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Abstract
The accelerating pace of climate-induced stress to global ecosystems threatens the sus-
tainable management and conservation of biodiversity. To effectively respond, researchers 
and managers require rapid vulnerability assessment tools that can be readily implemented 
using diverse and existing knowledge sources. Here we demonstrate the application of 
multi-criteria analysis (MCA) for this purpose using a group of coastal-pelagic fishes from 
south-eastern Australia as a case-study. We show that MCA has the capacity to formally 
structure diverse knowledge sources, ranging from peer-reviewed information (which 
informed 29.2% of criteria among models) to expert knowledge (which informed 22.6% 
of criteria among models), to quantify the sensitivity of species to biophysical conditions. 
By integrating MCA models with spatial climate data over historical and future periods, 
we demonstrate the application of MCA for rapidly assessing the vulnerability of marine 
species to climate change. Spatial analyses revealed an apparent trend among case-study 
species towards increasing or stable vulnerability to projected climate change throughout 
the northern (i.e. equatorward) extent of the study domain and the emergence of climate 
refugia throughout southern (i.e. poleward) regions. Results from projections using the 
MCA method were consistent with past analyses of the redistribution of suitable habitat 
for coastal-pelagic fishes off eastern Australia under climate change. By demonstrating the 
value of MCA for rapidly assessing the vulnerability of marine species to climate change, 
we highlight the opportunity to develop user-friendly software infrastructures integrated 
with marine climate projection data to support the interdisciplinary application of this 
method.

Keywords Adaptation · Climate change · Habitat suitability · Multi-criteria analysis · 
Range shift

1 Introduction

Climate change is rapidly altering environmental conditions that have historically charac-
terised natural systems (IPCC 2019), with subsequent biological responses ranging from 
species redistributions to altered food web dynamics (Du Pontavice et  al. 2020; Gervais 
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et al. 2021; Pecl et al. 2017; Pinsky et al. 2019). For both marine and terrestrial systems, 
projections indicate that the rate and magnitude of these changes will continue to increase 
through the remainder of the twenty-first century (Johnson and Watson 2021; Reboita 
et al. 2022; Smith et al. 2022). These changes present considerable challenges for the con-
servation, harvest and sustainable management of biodiversity (Bonebrake et  al. 2018). 
Assessments of the contemporary and future vulnerability of species to climate change are 
a necessary precursor to the development of adaptation strategies capable of minimising 
negative impacts and capitalising on emerging opportunities (Champion et al. 2022; Hare 
et al. 2016; Hobday et al. 2016a; McClure et al. 2023).

Climate change vulnerability assessments of species often require considerable time 
to develop (e.g. multiple years for a single species) and rely on the availability of spe-
cific datasets and specialist analytical expertise to parametrise (Pacifici et al. 2015). These 
factors mean that species responses to climate change may outpace the production and 
delivery of vulnerability assessments and thus the ability to implement early adaptation 
interventions. Assessment methodologies capable of rapidly integrating available, and 
potentially disparate, sources of information are required to enhance the capacity of stake-
holders to understand and respond to the emerging effects of climate change (Cochrane 
et al. 2019; Pecl et al. 2014b).

Multi-criteria analysis (MCA) is a methodological framework developed to integrate the 
effects of multiple criteria on a specified outcome. MCA has been widely applied to waste 
disposal (Merkhofer et  al. 1997), real estate evaluation (Kettani et  al. 1998), decommis-
sioning of obsolete marine infrastructure (Fowler et al. 2014), forestry (Kangas and Kan-
gas 2005) and fisheries management (Mardle and Pascoe 1999). Given that MCA provides 
a structured framework capable of integrating diverse criteria and exiting data sources in 
focus group settings, it also presents a valuable approach for rapidly assessing vulnerability 
to climate change. However, MCA remains underutilised for assessing the vulnerability of 
species to climate change, particularly within marine systems where the rate and magni-
tude of climate-driven species responses are exceeding those occurring within terrestrial 
systems (Poloczanska et al. 2013).

