure 3 demonstrates the relationship between these two variables before and after 
2020. Panel (A) includes all data from January 1973 to December 2020 while Panel (B) 
includes data from January 1973 to December 2019. The slope is positive in both samples 
but is not as large when 2020 is excluded.

5.2 � Asymmetry of the emissions‑income relationship

Columns 1 and 2 in Table 2 show that the GDP elasticity of emissions, estimated using Eq. 
(2), is 1.2 for the full sample, while it is only 0.8 when we exclude 2020, which suggests 
that the elasticity was particularly large in the 2020 recession. The time effect (i.e., the 
constant term) is negative and significant at the 1% level for the symmetric model but is 

(8)ΔlnCt = �0 +

m
∑

j=0

�1,jΔlnGt−j +

m
∑

j=0

�3,jD
R
t−j
ΔlnG

t−j
+ �HΔHt + �KΔKt + �t
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less statistically significantly in the other regressions in the table. A decline in emissions of 
0.3% per month or 3.6% per year is very substantial. As we noted in Sect. 2, with a negative 
time effect, emissions will fall faster in recessions than in expansions even if �lnC∕�lnG is 
constant. When we allow �lnC∕�lnG to vary, the time effect is much smaller.

Fig. 3   Monthly carbon dioxide emissions and GDP growth rates. A 1973–2020, B 1973–2019
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Columns 3–4 test for an asymmetric relationship between economic growth and carbon 
emissions using Eq. (3). The relationship is asymmetric for the full sample. The GDP elas-
ticity of emissions is greater than unity when GDP growth is negative and less than one 
when growth is positive, and the difference is highly statistically significant. These results 
are broadly in line with the previous literature. However, the difference between the effects 
when GDP is contracting and growing is not statistically significant when the 2020 data is 
excluded. Again, we see that the elasticity seems to have been particularly large during the 
2020 recession. In Columns 5–6, we compare recessions and expansions using Eq. (4). The 
results are similar to those in Columns (3) and (4), showing that we can use this approach 
instead of Eq. (3).

Column 1 in Table 3 shows the difference in the elasticity in the 2020 recession com-
pared to expansions and the difference between expansions and all other past recessions 
using Eq. (5). The elasticity of carbon emissions with respect to GDP in the COVID-19 
recession was greater than one and very statistically significant. The elasticity for the 

Table 3   Asymmetric effects for individual recessions

Dependent variable: ΔlnC
t
 . Variable names as in the text. Newey–West standard errors with 12 lags in 

parentheses. First differences of heating degree days and cooling degree days also included in all regres-
sions. *** significant at 1%, ** 5%, and * 10% significance levels

(1) (2) (3)

Specification Past recessions Individual recessions Recessions and 
oil market 
shocks

ΔlnGt 0.626***
(0.146)

0.608***
(0.146)

0.615***
(0.144)

D
past

t ΔlnGt
0.437
(0.446)

D2020
t

ΔlnGt
1.347***
(0.183)

1.367***
(0.182)

D1973−5
t

ΔlnGt
1.663**
(0.816)

D1980
t

ΔlnGt
1.016***
(0.325)

D1981−2
t

ΔlnGt
 − 0.614**
(0.292)

D1990−1
t

ΔlnGt
1.944***
(0.396)

D2001
t

ΔlnGt
 − 1.287
(0.942)

D2008−9
t

ΔlnGt
0.079
(0.434)

DShock
t

ΔlnGt
1.359***
(0.182)

DNoShock
t

ΔlnGt
 − 0.317
(0.322)

Constant  − 0.001*  − 0.001  − 0.001
(0.001) (0.001) (0.001)

Observations 575 575 575
R squared 0.569 0.572 0.572
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previous six recessions overall is not statistically significantly different from zero. There 
are two possible explanations for these results. The first possibility is that carbon emis-
sions do not have an asymmetric response prior to 2020. Alternatively, CO2 emissions 
respond asymmetrically during some recessions and symmetrically or even in the oppo-
site direction in others, the effects offsetting each other.

