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Abstract
As the world struggles to limit warming to 1.5 or 2 °C below pre-industrial temperatures, 
research into solar climate interventions that could temporarily offset some amount of 
greenhouse gas-driven global warming by reflecting more sunlight back out to space has 
gained prominence. These solar climate intervention techniques would aim to cool the 
Earth by injecting aerosols (tiny liquid or solid particles suspended in the atmosphere) into 
the upper atmosphere or into low-altitude marine clouds. In a new development, “cooling 
credits” are now being marketed that claim to offset a certain amount of greenhouse gas 
warming with aerosol-based cooling. The science of solar climate intervention is currently 
too uncertain and the quantification of effects insufficient for any such claims to be credible 
in the near term. More fundamentally, however, the environmental impacts of greenhouse 
gases and aerosols are too different for such credits to be an appropriate instrument for 
reducing climate risk even if scientific uncertainties were narrowed and robust monitoring 
systems put in place. While some form of commercial mechanism for solar climate inter-
vention implementation, in the event it is used, is likely, “cooling credits” are unlikely to be 
a viable climate solution, either now or in the future.

Keywords Climate risk · Climate intervention · Solar radiation modification · Stratospheric 
aerosol injection · Marine cloud brightening · Geoengineering

1 Introduction

Despite substantial progress in clean technology and increasing policy ambition, the world 
remains off track to hold warming to the Paris Agreement targets of well below 2 °C and, 
aspirationally, no greater than 1.5  °C above pre-industrial temperatures (United Nations 
Environment Programme 2022). In light of this, a growing number of scientists and advo-
cates—including the authors (Diamond et al. 2022; Wanser et al. 2022)—have called for 
expanding research into solar climate interventions that would utilize tiny solid or liquid 
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particles suspended in the atmosphere (aerosols) to reflect more sunlight away from Earth 
and thus offset some of the effects of global warming due to greenhouse gas emissions 
from fossil fuel burning and deforestation (Crutzen 2006; NASEM 2021; United Nations 
Environment Programme 2023).

Notwithstanding the relatively early state of solar climate intervention research, at least 
one company has already been founded to market “cooling credits” that purport to offset a 
given quantity of greenhouse gas emissions with the emission of aerosols or their precursor 
gases (Temple 2022). In the near term, the science of solar climate intervention is simply 
too uncertain for such credits to be meaningful market instruments. More fundamentally, 
however, many of the climatic and environmental effects of greenhouse gas emissions are 
incommensurate with those from aerosol injections. If solar climate interventions are to be 
part of society’s portfolio of responses to climate change, they must be complements to, 
not substitutes for, mitigation.1 A market approach to solar climate intervention based on 
uncoordinated “cooling credits” is not a viable climate solution now and is unlikely to ever 
be in the future.

2  Uncertain efficacy and inadequate monitoring

A conceit behind “cooling credits” is that they can serve as suitable substitutes for car-
bon credits and offsets that, at least in theory [and accounting for carbon cycle responses 
(Zickfeld et al. 2021)], reverse the harms that would have occurred due to some quantity 
of emitted greenhouse gases by compensating additional mitigation efforts elsewhere or 
procuring a drawdown and secure long-term storage of  CO2. Despite their promise, in 
practice, the widespread use of carbon offsets has thus far been inhibited by challenges to 
quantifying carbon drawdown and storage permanence supported by monitoring, reporting, 
and verification (Babiker et  al. 2022). The uncertainties associated with quantifying the 
cooling from the emission of some mass of aerosol (or precursor gas) and translating this 
to the warming from some mass of carbon are substantially larger. Indeed, estimating how 
much greenhouse gas warming has been masked by present-day aerosol pollution (largely 
via its effects on clouds) is one of the greatest uncertainties in climate science (Forster 
et al. 2021). Very similar physics and chemistry challenges apply to both understanding the 
effect of aerosol pollution today and predicting what would happen under a hypothetical 
future solar climate intervention deployment.

Stratospheric aerosol injection (SAI), in which aerosols or precursor gases would be 
added to the upper atmosphere (Budyko 1974; Crutzen 2006), would almost certainly be 
able to produce a cooling effect like that observed after large explosive volcanic eruptions 
(Hansen et al. 1992; Robock et al. 2013). However, how much material would be necessary 
to produce the desired level of global mean cooling and how this would vary by injection 
altitude, latitude, and timing remains highly uncertain (MacMartin et al. 2017; Rasch et al. 
2008; Visioni et al. 2017, 2020, 2021). The type and amount of material injected in addi-
tion to its seasonality and location would also affect potential side effects.