MCA for species climate change vulnerability assessment identifies and includes crite-
ria (i.e. variables) that influence species environmental sensitivities (e.g. ocean tempera-
ture and seawater chemistry). These criteria are subsequently partitioned into categories 
by defining a climate suitability step function (e.g. ocean temperature may be partitioned 
into bins ranging from 14.01 to 16°C, 16.01 to 18°C, and so on) to reflect the influence 
of each criterion on the response of the species being assessed (e.g. environmental habi-
tat suitability and species abundance). Importantly, MCA can be informed by varied data 
sources, ranging from peer-reviewed literature to unpublished data. Expert knowledge 
(which includes indigenous knowledge) can also be drawn upon to adjust information 
inputs or to fill knowledge gaps that limit alternative climate change vulnerability assess-
ment approaches. Expert knowledge is also crucial for weighting the relative importance of 
each criterion to the overarching response being assessed. The resulting MCA structure (or 
‘MCA model’) can then be integrated with historical data or future climate projections (i.e. 
the environmental exposure component) to produce spatial assessments (Feizizadeh and 
Kienberger 2017; Store and Kangas 2001) of the vulnerability of species to climate change.

Here we demonstrate the value of MCA for rapidly assessing the vulnerability of 
marine species to climate change using diverse knowledge sources. To do so, we apply 
the approach to five harvested coastal-pelagic fishes from south-eastern Australia. This 
region is a climate change hotspot where ocean warming is occurring non-linearly at a 
rate that is between 2 and 4 times faster than the global average (Hobday and Pecl 2014; 
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Malan et al. 2021; Pecl et al. 2014a). Within this context, we specifically (1) categorise 
and quantify the diversity of knowledge sources utilised in case-study MCA models, (2) 
apply MCA to project changes to habitat suitability for each study species under future 
climate change within five marine bioregions off south-eastern Australia and (3) deter-
mine marine bioregions associated with the greatest projected climate-driven changes 
to environmental habitat suitability for each species. By doing so, we demonstrate the 
utility of MCA as a decision-support tool for climate adaptation planning in marine 
systems.

2  Methods

2.1  Case‑study species and spatial extent

Here we apply MCA to undertake a rapid climate change vulnerability assessment for 
yellowtail kingfish (Seriola lalandi; ‘kingfish’), Australian bonito (Sarda australis; 
‘bonito’), Australian spotted mackerel (Scomberomorus munroi; ‘spotted mackerel’), 
narrow-barred Spanish mackerel (Scomberomorus commerson; ‘Spanish mackerel’) and 
common dolphinfish (Coryphaena hippurus; ‘dolphinfish’). The distributions of these 
species are closely linked with dynamic oceanographic variables (Brodie et  al. 2015) 
and are undergoing poleward range extensions off eastern Australia in response to cli-
mate change (Champion et al. 2021; Champion et al. 2018).

The study extent encompassed five marine bioregions that collectively extend over 
~1000 km of south-eastern Australia’s coastal and continental shelf environments 
(Fig.  1; 28.2–38.1°S). The bioregional spatial units analysed here follow the Austral-
ian bioregionalisation framework (Interim Marine and Coastal Regionalisation for Aus-
tralia Technical Group 1998) and include Tweed–Moreton, Manning Shelf, Hawkesbury 
Shelf, Batemans Shelf and Twofold Shelf bioregions.

Fig. 1  Spatial extent of the study 
region depicting the south-east 
Australian marine bioregions 
used to assess for climate-driven 
changes to habitat suitability 
for the study species. The study 
region is underlaid with the 
change in mean summer sea 
surface temperature from 1982 
to 2018 based on 5-year means 
centred on 1984 and 2016 (see 
Table 2 for the source of his-
torical SST data). N.B. Marine 
bioregions have been extended 
offshore in this figure to aid 
visual interpretation
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2.2  Multi‑criteria analysis

MCA models were developed to quantify an index of habitat suitability ranging between 
0 (unsuitable) and 1 (optimal) for each species. These models are structured as flexible 
hierarchical decision trees that can accommodate varied biophysical factors that influence 
species habitat suitability (e.g. Fig. 2). Model structures for each species were developed 
in focus group workshops, where species experts utilised available sources of informa-
tion on the factors contributing to habitat suitability for each species, in conjunction with 
their own expert knowledge, to develop models. Experts contributing to MCAs consisted 
of ecologists and fisheries scientists who are either currently researching or have previ-
ously researched the focal species in the study region. Experts had access to current and 
historical data on stock monitoring conducted by NSW DPI Fisheries, including distribu-
tional information on catch. Prior to convening focus group workshops, a literature review 
was undertaken to collate information on known biophysical drivers of habitat suitability 
for each species. This information was collated in data sheets (Online Resource 1) that 
were supplied to species experts to further support decision-making during focus group 
workshops.