To investigate which is the case, in Column 2, we compare the GDP elasticity of 
carbon emissions in expansions to that in each of the seven individual recessions from 
1973 to 2020. The results show that along with the 2020–recession, in the 1973–1975 
recession, 1980 recession, and 1990–1991 recession, the elasticity of carbon emissions 
with respect to changes in GDP was significantly larger than in expansions. The differ-
ence is statistically significant at the 5% level for the 1973–1975 recession and signifi-
cant at the 1% level for the 1980 and 1990–1991 recessions. This is interesting because 
these past recessions are associated with negative oil supply shocks, while the 2020 
recession is associated with a negative oil demand shock because of the sudden out-
break of the pandemic. The GDP elasticity of emissions in the other three recessions is 
not significantly greater than the elasticity in expansions, and the sign of the estimated 
coefficient is even negative in two of the recessions (1981–1982 and 2001).

In Column 3, we pool recessions into two groups using Eq. (7). We find a highly sta-
tistically significant difference of 1.36 between the elasticity for the four recessions we 
associated with oil market shocks and the elasticity in expansions. The difference between 
the elasticity in the other three recessions and in expansions is not statistically significant.

5.3 � Impacts of oil crises

The results in Table 3 suggest that the asymmetric relationship between growth and carbon 
emissions in some recessions compared to expansions is likely associated with negative oil 

Table 4   Adding fossil fuel consumption to the asymmetric model

Dependent variable: ΔlnC
t
 . Variable names as in the text. Newey–West standard errors with 12 lags in 

parentheses. First differences of heating degree days and cooling degree days also included in all regres-
sions. ***Significant at 1%, **5%, and *10% significance levels

(1) (2) (3) (4) (5)

ΔlnGt 0.592*** 0.508*** 0.298** 0.542*** 0.214*
(0.145) (0.128) (0.119) (0.134) (0.120)

DR
t
ΔlnGt 1.238***  − 0.187 1.530*** 1.133*** 0.048

(0.268) (0.162) (0.237) (0.276) (0.109)
Oil consumption 0.488*** 0.467***

(0.027) (0.014)
Coal consumption 0.297*** 0.261***

(0.032) (0.020)
Natural gas consumption 0.297*** 0.230***

(0.017) (0.009)
Constant  − 0.001  − 0.001**  − 0.000  − 0.001*  − 0.000

(0.001) (0.000) (0.000) (0.000) (0.000)
R-squared 0.567 0.727 0.684 0.729 0.949
Observations 575 575 575 575 575
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market shocks. In Table 4, we examine whether changes in oil use explain this asymmetry 
by including log oil consumption in the models we have estimated up to this point. As the 
use of other energy also declines during recessions, we also test whether log coal and natu-
ral gas use are responsible for the asymmetry.

Column 1 in Table 4 (identical to Column 5 in Table 2) is our baseline model that com-
pares carbon emissions during recessions and expansions. Columns 2–5 demonstrate how 
oil and other fossil fuel use variables affect this relationship. In Column 2, the coefficient 
for recessions becomes negative but statistically insignificant, showing that petroleum con-
sumption changes have a significant role in creating this asymmetry. However, the results 
in Columns 3 and 4 show that the difference between recessions and booms is still highly 
significant when we add the other fossil fuel series. These results show that this asymmetry 
is mainly due to a decline in oil consumption rather than a decline in the use of other fossil 
fuels during recessions.

Table 5   Adding fossil fuel consumption to the individual recessions regression

Dependent variable: ΔlnC
t
 . Variable names as in the text. Newey–West standard errors with 12 lags in 

parentheses. First differences of heating degree days and cooling degree days also included in all regres-
sions. ***Significant at 1%, **5%, and *10% significance levels 

(1) (2) (3) (4) (5)

ΔlnGt 0.608*** 0.501*** 0.325*** 0.576*** 0.233**
(0.147) (0.133) (0.118) (0.135) (0.116)

D1973−5
t

ΔlnGt
1.663** 0.345 1.513** 0.694  − 0.486*
(0.824) (0.526) (0.692) (0.686) (0.265)

D1980
t

ΔlnGt
1.016*** 0.365 0.903*** 0.313  − 0.254
(0.328) (0.284) (0.246) (0.324) (0.194)

D1981−2
t

ΔlnGt
 − 0.614**  − 1.109***  − 0.148  − 0.659**  − 0.714***
(0.294) (0.322) (0.235) (0.273) (0.188)

