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Abstract
Parameterization and parameter tuning are central aspects of climate modeling, and there
is widespread consensus that these procedures involve certain subjective elements. Even if
the use of these subjective elements is not necessarily epistemically problematic, there is an
intuitive appeal for replacing themwithmore objective (automated)methods, such asmachine
learning. Relying on several case studies, we argue that, while machine learning techniques
may help to improve climate model parameterization in several ways, they still require expert
judgment that involves subjective elements not so different from the ones arising in standard
parameterization and tuning. The use of machine learning in parameterizations is an art as
well as a science and requires careful supervision.

Keywords Climate modeling · Parameterizations · Parameter tuning · Objectivity ·
Subjectivity · Expert judgement ·Machine learning · Deep neural networks · Gaussian
processes

1 Introduction

Machine learning applications in science are receiving more philosophical attention as they
raise significant epistemic issues, related to interpretability and understanding (see Beisbart
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and Räz 2022; Räz and Beisbart 2022 as well as references therein). Some discussions have
focused on the climate context more specifically (e.g. Jebeile et al. 2021; Knüsel and Baum-
berger 2020;Kawamleh 2021), as there is high expectation from the scientific community that
machine learning can reduce computational cost and overcome climate model uncertainty.
Another important expectation however has been overlooked by philosophers: the hope that
machine learning can alleviate the subjectivity of some parts of climate models, in particular
the parameterizations and their associated parameter tuning. In this paper, we aim to explicate
the sources of subjectivity in climate model parameterization and tuning, and subsequently
investigate whether, and how, the diverse available machine learning techniques can make
climate models more objective.

Models can represent the climate system only up to a certain spatial resolution (grid size),
due to numerical constraints and the computational cost of higher resolutions.1 The physical
laws, e.g., theNavier–Stokes equations, onwhichmodels rely, are thus discretized on a grid to
be implemented on the computer and numerically solved in manageable timeframes. There-
fore, processes such as convection (clouds), which typically occur at the sub-grid level and
are relevant to climate modeling, need to be represented using so-called parameterizations.
Parameterizations are simplified representations—also qualified as “mini-models” (Lloyd
2015,61)—of these processes based on phenomenological and theoretical considerations
(see also Guillemot 2017 andWinsberg 2018, 47-50). The phenomenological considerations
involve many parameters (hence the term ‘parameterization’), some of which are just con-
sequences of the discretization and parameterization procedures and thus do not correspond
to anything in the target system. Parameter tuning is intrinsically part of the building of
parameterizations, it is the crucial (and complex) process of adjusting the parameters to a
predefined set of observations (and for a given purpose).

Because the design of parameterizations and parameter tuning are made under high
uncertainty and are complex, they face underdetermination and leave leeway for subjective
decisions. Parameterizations have been identified as one of the main sources of uncertainty
in climate models and come with both structural uncertainty and parameter uncertainty, as
there is no unique way to parameterize sub-grid processes. Given a certain parameterization
procedure, there is not necessarily any ‘true’ value for the involved parameters, but rather
some (not necessarily unique) ‘best’ values that are adequate for given purposes (see, e.g.,
the discussion in Winsberg 2018, 47-49); the choice of parameter values in parameteriza-
tions is usually not sufficiently constrained by theory or observations. It has been highlighted
that parameterizations may be merely heuristic as opposed to being physical (e.g. Rasp et al.
2018), and that parameter tuning is carried out by experts “by hand” and in an ad hoc manner,
involving a certain degree of subjectivity (see e.g. Hourdin et al. 2017).

Recently, climate modelers have proposed to overcome this unsatisfactory situation with
the help of machine learning (ML) models. Not only could ML models improve parameter-
izations by reducing computational cost but may also help with uncertainty quantification
(e.g. Rio et al. 2019). Some climate modelers have also suggested that utilizing ML models
can reduce the subjectivity involved in parameterization and parameter tuning. Intuitively, it
seems uncontroversial that, ceteris paribus, objective methods are epistemically more valued
than subjective ones—leading to what we call ‘the quest for objectivity’.