Primary criteria directly contributing to species habitat suitability were initially iden-
tified and further divided into second and tertiary variable groupings where necessary 
(e.g. Fig.  2), with primary criteria common among models being ‘structural habitat’, 
‘oceanographic drivers’ and ‘food source’. For example, oceanographic drivers of habi-
tat suitability were commonly represented by three key variables known to regulate the 
distributions of coastal-pelagic fishes (Hobday and Hartog 2014), including sea surface 
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Fig. 2  Full MCA hierarchical model developed for spotted mackerel (Scomberomorus munroi). Colours 
denote the knowledge sources that justify the inclusion of variables, their ratings and binned categories 
in the model structure. We note that this MCA is parametrised using four of the potential five knowledge 
source categories considered. Superscripts refer to the literature and data that support the model structure, 
where Champion et al. (2021)a, Begg et al. (1997)b, NSW  DPIc, Ward and Rogers (2003)d, Jackson and Pecl 
(2003)e, Pecl et al. (2004)f and Begg and Hopper (1997)g. R, ratings; W, weightings
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temperature, current velocity and sea surface height. At the base of each model struc-
ture, variables influencing habitat suitability (e.g. sea surface temperature) were parti-
tioned into bins that collectively encompass the range of environmental conditions cur-
rently experienced by each species throughout their distributions and conditions likely 
to be experienced under future climate change. Ratings ranging between 0 (unsuitable) 
and 1 (optimal) were assigned by species experts to binned categories to reflect their 
suitability for each study species. For example, thermal habitat suitability for spotted 
mackerel is known to peak between 23 and 25°C (Champion and Coleman 2021); there-
fore, this binned category of sea surface temperature was assigned a rating of 1, whereas 
sea surface temperatures < 19°C and > 29°C were assigned ratings of 0.1 to reflect the 
relatively poor suitability of these conditions for spotted mackerel (Fig. 2).

Sources of information used to justify the inclusion of variables within MCA mod-
els, their partitioning into categorial bins and the assignment of ratings to bins were 
explicitly included within model structures (e.g. Fig. 2). Five categories were used to 
classify sources of input information; ‘published literature’ (i.e. peer-reviewed studies, 
books and reports), ‘data exploration’ (i.e. unpublished data analysis or data explora-
tion), ‘expert knowledge’ (i.e. knowledge from species experts not formally captured 
in published literature), ‘modified published literature’ (i.e. information from published 
sources that was modified using knowledge from species experts) and ‘modified pub-
lished literature and data’ (i.e. information from published sources and unpublished data 
analysis that was modified using knowledge from species experts). The modification of 
published literature and/or data by species experts reflects the adjustment of information 
from alternative spatial domains or species closely related to those assessed here (see 
Online Resource 1).

Once model structures were established and ratings describing the suitability of each 
variable for the study species were applied, weightings that reflect the relative contribu-
tions of each criterion to species habitat suitability were calculated. The criteria weight-
ing process reflects that some variables have a relatively greater influence on habitat 
suitability than others. We applied the analytic hierarchy process (AHP) developed by 
Saaty (1987) to compare criteria and evaluate their relative contributions to habitat suit-
ability for each study species. AHP assigns weights to each criterion through pairwise 
assessments that determine the criteria that have the greatest influence on habitat suit-
ability and to what extent. This process was undertaken using the AHP intensity rank-
ing framework applied by Romeijn et al. (2016) (Table 1), where comparisons between 
criteria using this framework were made according to the consensus opinion of experts, 
informed by available sources of information and their own knowledge, during focus 
groups.