D1990−1
t

ΔlnGt
1.944*** 0.076 2.237*** 1.011***  − 0.314
(0.400) (0.701) (0.260) (0.308) (0.312)

D2001
t

ΔlnGt
 − 1.287  − 1.341  − 0.853 0.806 0.671
(0.951) (0.866) (0.816) (0.718) (0.490)

D2008−9
t

ΔlnGt
0.079  − 0.265 0.027 0.339  − 0.092
(0.438) (0.278) (0.438) (0.391) (0.187)

D2020
t

ΔlnGt
1.367***  − 0.162 1.688*** 1.266*** 0.106
(0.184) (0.156) (0.170) (0.192) (0.145)

Oil consumption 0.486*** 0.465***
(0.028) (0.014)

Coal consumption 0.298*** 0.261***
(0.032) (0.020)

Natural gas consumption 0.297*** 0.231***
(0.018) (0.009)

Constant  − 0.001  − 0.001**  − 0.000  − 0.001**  − 0.001*
(0.001) (0.000) (0.000) (0.001) (0.000)

R-squared 0.572 0.729 0.689 0.733 0.950
Observations 575 575 575 575 575
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In Table 5, we investigate the effect of oil and other fossil fuel use in each individual 
recession. When we include oil consumption, the asymmetric relationship between emis-
sions and growth is removed or weakened for the four recessions that show asymmetry in 
Column 1. This shows that asymmetric changes in petroleum consumption explain these 
asymmetries. The coal residual does not remove any of the asymmetries (Column 3). The 
natural gas residual does not remove the asymmetry in the 1990–1991 and the 2020 reces-
sions, though the asymmetry is no longer statistically significant for the 1973–1975 and 
1980 recessions (Column 4). Column (5) includes all fossil fuel use variables. These results 
are similar to those in Column (2) where we only included the oil residual. As expected, 
the R-squared for this regression is close to unity, as we are explaining changes in carbon 
emissions with changes in all three fossil fuels.

Figure  4 shows why natural gas consumption can explain the asymmetries in the 
1973–1975 and 1980 recessions. We use the Hodrick-Prescott filter to remove the long-
run trends in the variables in order to focus on the business cycle scale fluctuations.3 Oil 
use fell sharply in December 1973 and January 1974. However, gas use moved in tandem 
with oil use. In the remainder of 1974 and in 1975, gas use tracked the use of oil relatively 
closely. Throughout this period the price of natural gas rose fairly smoothly, and gas use 
fell. Coal use was much more stable. However, the big move down in gas use does seem to 
be initiated by the oil crisis as it happens at exactly the same time. In 1980, we see that oil 
use tracks GDP quite well, though moving more than GDP. In fact, oil use was falling since 
early 1979 as the price of oil ramped up. Gas use spiked higher in February and March 

Fig. 4   Detrended logs of GDP, oil, and natural gas consumption 1973–1980. Recessions are marked with 
blue shading

3  We do not use these detrended variables in any of the econometric analysis. Hamilton (2018) suggests to 
instead estimate the trend component by regressing yt+h on the four most recent values of y at time t, where 
h = 24 for monthly data. Because our data start in January 1973, and we want to investigate the oil price 
shock in that year that would not work in our case.
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1980. The reversal of that spike in the following months means that gas use followed the 
path of oil to some degree over the subsequent recession months, but gas use simply fluc-
tuates over the broader period around the recession. Therefore, we argue that these asym-
metries are primarily associated with large falls in oil use, which in 1973–1975 was also 
mirrored by the change in gas use and in 1980 was accidentally mirrored by gas use for a 
short period.

5.4 � Sectoral analysis

To investigate whether the asymmetric effects vary across sectors and to further understand 
the mechanism behind asymmetry, we apply Eq. (4) to sectoral emissions and total GDP. 
The results are shown in Table 6. The transportation and industrial sectors have statistically 
significantly greater emissions changes during recessions compared to expansions. There 
is no significant asymmetry in other sectors. Therefore, the aggregate asymmetry primarily 
comes from the transportation and industrial sectors.