We will critically assess the notion that utilizing ML models will make parameterizations
strictly more objective. We begin by exemplifying how traditional parameterizations and

1 The global climate models of the Coupled Model Intercomparison Project, currently in phase 6 (CMIP6),
which underlies the climate projections made in the latest assessment report AR6 of the IPCC (2021) have an
atmospheric horizontal resolution between 50 and 250km roughly (see IPCC 2021, ch. 1, fig. 1.19).
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parameter tuning are performed in practice, using the canonical example of cloud parameter-
ization (Sect. 2.1). In particular, we identify three interrelated subjective elements at play in
the use of expert judgment in parameterizations (Sect. 2.2). We then introduce a distinction
between different camps of climate modelers, depending on how far they are willing to push
the use of ML models to improve parameterizations, and examine the ML methods to be
used by the different camps (Sect. 3). What we call the “conservatives” (e.g. Schneider et al.
2017b; Couvreux et al. 2020) want to retain traditional parameterizations, but propose to
automatize parameter tuning with ML models such as Gaussian processes (Sect. 3.2). What
we call the “progressives” (e.g. Gentine et al. 2018; Rasp et al. 2018) propose to push the use
of ML models further by replacing entire parameterization modules with ML models, e.g.,
deep neural networks (DNNs) (Sect. 3.4). In both cases, we argue that the use of (different)
MLmodels introduces the need for (different kinds of) expertise.Wemaintain that the imple-
mentation of ‘objective’ and ‘automated’ machine learning techniques involves subjective
elements that are very similar to the ones arising in standard parameterization and tuning
procedures—in this sense, machine learning does not make much progress in the quest for
objectivity (which is not necessarily problematic from the epistemic point of view) (Sect. 4).
We believe thatMLmodelsmay help improve parameterizations in several ways, but they still
require expert choices and should not be considered to be objective alternatives to traditional
methods.

2 Traditional parameterizations

2.1 Overview

This section will illustrate how traditional parameterizations are usually built, with specific
attention given to the role of experts and their subjective imprint on the design of models
through expert judgment; this case will then be compared withmachine learning techniques.2

In climate models, there is a variety of parameterizations for representing microphysics,
radiation, turbulence and convection. For the sake of illustration, let us take the example of
convective parameterization. It provides crucial input to the dynamic and radiation equations
in General Circulation Models or GCMs (Rio et al. 2019), yet the various current versions of
convective (and cloud) parameterization are responsible for themost significant part of model
spread (Stevens and Bony 2013) and their development is suspected to have reached a “cloud
parameterization deadlock” (Randall et al. 2003). Atmospheric convection and its associated
clouds operate at scales (around 1km) that cannot be described explicitly in GCMs, which
currently have a coarse spatial resolution (around 10-100km). Thus, convective parame-
terization is used to account for the collective effect of cumulus clouds at the scale of the
model grid. Like any other parameterization, it is a “semi-empirical” component (Edwards
2010) and turns climate models into “hybrid models” (Katzav 2013), as it is neither purely
empirical (phenomenological) nor entirely theory-based. Historically, in the 1960s, convec-
tive parameterization was mainly phenomenological as it contained ad hoc hypotheses, i.e.,
moist convective adjustments based on observations, whose goal was to overcome numerical
instabilities (Touzé-Peiffer 2021). Later on, in the 1980s and 1990s, the majority of the con-
vective parameterizations were based on the equations of fluid dynamics and differ in their
way to decompose the atmospheric components and design the different levels of convective

2 We take experts in this context to be climate modelers, those who partake in the building and implementation
of climate models.
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organizations. The mass-flux approach, which is still predominant, represents explicitly the
convective physical processes, based on the decomposition of the atmosphere into updrafts,
downdrafts, and boundary layer. More recent developments focus on utilizing stochastic
components, the development of new prognostic equations or the inclusion of new processes
such as cold pools and mesoscale organization (between shallow and deep convective cells)
(see Rio et al. 2019).