1  While our argument in support of this statement primarily relies on physical science aspects, we 
acknowledge that there exist important political, socioeconomic, and ethical considerations that would lead 
to the same conclusion. Our goal in this essay is to outline the physical science case against “cooling cred-
its” in a manner that is broadly compatible with different value systems. Our avoidance of some more nor-
mative arguments as out of scope should not therefore be taken as indifference or irrelevance.
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The cooling ability of marine cloud brightening (MCB), in which sea salt would be 
sprayed into low-lying clouds to make them more reflective and potentially longer last-
ing (Conover 1966; Latham 1990; Latham et al. 2012), is less certain than for SAI. Aero-
sol-driven cloud enhancements have been clearly observed in effusive volcanic eruptions 
(Chen et al. 2022; Gassó 2008; Malavelle et al. 2017; McCoy and Hartmann 2015; Toll 
et al. 2017; Yuan et al. 2011) and other “natural experiments” (Christensen et al. 2022) like 
pollution tracks from international shipping (Conover 1966; Diamond et al. 2020; Durkee 
et al. 2000; Manshausen et al. 2022; Radke et al. 1989; Russell et al. 2013) and large indus-
trial centers (Hobbs et al. 1980; Toll et al. 2019; Trofimov et al. 2020). Statistically signifi-
cant detection of regional radiation changes (Seidel et al. 2014) has been more challenging, 
however, except in ideal conditions for the particularly susceptible stratocumulus cloud 
regime (Diamond et al. 2020). Whether substantial cooling can be routinely and predict-
ably achieved in other cloud regimes and regions is a major uncertainty for assessing the 
technical feasibility of MCB (Diamond et al. 2022; Feingold et al. 2022). Questions about 
the proper size of injected particles also have major implications for the mass of aerosol 
required for a given cooling (Hoffmann and Feingold 2021; Wood 2021), and the answers 
will likely vary for clouds under different weather states. Seeding in unfavorable meteorol-
ogy can even lead to counterproductive cloud evaporation and darkening (Y.-C. Chen et al. 
2012; Coakley and Walsh 2002; Zhang and Feingold 2023).

For both SAI and MCB, major investments in monitoring would be necessary to confi-
dently detect that an intervention was working as intended (Feingold et al. 2022; NASEM 
2021). This would involve a sustained commitment to maintaining and improving the 
capabilities of a global observing and monitoring system for Earth’s radiation budget and 
atmospheric composition including, among other initiatives, expanded balloon and aircraft 
measurements of stratospheric properties and advances in retrieving cloud and aerosol 
properties from space- and ground-based sensors.

3  Incommensurate impacts of greenhouse gases and aerosols

Even if these (and many other) uncertainties are narrowed in the coming years (Wanser 
et  al. 2022), the different natures of environmental effects from increasing greenhouse 
gases and the impacts of reflecting sunlight complicate direct comparisons. Solar climate 
interventions like SAI and MCB2 work by reducing the amount of shortwave radiation from 
the sun that the Earth absorbs, whereas the greenhouse effect warms by preventing Earth’s 
longwave (“heat”) radiation from escaping out to space. As a result of this difference, 
cooling by reflecting sunlight decreases precipitation more than the same cooling from 
avoided greenhouse gas emissions (Bala et al. 2008) [see illustrative climate model results 
(Boucher et al. 2019a, b, 2020a, b; Visioni et al. 2021) in Fig. 1a, b]. A well-designed solar 
climate intervention could plausibly reduce both temperature and precipitation impacts of 

2  Although this essay focuses on SAI and MCB as the most well-studied solar climate intervention tech-
niques, other proposals exist like shading the Earth with a space-borne sunshade or increasing the reflectiv-
ity of Earth’s surface. Proposals to use aerosol injections to thin high-altitude cirrus clouds (Mitchell and 
Finnegan 2009) or polar mixed-phase clouds (Villanueva et al. 2022) are also sometimes included in discus-
sions of solar climate intervention. However, those interventions work by allowing more longwave radiation 
to escape Earth (and indeed may allow more sunlight to be absorbed, not reflected) and thus have somewhat 
different considerations than are discussed here.
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climate change simultaneously, but only by explicitly aiming not to fully offset greenhouse 
gas warming (Irvine et al. 2019; Irvine and Keith 2020). The mismatch between changing 
shortwave and longwave radiation could also alter the distribution of temperature change, 
for example, between day and night, between seasons, and between the tropics and the 
poles (Bala and Caldeira 2000; Jiang et al. 2019; Kravitz et al. 2013). The distribution of 
risks and benefits will therefore differ between mitigation and a solar climate intervention 
even for the same amount of avoided global mean warming.