The transportation and industrial sectors are the two largest end-use sectors for oil con-
sumption, accounting for approximately 94% of total petroleum consumption (66% from 
the transportation sector and 28% from the industrial sector) in 2020 (Energy Information 
Administration 2020). As only these two sectors show significant asymmetries, this fur-
ther confirms that the asymmetric relationship between carbon emissions and GDP during 
recessions and booms is primarily explained by oil.

During the COVID-19 recession, transportation was very strongly affected. This explains 
why including or excluding the 2020 COVID-19 recession from the sample in Tables 2 and 
3 changes the results. Global road transport decreased by approximately 50% compared to 
the 2019 mean level by the end of March 2020 (International Energy Agency 2020).

Table 7 shows how adding log oil consumption to the sectoral emissions regressions in 
Table 6 affects the results. Column 4 shows that transportation sector carbon emissions are 
no longer asymmetric when we add oil consumption. For the industrial sector, the asym-
metry also declines when we add oil use. Petroleum is the industrial sector’s second largest 

Table 6   Sectoral emissions-income asymmetry

Dependent variable: ΔlnC
t
 (sectoral). Carbon emissions are sectoral data, GDP is at the national level. Vari-

able names as in the text. Newey–West standard errors with 12 lags in parentheses. First differences of heat-
ing degree days and cooling degree days also included in all regressions. ***Significant at 1%, **5%, and 
*10% significance levels

(1) (2) (3) (4) (5) (6)

Residential Commercial Industrial Transportation Electric Power Total
ΔlnGt  − 0.127 0.144 0.664*** 0.556*** 0.739** 0.592***

(0.689) (0.427) (0.254) (0.160) (0.324) (0.144)
DR

t
ΔlnGt  − 1.106 0.244 1.073*** 2.798*** 0.336 1.238***

(0.671) (0.523) (0.365) (0.473) (0.381) (0.267)
Constant  − 0.001  − 0.000  − 0.001 0.000  − 0.001  − 0.001

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.455 0.394 0.083 0.470 0.525 0.567
Obs 575 575 575 575 575 575
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energy source, accounting for 42% of total fossil fuels used, while natural gas accounts 
for 53% (Energy Information Administration 2020). However, the asymmetry is not totally 
removed. Maybe there are also other mechanisms at play in the industrial sector along the 
lines of those suggested by Sheldon (2017), such as scrapping of energy intensive capital 
during downturns. This requires further research beyond the scope of this article.

In Table 8, we add the log of other fossil fuel (coal and gas combined) consumption 
to the sectoral regressions. This has almost no effect on the coefficients of the industrial 

Table 7   Adding oil consumption to sectoral emissions regressions

Dependent variable: ΔlnC
t
 (sectoral). Carbon emissions and oil residual variables use sectoral data, GDP 

is at the national level. Variable names as in text. Newey–West standard errors with 12 lags in parentheses. 
First differences of heating degree days and cooling degree days also included in all regressions. ***Signifi-
cant at 1%, **5%, and *10% significance levels

(1) (2) (3) (4) (5)

Residential Commercial Industrial Transportation Electric
ΔlnGt 0.242 0.334 0.123 0.0133 0.794**

(0.289) (0.207) (0.274) (0.015) (0.311)
DR

t
ΔlnGt  − 1.232***  − 0.028 0.786*  − 0.133*** 0.239

(0.405) (0.297) (0.404) (0.023) (0.359)
Oil consumption 0.416*** 0.328*** 0.945*** 0.998*** 0.050***

(0.033) (0.022) (0.125) (0.010) (0.009)
Constant  − 0.001  − 0.001  − 0.000  − 0.000  − 0.001

(0.001) (0.001) (0.001) (0.000) (0.001)
R squared 0.667 0.647 0.312 0.997 0.576
Obs 575 575 575 575 575

Table 8   Adding other fossil fuels consumption to sectoral emissions regressions

Dependent variable: ΔlnC
t
 (sectoral). GDP is at the national level, other variables use sectoral data. Vari-

able names as in the text. Newey–West standard errors with 12 lags in parentheses. First differences of heat-
ing degree days and cooling degree days also included in all regressions. ***Significant at 1%, **5%, and 
*10% levels

(1) (2) (3) (4) (5)

Residential Commercial Industrial Transportation Electric
ΔlnGt  − 0.106  − 0.130 0.258 0.549*** 0.280