When parameterizations takemainly the form of phenomenological laws, expert judgment
is used to infer approximate yet relevant relationships between variables of interest based on
the available observations. Thus, these parameterizations require a high degree of inductive
skills from themodelers.Whenparameterizations are theory-based laws, they encode, to some
extent, the physics of atmospheric convection and cloud formation. Here “parameterizations
summarize our understanding of physical processes and their interactions with the large-scale
flow” (Rio et al. 2019, 96). A certain number of omissions and distortions (‘idealizations’) are
made though, as parameterizations are necessarily approximate representations. Therefore,
in this case, expert judgment is used to choose those simplifying assumptions based, for
instance, on a trade-off between representational accuracy of the parameterization, i.e. its
capacity to describe properly the physical processes, on the one hand, and computational
cost of the parameterization, i.e. the computational time to perform the calculation on the
other hand. To the extent that such expert judgment is not (fully) determined by observational
data or theory, interests and values may also influence the way parameterizations are shaped
for the models to meet specific purposes. One example is the preference of representing
climate variables and phenomena that are prioritized by the modelers, e.g., variables and
phenomena relevant for the regions they live in.

Parameterization goes hand in handwith parameter tuning as the parameters in parameteri-
zations need to be adjusted. Thus, a distinction ismade between uncertainty in the formulation
of parameterization schemes, which is linked to structural uncertainty, and uncertainty in the
choice of parameter values, i.e. parameter uncertainty. Parameter tuning is actually a mix of
very different methods, which can be broadly categorized as ‘objective’ and ‘subjective’. By
objective methods, Hourdin et al. (2017, 594) mean “that a well-founded mathematical or
statistical framework is used to perform the model tuning, for instance, by defining and mini-
mizing a cost function or by introducing a Bayesian formulation of the calibration problem”.
Accordingly, tuning can be seen as an optimization problem, minimizing a function that
evaluates the distance between some model outputs and selected observations.3 On the other
hand, several crucial stages of the tuning process require subjective judgment in the concrete
sense of choices that are made by the modelers and that are not determined by observational
data or theory. First, the tuning process, when made manually, is sometimes characterized as
‘artisanal’: “The model tuning process at our institute is artisanal in character, in that both the
adjustment of parameters at each tuning iteration and the evaluation of the resulting candidate
models are done by hand, as is done at most other modeling centers.” (Mauritsen et al. 2012,
16). Second, decisions regarding the target variables to tune and the optimization metrics are
also said to involve knowledge and intuition of the modelers (Mauritsen et al. 2012; Hour-
din et al. 2017; Schmidt et al. 2017), and more particularly knowledge and intuition “about
plausible ranges of the tunable parameters and about the effect of parameter changes on the
simulated climate of a model" (Schneider et al. 2017b, 12’397). Third, in parameter tuning,
decisions can depend on the value-driven purposes and priorities of modelers (see Intemann

3 In this sense, as noted in Hourdin et al. (2017), climate model tuning is in many ways akin to parameter
estimation in statistics and is similar to what is referred to as ‘calibration’ in other domains of numerical
modeling (for a critical discussion, see Touzé-Peiffer 2021).
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2015). For the design of parameterization schemes, they might depend on the geographical
origin of the modelers. Thus, a modeling group may have to choose between optimizing
ocean heat transport in the North Atlantic or tropical convection (Hourdin et al. 2017, 592).
Any choice between the two may have unforeseeable consequences on other model outputs
down the road, because of the holism and epistemic opacity at work in complex climate
models such as the state-of-the-art GCMs (Lenhard and Winsberg 2010).

2.2 Subjective elements

From this description, we see three different, yet interrelated, types of subjectivity at play in
the use of expert judgment in parameterizations. The evaluation of expertise generally focuses
on the social connection between the layperson and the expert, as expert judgment is seen
as an instance of testimonial knowledge.4 However, we are focused on a different epistemic
situation, where there is not a layperson eliciting a judgment from an expert, rather there is
a single expert, or group of experts, using their own judgment(s) to build a parameterization
and subsequently the entire model. Therefore, in this paper, we focus on three interrelated
expert traits, namely the expert’s content-knowledge, the expert’s use of values/biases and
the expert’s practical experience or track record.5

Inductive skill / content knowledge The design of a phenomenological law is a nontrivial
procedure that utilizes the inductive skills of the modelers for the identification of the rel-
evant variables and the elaboration of the empirical relationships between those variables.
While some argue, in line with Hume’s skeptical viewpoint, that inductions are epistemically
problematic, this form of reasoning, at the very least, has a strong history of use in science
with varying levels of empirical success (Douven forthcoming).