Because solar climate interventions do not directly decrease the amount of  CO2 in the 
atmosphere, they are unable to substantially ameliorate ocean acidification (Fig. 1c). On 
the bright side, solar climate intervention would reduce the stressor of warming, potentially 
increasing resiliency in the face of continued acidification. But by breaking the historic 
link between global temperatures, radiation, and atmospheric  CO2, ecological systems may 
find themselves in environmental conditions for which there is no recent analogue, with as-
yet unknown consequences (Zarnetske et al. 2021).

There is also a timescale mismatch between the cooling produced by aerosol interven-
tions and warming from  CO2, which can linger in the atmosphere for hundreds to many 
thousands of years after emission. Aerosol from an SAI deployment would remain in the 
stratosphere for months to years unless replenished; sea salt from an MCB deployment 
would leave the lower atmosphere on a timescale of days. Although it is possible, on paper, 
to use accounting metrics like the “global warming potential” (Forster et  al. 2021) over 
some time period to equate long-term  CO2 warming and shorter-term aerosol cooling, their 
effects will differ in reality and there is no obvious choice for the proper metric.

In addition to the issues above that pertain to all solar climate intervention methods, 
there are also risks specific to each technique. As examples, chemical and circulation 
effects of SAI may delay recovery of the ozone hole (Haywood et al. 2022; Tilmes et al. 
2008; Tilmes        et al. 2022) and the patchiness of MCB (which can only be performed where 

Fig. 1  Example climate changes under a high greenhouse gas emissions scenario (SSP5-8.5), a lower 
greenhouse gas emissions scenario (SSP2-4.5), and a scenario in which the warming from the high green-
house gas emissions scenario is reduced to that from the lower greenhouse gas emissions scenario via strat-
ospheric aerosol injection (G6sulfur). Global mean surface temperature (a), precipitation (b), and surface 
ocean pH (c) results are shown from simulations of the Institute Pierre-Simon Laplace’s IPSL-CM6A-LR 
climate model (Boucher et al. 2019a, b, 2020a, b) for G6sulfur (solid yellow lines), in which sulfur dioxide 
is injected into the stratosphere such that global mean surface temperature is maintained at the level of 
those in SSP2-4.5 (dashed blue lines) despite actual emissions from SSP5-8.5 (dotted red lines). Changes 
are shown as departures from the SSP5-8.5 2020–2030 mean values. Even though both SAI and mitiga-
tion from SSP5-8.5 to SSP2-4.5 greenhouse gas emissions result in similar temperature evolutions (a), SAI 
overcorrects the precipitation change (b) and does not ameliorate ocean acidification (c). See Visioni et al. 
(2021) for details. Although the values shown are for only one model and scenario, any solar climate inter-
vention would produce qualitatively similar results
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the right kinds of clouds occur) could cause circulation responses with deleterious con-
sequences for precipitation in some regions (Bala et al. 2010; Hill and Ming 2012; Jones 
et al. 2009). These uncertain negative side effects, likely to vary nonlinearly with the nature 
of delivery and volume of material, mean that the risks and benefits of a solar climate 
intervention cannot be calculated simply as the sum of individual inputs. Highly coordi-
nated or centralized activity may therefore be required to minimize risks and maximize 
benefits under continually evolving environmental conditions. This would run counter to 
the idea of a marketplace of uncoordinated individual actors with incentives primarily (or 
only) tied to scale.

Thus, even if a solar climate intervention were to work exactly as its deployer intends, 
reducing sunlight will not provide a one-to-one offset of greenhouse-gas-driven climate 
change. Mainstream proposals therefore tend to conceptualize solar climate intervention 
as a temporary measure to be wound down as mitigation and carbon dioxide removal scale 
up (MacMartin et al. 2018), which would be inconsistent with the widespread adoption of 
“cooling credits” that are not tied to the drawdown of atmospheric  CO2 and may instead 
contribute to its continued rise. Although it is possible that some form of market mecha-
nism may be appropriate as part of an overall coordinated strategy—for example by linking 
shorter-term solar climate interventions and longer-term carbon dioxide removal (Lockley 
et al. 2019)—it would be imperative that the solar climate interventions complement miti-
gation and carbon dioxide removal, not substitute for them.

4  Conclusion

Solar climate interventions may one day be critical components of the broader portfolio of 
climate policies to limit damages from greenhouse gas warming. If they are, however, it 
should not be through a “cooling credit” mechanism that is unquantifiable in the medium-
term and, due to the differences between the environmental consequences of greenhouse 
gases and aerosols, fundamentally incompatible with the imperative to maximize safety 
and minimize harm. Although at least one startup has already launched (Temple 2022), 
policymakers, businesses, and individuals can deter such initiatives by sending a clear sig-
nal that there will be no business opportunity for such unsubstantiated “cooling credits” 
within carbon markets or voluntary offset initiatives now or in the future.
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