(0.488) (0.325) (0.213) (0.159) (0.331)
DR

t
ΔlnGt  − 0.152 0.233 1.077*** 2.799*** 0.190

(0.561) (0.355) (0.354) (0.467) (0.343)
Other fossil fuels 

consumption
0.719*** 0.685*** 0.620*** 0.031** 0.841***
(0.036) (0.023) (0.050) (0.013) (0.047)

Constant  − 0.001  − 0.000  − 0.000 0.000  − 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

R squared 0.788 0.789 0.454 0.475 0.824
Observations 575 575 575 575 575
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and transportation regressions reported in Table 6. Therefore, the difference in the sectoral 
response of carbon emissions to recessions and expansions is explained by changes in oil 
use rather than by changes in the use of other fossil fuels.

We also regress changes in emissions from each individual fossil fuel on economic 
growth as shown in Table 9. Column (1) is the same as in Table 4. Economic growth has an 
asymmetric effect on emissions from oil (column 2) but not from gas (column 4), while the 
elasticity of coal emissions with respect to GDP is smaller in recessions than in expansions 
(column 3).

5.5 � Distributed‑lag specifications

For the symmetric model, both the Akaike information criterion (AIC) and Bayes-
ian information criterion (BIC) select an optimal lag length of two. For the asymmet-
ric model, the AIC chooses a lag length of four, while the BIC prefers zero lags. In 
Table 10, we report results with distributed-lag specifications of both two and four lags. 
Columns 1 and 4 show the short-run GDP elasticity of emissions for the symmetric and 
asymmetric models, repeating information presented in previous tables. Columns 2–3 
in Table  10 show the estimates of the long-run emissions elasticity of income for the 
symmetric model and Columns 4–6 for the asymmetric model. Columns 2–3 in Table 10 
show that the estimate of the long-run emissions elasticity of income using 2 lags is 1.4 
and using 4 lags is 1.5.

Column 5 shows that using a lag length of two the long-run elasticity of carbon emis-
sions with respect to GDP during expansions is unity, while the long-term GDP elastic-
ity of emissions during recessions is 1.7. With four lags, the long-run elasticity still 
equals unity in expansions and becomes 1.4 during recessions. With two lags, the differ-
ence between the elasticity during recessions and expansions is 0.7 (p value for the null 

Table 9   Emissions from individual fossil fuels

Dependent variable: ΔlnC
t
 . Variable names as in text. Newey–West standard errors with 12 lags in paren-

theses. First differences of heating degree days and cooling degree days also included in all regressions. 
***Significant at 1%, **5%, and *10% significance levels

(1) (2) (3) (4)

Emissions source Total CO2 emissions CO2 emissions 
from oil

CO2 emissions 
from coal

CO2 emis-
sions 
from gas

ΔlnGt 0.592*** 0.155 1.060** 0.152
(0.144) (0.252) (0.452) (0.217)

DR
t
ΔlnGt 1.238*** 3.356***  − 1.035** 0.384

(0.267) (0.582) (0.453) (0.285)
Constant  − 0.001 0.001  − 0.003** 0.001

(0.001) (0.001) (0.001) (0.001)
R squared 0.567 0.344 0.366 0.402
Observations 575 575 575 575
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hypothesis that there is no difference between estimates for booms and recessions is 0.005). 
But with four lags the difference is only 0.4 and is not statistically significant (p value for 
the null hypothesis that there is no difference between estimates for booms and recessions 
is 0.136). These results show that the asymmetry is most pronounced in the very short run 
and becomes smaller in the longer run.

Table 10   Distributed lag results

Dependent variable: ΔlnC
t
 . Variable names and definitions of the long-run elasticities as in the text. 