Intensity rankings were placed into a pairwise comparison matrix (Saaty 1987) and 
normalised by dividing each value in the matrix column by the sum of that column. 

Table 1  Pairwise comparison 
importance scores used to 
quantifying criteria weightings, 
adopted from Romeijn et al. 
(2016)

Intensity 
rating

Definition

1 Criterion X is of equal importance to criterion Y
3 Criterion X is slightly more influential than criterion Y
5 Criterion X is more influential than criterion Y
7 Criterion X is much more influential than criterion Y
9 Criterion X is extremely more influential than criterion Y
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Weights for each criterion were then calculated by taking the mean of each matrix row, 
which are absolute values ranging between 0 and 1 that add up to 1 when summed 
across one criteria level.

Given a key objective of our analysis was to produce spatial predictions of species habi-
tat suitability, models including variables for which spatial data layers are not available over 
historical or future projection periods were reduced to contain only variables associated 
with available spatial data. This was done by removing variables that could not be spatially 
estimated (e.g. food sources over historical and future projection periods and chlorophyll-a 
concentration in seawater over the future projection period) and recalculating weightings 
using the original intensity rankings derived from pairwise comparisons between only the 
retained variables. Full models containing all variables originally included in models for 
each species and reduced (i.e. finalised) models used to create spatial predictions of habi-
tat suitability are presented in Online Resource 2. Habitat suitability maps were generated 
using raster reclassification to transform environmental data within each grid cell accord-
ing to the defined ratings parameters associated with each variable, followed by weighted 
linear combination analysis to sum model variables according to their assigned weightings.

2.3  Historical spatial analysis

Finalised models were used to create historical spatial predictions of species habitat suit-
ability at a seasonal temporal resolution over the 20-year period encompassing 1993–2012 
using data sourced from the Copernicus Marine Environment Monitoring Service and the 
General Bathymetric Chart of the Oceans (Table 2). The temporal extent of historical spa-
tial analyses was determined by the lack of available sea surface height and current strength 
data prior to 1993 and recommendations (e.g. Darbyshire et al. 2022) that climate impact 
analyses standardise the length of historical baseline and future projections periods (herein 
we use 20-year historical and future periods). Seasonal spatial predictions were averaged 
over the historical period to provide a baseline from which to examine the direction and 
magnitude of climate-driven changes to species habitat suitability.

Historical spatial predictions were also used to assess the accuracy of finalised MCA 
models. This involved a three-step model validation process. Firstly, a qualitative assess-
ment was undertaken by asking species experts involved in focus group workshops whether 
the predicted seasonal distributions of habitat suitability accurately aligned with their 
understanding of the realised seasonal distribution of each study species. Secondly, an 
assessment of MCA model accuracy was undertaken by comparing habitat suitability val-
ues predicted at known occurrence locations of each study species with habitat suitability 
values predicted at a randomly generated sample of pseudo-absences. To do so, a sample 
of 100 species occurrence records over the historical analysis period were extracted for 
each season from the New South Wales Department of Primary Industries gamefish tag-
ging database (NSW DPI 2019). This government administered citizen science database 
contains a large set of occurrence records for numerous coastal-pelagic fishes, represent-
ing a valuable resource for comparing predicted and realised species distributions. Finally, 
we utilised the Bhattacharyya coefficient (Aherne et  al. 1998) to quantify the similarity 
between the frequency distributions of habitat suitability values predicted at known species 
occurrences and at randomly sampled points throughout the study area. The Bhattacha-
ryya coefficient is a valuable metric for this analysis (e.g. Johnson and Watson 2021) as 
it measures the degree of overlap between two frequency distributions on a scale ranging 
between 0 and 1, where a value of 1 indicates that the two distributions are identical (i.e., 
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the MCA could not differentiate between known occurrences and pseudo-absences), while 
a value of 0 indicates that the two distributions have no overlap (i.e., complete discrimi-
nation between known occurrences and pseudo-absences). Therefore, smaller coefficients 
are indicative of higher model accuracy. For further validation, we replicated this process 
across two 10-year historical periods (1993–2002 and 2003–2012) to ensure that model 
accuracy was comparable between periods. This was undertaken because a fundamental 
objective of our study was to utilise MCA to project habitat suitability for a future period; 
therefore, Bhattacharyya coefficients that are consistently low across multiple validation 
periods provide additional evidence of model accuracy.