The specific type of induction used in the building of parameterizations is done by using the
expert’s content-knowledge. This is the knowledge experts gain about the domain of interest,
from their education and understanding (Martini 2020), this can be exemplified as theoretical
considerations, observational and numerical data, current state-of-the-art research, ongoing
deliberations and debates, as well as other factors. In this case, experts take what they know
about the target, that aspect of the climate which is aimed to be represented, and infer a rep-
resentational relationship between the real world target to some identified phenomenological
law. The judgment in question is then in the identification of both the phenomenological law
and the representational relationship, and the expert must ask themselves: given a certain pur-
pose, towhat extent does the identified phenomenological law adequately capture the relevant
aspects of the target within the parameterization? From this, the subjectivity and subsequent
epistemic justification for the specific expert judgment are contingent on two aspects of the
expert, their inductive reasoning skills and their set of knowledge to reason from, which can
involve some (e.g. methodological) preferences when ambiguities are present.

This combination of content knowledge and inductive skill can also be seen at work during
the tuning process. As previously mentioned, the decision making regarding the plausible
ranges for the identified tunable parameters requires content knowledge and inductive skill.
For a given tunable parameter, the experts must identify the relevant range of values, given
their knowledge of the system and of the given parameter which is being tuned. The experts

4 With testimonial knowledge generally characterized as belief that is grounded in a written or spoken state-
ment provided by another individual (Lackey 2010).
5 For an overview of the required or desirable expert traits, see Martini (2014, 2015, 2020) and the references
within.
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must then use their inductive skills to foresee how these newly tuned parameters will further
affect the model and judge if the representational relationship between model and target still
holds based on the purpose of the model. Thus, the judgment is qualified by the content-
knowledge available to the expert at the time of the judgment and the experts ability to infer
from this set of knowledge. In turn, the justification for the specific expert judgment must
then stem from the abilities and features of this specific expert.

Practical experience / track record In the choice of idealizations, the kinds of omissions and
distortions previously discussed illustrate the subjective decision making at work in choices
between representational accuracy and computational cost of the parameterization. The deci-
sion making is also guided by the practical experience of the modeler on how to concretely
build the parameterization. One can characterize this kind of expertise as practice based,
through time a modeler gains expertise by working with their model, developing a kind of
tacit knowledge or a kind of know-how. Generally, this type of expertise is used in contexts
like riding a bike, where you can learn or know all the mechanical processes of how to
ride a bike, but until you get on a bike and start peddling for yourself, you will not acquire
this know-how. While interrelated, this practical experience can be contrasted with the more
theoretical experience discussed in the context of content knowledge.

The expert decision is then strongly rooted in the experiences the expert has had, knowing
how to perform a task to reach the desired goal, like in this case building a model parameter-
ization. Thus, the type of subjectivity found in these judgments is relatively unproblematic
from an epistemic point of view, given that certain qualities of the expert are met. The expert
must have the requisite track record or history of working with parameterizations and climate
models. We take track record to be an account of the expert’s credentials, their publishing
record and academic background, and relevant experience in relation to the judgment that has
been elicited (Martini 2020). In brief, if the expert has a history of working with a specific
model and developing parameterizations that represent the specific phenomena in question,
then it can be said that they have a track record and the required know-how for making the
decision. In light of this, the degree of epistemic worry then falls on how robust the track
record of the expert is, ultimately providing the justification, or lack thereof, for the decisions
made in the choice of idealizations. This results in a gradient of epistemic justification for the
idealizations, as there can be situations where new parameterizations are developed that are
slightly outside the experience of the expert, giving these judgments slightly less justification,
or situations of the other variety where the expert may have a robust track record and strong
justification for their judgments.

Values / biases The use of (non-epistemic) values in building parameterizations and in the
identification of which parameters to tune, can be seen as focusing the inquiry, as in targeting
a specific type of phenomena (or variable) or geographic region for greater representational
accuracy within the model. From this, the expert trait of unbiasedness comes to the forefront
(Martini 2020), where these subjective biases can be social, political or even cognitive ele-
ments of the expert. It is argued that the quality or trustworthiness of an expert judgment
should be, in part, dependent on if there are clear biases instituted by the expert, meaning if
biases are found, then the judgment is unjustified and should not be used.With this conception
of unbiasedness it is clear that the use of values to focus the domain of inquiry, as described
above, does show biases in the expert judgments, as preferring to represent variables or tune
parameters which are relevant for a certain region rather than another is purely subjective and
institutes clear biases. However, we argue that this should not be the end of the discussion,
rather we should investigate if the biases are epistemically problematic.
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Weforesee twopotential epistemic problems, one of epistemic access and the other relating
to the quality or justification of information provided by the model. The use of values as
described does limit the scope of a given model, and thus the epistemic access it can provide,
as a model will not be able to equally represent every phenomenon and geographic region.
Somemay argue that this is not overly problematic, as we are referencing the construction of a
single parameterizationwithin a specificmodel andnot everymodel. Itwould be epistemically
problematic however if all modeling efforts used the same set of values, this would result,
for instance, in the modeling community being unable to gain accurate information about
some specific phenomena or areas of the world. Unfortunately this seems to be the case to
a certain extent, as every region of the world does not have an equal voice in the scientific
community for value selection—typically, the modeling community is rather dominated by
the Global North.