Newey–West standard errors with 12 lags in parentheses. First differences of heating degree days and cool-
ing degree days are also included in all regressions. ***Significant at 1%, **5%, and *10% significance 
levels

(1) (2) (3) (4) (5) (6)

ΔlnGt 1.199*** 2.251*** 2.273*** 0.592*** 1.612*** 1.724***
(0.191) (0.259) (0.270) (0.144) (0.536) (0.591)

ΔlnGt−1  − 1.662***  − 1.859***  − 1.485**  − 2.616***
(0.327) (0.518) (0.724) (0.838)

ΔlnGt−2 0.837*** 1.322** 0.838* 2.906***
(0.218) (0.630) (0.431) (1.045)

ΔlnGt−3  − 0.559  − 1.792*
(0.496) (0.952)

ΔlnGt−4 0.313 0.810
(0.243) (0.488)

DR
t
ΔlnGt 1.238*** 0.734* 0.707*

(0.267) (0.383) (0.408)
DR

t−1
ΔlnGt−1 0.454 0.948**

(0.320) (0.432)
DR

t−2
ΔlnGt−2  − 0.494*  − 1.171**

(0.258) (0.568)
DR

t−3
ΔlnGt−3 0.172

(0.236)
DR

t−4
ΔlnGt−4  − 0.264

(0.230)
Long-run elasticity 1.199***

(0.191)
1.425***
(0.185)

1.490***
(0.207)

Long-run elasticity: 
expansions

0.592***
(0.144)

0.966***
(0.230)

1.031***
(0.234)

Long-run elasticity: 
recessions

1.829***
(0.194)

1.660***
(0.190)

1.424**
(0.237)

Difference in 
elasticity between 
recessions and 
expansions

1.238***
(0.267)

0.694***
(0.245)

0.393
(0.260)

Constant  − 0.003***  − 0.003***  − 0.003***  − 0.001  − 0.002***  − 0.002***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

R squared 0.554 0.568 0.574 0.567 0.577 0.588
Observations 575 573 571 575 575 571
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6 � Conclusions

We have presented new evidence on the asymmetric relationship between CO2 emissions 
and changes in GDP during recessions and economic expansions. On average, carbon emis-
sions change faster relative to GDP in recessions than in expansions. However, comparing 
individual US recessions since 1973, during the 1973–1975, 1980, 1990–1991, and 2020 
recessions, the elasticity of carbon emissions with respect to GDP is significantly different 
from that in expansions, while we do not find a statistically significant asymmetric relation-
ship for other recessions. The earlier three recessions with asymmetric effects (1973–1975, 
1980, and 1990–1991 recessions) are associated with negative oil supply shocks, while the 
2020 recession is associated with a negative oil demand shock. Controlling for changes in 
oil use removes this asymmetry. Controlling similarly for coal does not. Controlling for 
natural gas use removes the asymmetry in 1973–1975 and 1980. In 1973–1975, gas use 
tracks oil use very closely. They both fall sharply when the oil crisis hits. In 1980, the 
recession was much shorter, and we argue that gas and oil accidentally appear to track each 
other during these few months.

The changes in sectoral emissions in association with changes in GDP vary. The trans-
portation and industrial sectors show significantly asymmetric carbon emissions changes 
during economic contractions compared to expansions while the other sectors do not. These 
two sectors are also key oil consumers compared to other sectors, accounting for approx-
imately 94% of total petroleum consumption in 2020. We also show that only emissions 
from oil use have a larger elasticity with respect to GDP in recessions than in expansions. 
These findings suggest that it is negative oil market shocks rather than recessions per se that 
result in higher GDP elasticities of emissions in some recessions. However, the asymmetry 
in industrial sector emissions does not appear to be entirely explained by changes in oil use 
that are not correlated with GDP. Further research is needed to find the mechanism respon-
sible. As mentioned above, perhaps this is due to scrapping of less efficient physical assets 
in recessions. Additionally, elevated oil prices may prompt private households and transport 
companies to transition from older vehicles to more energy-efficient models.

We also estimate a distributed lag specification. With two lags, the difference between 
the elasticity in recessions and expansions is smaller but is still statistically significant, 
while adding further lags results in a statistically insignificant asymmetry. Therefore, 
asymmetry is most pronounced in the short run.

Kilian (2009) decomposed changes in the global price of oil and oil production, and a 
measure of global economic activity into the contributions of demand, supply, and oil mar-
ket specific shocks. If this model were expanded to include a US oil consumption variable 
and take into account the debate on such models (Baumeister and Hamilton 2019; Kilian 
2022), the effect of such shocks in generating asymmetric changes in carbon dioxide emis-
sions could be investigated. However, such a study is beyond the scope of the current paper.