2.4  Future spatial projections

Future spatial projections were centred on a 2050-future (2040–2059 period) as this hori-
zon provides sufficient lead-time for strategic long-term climate adaptation planning in 
marine systems (Hobday et al. 2016b). Climate data required to support future projections 
of species habitat suitability were obtained from five global climate models (GCMs) forced 
under RCP4.5 and 8.5 emissions scenarios from the Coupled Model Intercomparison Pro-
ject (CMIP5; Table 3).

The coarse spatial resolution of GCM data (~1°) challenges its utility for projecting spe-
cies responses to climate change (Drenkard et al. 2021). Therefore, we applied the delta 
‘change-factor’ method (e.g. Morley et al. 2018; Navarro-Racines et al. 2020; von Ham-
merstein et  al. 2022) to downscale sea surface temperature, sea surface height and eddy 
kinetic energy data to a common 0.05° spatial resolution throughout study region. Delta 
downscaling was selected as it has proven utility for providing high-resolution mean cli-
mate conditions over decadal time periods for climate impact studies (Navarro-Racines 
et al. 2020). Furthermore, the addition of delta values to observed data incorporates an ele-
ment of model bias correction since the high-resolution observed data contains empirical 
information on small-scale variations that are factored into the final product (Pourmokhtar-
ian et al. 2016).

The delta downscaling process involved (1) remapping the curvilinear source GCM 
data to a global 1° rectilinear grid using the second-order conservative algorithm (remap-
con2) in Climate Data Operators (Schulzweida 2021), (2) infilling missing data adjacent 
to the continental coast for datasets describing zonal (U) and meridional (V) flows using 
thin plated splines interpolation in R (R Core Team 2022), (3) calculating the difference 

Table 3  Details of GCMs (CMIP5) downscaled (0.05°) to support projections of species habitat suitability 
off south-eastern Australia. Variables downscaled from each model include sea surface temperature, sea 
surface height and eddy kinetic energy [derived from zonal (U) and meridional (V) flows] under RCP4.5 
and 8.5 emissions scenarios

Model Institution Native ocean 
resolution (°)

ACCESS1.0 CSIRO-BOM, Australia 1.0×1.0
CNRM-CM5 CNRM-CERFACS, France 1.0×0.8
GFDL-ESM2M NOAA, GFDL, USA 1.0×1.0
HadGEM2-CC MOHC, UK 1.0×1.0
MIROC5 JAMSTEC, Japan 1.6×1.4



Climatic Change (2023) 176:99 

1 3

Page 9 of 20 99

(i.e. delta value) between seasonally aggregated data for the period 2040–2059 and a mod-
elled historical baseline period encompassing 1993–2012 for each variable, GCM and RCP 
scenario, (4) disaggregating delta value matrices from their native model resolution (~1°) 
to the finer resolution of observed ocean data (i.e. 0.05°) using bilinear interpolation and 
(5) adding delta values to an observed seasonal climatology for each variable that encom-
passed the period 1993–2012 (Table 2). This method produced seasonally-explicit future 
ocean data downscaled to a common 0.05° resolution for the period 2040–2059 required to 
facilitate projections of species habitat suitability under climate change.

Future projections of seasonal habitat suitability were created by calculating mean habi-
tat suitability within each grid cell over the 20-year future projection period (2040–2059) 
for each GCM, then taking the median of all GCMs to estimate the overall future habi-
tat suitability for each study species. Future projections of seasonal habitat suitability for 
each species were subtracted from historical spatial predictions to quantify change between 
2002- and 2050-centred periods. This process also enabled a spatial assessment of confi-
dence in projected changes throughout the study extent by comparing levels change with 
variability among habitat suitability projections created using different GCMs. We utilised 
a categorical (i.e. high, medium and low) confidence scale derived from the ratio between 
change in habitat suitability from historical to future periods and the standard deviation 
(SD) of future habitat suitability values calculated among GCMs. For example, high levels 
of projected change in habitat suitability that are consistent among GCMs (therefore asso-
ciated with low SD) are associated with high confidence, while levels of projected change 
that are similar to or exceeded by their associated SD among GCMs are associated with 
low to moderate confidence. Specifically, a change/SD ratio between 0 and <1 is classed as 
low confidence, between 1 and <2 is classed as moderate confidence and >2 is classed as 
high confidence. Instances where both the change and SD are 0 (i.e. a ratio of 0) are also 
classed as high confidence.

Spatial calculation of historical and future habitat suitability from climate data using 
finalised MCA models was implemented in R (R Core Team 2022). Calculations were per-
formed using the raster, terra, sp and rgeos R packages (Bivand et al. 2017; Hijmans et al. 
2015; Hijmans et al. 2022; Pebesma and Bivand 2005) and figures were produced using 
the ggplot2 and rasterVis packages (Lamigueiro and Hijmans 2022; Wickham et al. 2016).

3  Results

3.1  MCA models

Of the primary criteria included in MCA models, ‘oceanographic drivers’ were consist-
ently associated with the greatest relative importance to habitat suitability for all species. 
For example, weightings applied to oceanographic drivers of habitat suitability ranged 
between 0.72 and 0.80 among full models, whereas weightings for structural habitat and 
food sources both ranged between 0.08 and 0.20. Sea surface temperature was consistently 
associated with the highest weighting values among oceanographic drivers of habitat suit-
ability for each study species (0.63–0.70).

Of the criteria included in full models for all study species (e.g. Fig. 2; Online Resource 
2), on average 34.2% of these were justified using ‘modified published literature’, 
29.2% were justified using ‘published literature’ and 22.6% were justified using ‘expert 
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knowledge’, whereas ‘modified published literature and data’ (9.2%) and ‘data exploration’ 
(4.8%) were relied on to justify the inclusion of relatively fewer criteria within models.

3.2  Spatial analyses

Projected change in habitat suitability between historical and future periods revealed a 
trend towards increasing suitability for some species with southern (i.e. poleward) biore-
gions and declining suitability within northern (i.e. equatorward) bioregions (Fig.  3; 
Table 4). For example, habitat suitability is projected to increase between historical and 
future periods for all study species in at least one season of the year within the Batemans 
Shelf and Twofold Shelf bioregions (Fig. 3). However, projected increases in species habi-
tat suitability within these bioregions remain minimal (i.e. change of between 0.1 and 0.2 
units) to moderate (i.e. change of between 0.2 and 0.4 units). Within northern bioregions 
(i.e. Tweed-Moreton and Manning Shelf), minimal negative change to habitat suitability 
is projected for dolphinfish, bonito and kingfish during the warmer summer and autumn 
periods (Table 4).

Despite some evidence for latitudinal trends in projected change to habitat suitability, 
their direction and magnitude generally varied among species and bioregions (Table  4). 
For example, minimal negative change to habitat suitability for bonito and dolphinfish dur-
ing summer is projected for the northernmost Tweed-Moreton bioregion, while negligible 
change (i.e. change of < 0.1 units) was apparent for Spanish and spotted mackerel within 
this season and bioregion.

MCA models consistently predicted higher habitat suitability in locations where spe-
cies are known to have occurred relative to values corresponding to randomly distributed 
locations throughout the study extent (Fig.  4). Bhattacharyya coefficients evaluating the 

Fig. 3  Projected summer (DJF) habitat suitability for spotted mackerel (Scomberomorus munroi) through-
out the study extent: a mean historical habitat suitability (1993–2012), b future habitat suitability [i.e. 
median of five GCMs (2040–2059)] under (i) RCP4.5 and (ii) RCP8.5, c change in habitat suitability 
between future and historical periods under (i) RCP4.5 and (ii) RCP8.5 and d confidence in change in habi-
tat suitability under (i) RCP4.5 and (ii) RCP8.5. Study bioregions are annotated in the top-left panel, which 
include the Tweed-Moreton (TMB), Manning Shelf (MSB), Hawkesbury Shelf (HSB), Batemans Shelf 
(BSB) and Twofold Shelf (TFB) bioregions
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similarly between habitat suitability values corresponding to known species occurrences 
and pseudo-absence data were < 0.1 for all species and seasons (Fig. 5). This result was 
consistent between both historical time periods analysed (Fig. 5). Focus group experts also 
agreed that the historical spatial distribution of predicted habitat suitability aligned with 
their understanding of the realised seasonal distribution of each study species.