Because the asymmetric changes in emissions are mostly associated with negative oil 
market shocks, we should not expect all future recessions to have outsize effects on emis-
sions. We predict that asymmetry would be less important in countries where oil use and 
transport play a smaller role in the economy than they do in the USA. Sheldon (2017) used 
a simulation to show that asymmetric business cycle fluctuations in emissions could signifi-
cantly reduce projected emissions used to estimate both future greenhouse gas concentra-
tions and the cost of climate policies. Counter to Sheldon (2017), we expect a small and 
decreasing role for asymmetry in the long-run path of carbon emissions relevant to climate 
change unless there are major oil market shocks in the future. If transportation shifts to 
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electric power, oil shocks should become quickly less important in predicting the path of 
carbon emissions. On the other hand, in the near term, understanding how emissions change 
with the business cycle and oil market shocks should be important in explaining the short-
term trend in carbon emissions and determining when and whether emissions have peaked. 
Carbon emissions appear to have already peaked in the USA, but our research should be 
extended to other countries for this purpose. The steep fall in carbon emissions during the 
COVID-19 pandemic turned out to not be the global peak in carbon emissions despite talk 
of “growing back greener” (Taherzadeh 2021). The sharp reduction in emissions in 2020 
was merely due to reduced transportation during the pandemic rather than a fundamental 
shift to a greener economy. Similarly, Chen et al.’s (2022) projection that China’s emissions 
would peak before 2026 now seems less likely to be realized, as emissions are currently ris-
ing faster in China than immediately before the pandemic (Ahmed and Stern 2023).

Appendix

Data Sources.
Main Regressions

Carbon dioxide (CO2) emissions: Carbon dioxide emissions from primary fuels includ-
ing coal, natural gas, and petroleum (aviation gasoline, distillate fuel oil, petroleum coke, 
motor gasoline, etc.). Unit: Million metric tons. Source: Table 11.1 in EIA Monthly Energy 
Review (Energy Information Administration 2020). Monthly data on energy and carbon 
dioxide emissions data are available at: https://​www.​eia.​gov/​total​energy/​data/​month​ly/​
index.​php

Gross domestic product (GDP): Monthly GDP data are derived from the Brave-Butters-
Kelley Indexes (BBKI), which were published by the Federal Reserve Bank of Chicago 
(Brave et al. 2019):

https://​www.​chica​gofed.​org/​publi​catio​ns/​bbki/​index.
The series has been continued by the Indiana Business Research Center at the Kelley 

School of Business at Indiana University:
https://​fred.​stlou​isfed.​org/​series/​BBKQL​EIX
The estimates are based on a factor analysis of quarterly GDP growth a panel of 490 

monthly measures. The source provides the monthly growth rate at an annualized rate, we 
divide the annualized growth rate by twelve to convert it to the real monthly rate.

Petroleum consumption: Monthly petroleum consumption data are provided by the EIA. 
They are given as sectoral petroleum consumption (Table 3.7a Residential and commer-
cial sectors, 3.7b Industrial sector, 3.7c Transportation and electric power sectors in EIA 
Monthly Energy Review). Unit: Quadrillion BTU.

Natural gas consumption: Monthly natural gas consumption data are provided by the 
EIA. They are given as sectoral natural gas consumption (Table 4.3 Consumption by sector 
in EIA Monthly Energy Review). Unit: Quadrillion BTU.

Coal consumption: Monthly coal consumption data are provided by the EIA. They are 
given as sectoral coal consumption (Table  6.2 Consumption by sector in EIA Monthly 
Energy Review). Unit: Quadrillion BTU.

Sectoral CO2 emissions: Sectoral carbon emissions by major source, including residen-
tial, commercial, industrial, transportation, electric power sectors. Unit: Million metric 
tons of carbon dioxide. Source: Tables 11.2–11.6 in EIA Monthly Energy Review.
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Heating degree days: A day’s heating degree days is measured by the number of degrees 
the daily average temperature is below 65 degrees Fahrenheit (°F). The monthly popula-
tion-weighted heating degree days data are provided by EIA (Table 1.10 Heating degree-
days by Census division).

Cooling degree days: A day’s cooling degree days is measured by the number of degrees 
the daily average temperature is above 65 degrees Fahrenheit (°F). The monthly popula-
tion-weighted cooling degree days data are provided by EIA (Table 1.11 Cooling degree-
days by Census division).
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