4  Discussion

To respond to the increasing rate and magnitude of climate-driven changes within natu-
ral systems, researchers and managers require rapid vulnerability assessment method-
ologies that can be readily implemented using existing knowledge. Here we demon-
strate the application of multi-criteria analysis (MCA) for this purpose using a group 
of coastal-pelagic fishes off south-eastern Australia as a case study. We show that MCA 
has the capacity to formally structure diverse knowledge sources, ranging from peer-
reviewed information to expert knowledge, to inform the sensitivity of species to bio-
physical ocean conditions. By integrating MCA models with spatial environmental data 
over historical and future periods, we further demonstrate the application of MCA for 
quantifying changes to species habitat suitability under climate change. This approach 
facilitates an assessment of the relative vulnerability of species to climate change 

Fig. 4  Boxplots showing the distribution of seasonally-explicit (southern hemisphere) habitat suitability 
values predicted at known locations of species occurrence (n = 100; blue data) and at a set of pseudo-
absences randomly distributed throughout the study extent (n = 100; grey data). Habitat suitability predic-
tions at occurrence and pseudo-absence locations were produced using the finalised MCA models for a 
kingfish (Seriola lalandi), b bonito (Sarda australis), c spotted mackerel (Scomberomorus munroi), d Span-
ish mackerel (Scomberomorus commerson) and e dolphinfish (Coryphaena hippurus). The historical period 
analysed encompasses 1993–2012
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within defined spatial domains, where species projected to experience relatively greater 
declines in habitat suitability are associated with higher vulnerability.

Coupling our MCA models with spatial climate projection data facilitated analysis of 
the likely vulnerability of species to future climate change. Here we utilised a 2050-cen-
tred future period to produce results that are associated with sufficient lead-time for 
strategic climate adaptation planning. However, MCA may be applied to assess species 
climate vulnerability at lead-times ranging from seasonal (i.e. weeks to months) to end-
of-century scales and can therefore support both short- and long-term decision-making 
(Hobday et  al. 2016b). Short-term decisions that MCA models could support include 
the timing and location of quota managed fishing and the deployment fish aggregation 
devices, while long-term decisions may include the design of marine protected areas.

We utilised MCA to assess for changes in species habitat suitability given the broad 
application of this response within studies using correlative species distribution mod-
els (SDM) to project climate change impacts (Melo-Merino et  al. 2020). Importantly, 
results from projections using the MCA method applied here are consistent with analy-
ses undertaken using correlative SDM showing that the distribution of suitable habitat 
for coastal-pelagic fishes off eastern Australia is seasonally dynamic (Brodie et al. 2015) 
and undergoing a poleward expansion in response to climate change (Champion et al. 
2022; Hobday 2010; Robinson et  al. 2015). It is reasonable to expect projections of 
habitat suitability made using SDM and MCA should produce results that are generally 
consistent, provided both models are associated with good predictive skill. However, it 
should not be assumed that projections from both approaches are directly comparable 

Fig. 5  Bhattacharyya coefficients evaluating the degree of overlap between the distributions of habitat suit-
ability values predicted at known species occurrence locations and at a sample of pseudo-absences ran-
domly distributed throughout the study extent. Results are presented for two historical periods, where 
period 1 encompasses 1993–2002 and period 2 encompasses 2003–2012. A sample of 50 occurrences and 
50 pseudo-absences were assessed for each species within each period. Bhattacharyya coefficients range 
between 0 and 1 and smaller values are indicative of greater dissimilarity
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even if they contain common predictor variables (e.g. environment-only factors). This 
is because the MCA approach incorporates flexibility for modifying species responses 
to variables using a diversity of knowledge sources, whereas projections using correla-
tive SDM are commonly driven by statistical relationships between species occurrence 
data and prevailing environmental conditions (Elith and Leathwick 2009). For example, 
the ‘oceanographic drivers’ component of our analyses was informed by ‘published lit-
erature’ (including results from environment-only SDM), and also ‘modified published 
literature’ and ‘expert knowledge’ (e.g. Figure  2; Online Resources 2), whereas these 
responses within an environment-only SDM would be informed solely by correlative 
relationships. The ability to incorporate modified data sources into MCA is likely to be 
advantageous when occurrence data available for training correlative SDM are not rep-
resentative of species’ realised distributions or are spatiotemporally biased.

MCA for rapid climate change vulnerability assessments have the advantage of being 
readily adapted to assess diverse responses (e.g. abundance and condition). For exam-
ple, MCA models may be developed to assess the vulnerability of various life history 
characteristics (e.g. growth or fecundity) to climate change. Doing so would involve 
specifically parametrising model criteria to reflect the optimal biophysical conditions 
required to support the overarching response being assessed. This flexibility also pro-
vides opportunities for the development of demographically-explicit MCA models that 
capture variation in a species response to environmental conditions across different life 
stages (Brook et al. 2009). For marine species associated with high commercial or con-
servation value, it may be pragmatic to develop multiple MCA models that evaluate 
climate vulnerability for different life stages and life history characteristics to identify 
life cycle components that are most vulnerable to climate change. Furthermore, MCA 
does not require practitioners to have expertise in quantitative modelling approaches for 
climate impact assessments (e.g. SDM). This model trait has the potential to facilitate 
broad uptake of MCA for climate vulnerability assessments within management and 
policy spheres.

Over the past decade, a considerable number of climate change vulnerability assess-
ments have been undertaken for marine species using a method developed by the United 
States National Oceanic and Atmospheric Administration (NOAA CVA method; Gid-
dens et  al. 2022; Hare et  al. 2016; McClure et  al. 2023; Spencer et  al. 2019). This 
method, like MCA, integrates the exposure and sensitivity of species to climate change 
to evaluate vulnerability and can be informed by diverse sources of information, includ-
ing expert knowledge. However, the NOAA CVA evaluates species sensitivity to envi-
ronmental change using a trait-based framework (Spencer et al. 2019), whereas MCA is 
more related to correlative vulnerability assessments (Foden et al. 2019). Subsequently, 
the NOAA CVA approach has the advantage of producing a single assessment of spe-
cies vulnerability encompassing species multiple life-history stages (e.g. Hare et  al. 
2016). This trait-based approach necessitates that both exposure and sensitivity compo-
nents of the analysis are estimated categorically (i.e. high, medium and low), ultimately 
producing a categorical assessment of climate vulnerability (e.g. McClure et al. 2023). 
In contrast, the MCA method applied here has the advantage of producing estimates of 
vulnerability (herein change in habitat suitability) on a continuous response scale that 
can be spatially projected, with associated variation, throughout a study domain. This 
ability to project species vulnerability indices spatially is crucial for identifying climate 
refugia for species (e.g. Davis et al. 2021), particularly when future climate data have 
been downscaled to finer spatial resolutions, as demonstrated in this study.
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5  Conclusion

Given the accelerating pace of climate-induced stress to global marine ecosystems (Henson 
et al. 2017), there is a growing need to operationalise rapid vulnerability assessment tools to 
facilitate their widespread application to marine species by researchers and managers. Software 
infrastructures incorporating accessible graphical user interfaces that enable rapid vulnerability 
assessments for marine species can support this need, particularly when these are applied ‘live’ 
in focus group settings that elicit expert knowledge. Packages developed in the R statistical 
computing environment for applying MCA are available (e.g. the MCDA package; Bigaret et al. 
2017); however, considerable work remains to integrate these with marine spatial data layers 
to facilitate future projections. A key challenge to achieving this goal is access to application-
ready future climate projection data for marine systems at spatial and temporal resolutions that 
are appropriate for large numbers of species across discrete geographies.
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