The second problem relates to the quality of the information that can be elicited from a
model. With some aspects of the model having greater representational accuracy, due to the
scope of the model, there is a greater epistemic justification for that information produced
within the scope or purpose of the model. In turn, information produced about phenomena
or geographic locations that fall outside the scope will not be as epistemically justified, as
the adequacy for purpose can be brought into question. This obviously concerns the tuning
process as well, where, as we have seen, not all relevant aspects (variables) of the target may
be optimized within the model. However, in so far as those models are used in line with their
intended purpose, then this practice is once again not too epistemically problematic (Parker
2020). What might make this problemmore tricky to disentangle would be if different values
were used across different aspects of the modeling effort, as if multiple and conflicting values
were used across the different parameterizations and tuning methods of a single model. If
this situation were to occur this could bring the epistemic justification or the reliability of
the model outputs into question as there would not be a clear purpose or epistemic scope.
Concretely, it would be extremely difficult to identify (and remedy) such situations, since
modeling efforts are compounded on previous efforts, resulting in the purpose of some lines
of code not being explicitly known to the modelers building the subsequent features of the
model (Lenhard and Winsberg 2010). What remains clear is that the use of values should be
as internally consistent as possible, so as to identify the correct scope of information that can
be epistemically justifiable from a given model. Thus, as it currently stands, this subjective
element continues to play an important role in the design of parameterizations, for framing
how the model can and should be used, but their use must be evaluated on a case by case
basis.

There is a general intuitive appeal for eliminating, or at least minimizing, these subjective
elements, that is, for replacing them with more objective methods. This is suggested in
Mauritsen et al. (2012, 16), when they write—right after characterizing the tuning process as
being “artisanal”—that it is “at least conceptually possible to automate this process and find
optimal sets of parameters with respect to certain targets”. Of course, there are in principle
different possible ways to achieve this, but machine learning methods as automatic processes
are very natural candidates because, as we will see in what follows, these methods provide
an avenue to, in theory, remove some subjective elements.6 Indeed, in recent years, machine
learning techniques have been applied to climate model parameterization, and in particular

6 In a recent review of ‘physics-informed’ applications of machine learning in weather and climate modeling,
(Kashinath et al., 2021) suggest that machine learning “offers novel approaches to replacing approximations or
empirical parameters with data-driven learned counterparts” (p. 6) and more specifically that machine learning
“could be employed to find the optimal set of critical parameters in weather and climate models” (p. 7).
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to atmospheric convection parameterization (see for instance Schneider et al. 2017b, Gentine
et al. 2018, O’Gorman and Dwyer 2018, Rasp et al. 2018, Couvreux et al. 2020).7

Before turning to the case studies, it is important to note that the application of machine
learning to cloud parameterization runs in parallel, and is in some sense complementary,
to the development of cloud-resolving models (CRMs), which are high resolution models
with kilometric horizontal resolution that explicitly represent relevant cloud-related physical
processes.8 While resolving convection would alleviate some of the above mentioned sub-
jectivity, it is extremely computationally costly and thus not implementable at a large scale
in the foreseeable future. So-called super-parameterizations (SP), which involve (simplified)
CRMs embedded in the grid cells of a GCM, constitute an intermediate strategy. In this con-
text, CRM outputs can be used to train machine learning algorithms, which are expected to
reduce the very high computational costs of cloud-resolving models—and to further reduce
the subjective elements linked to parameterization.

3 Machine learning and parameterization: case studies

3.1 Overview

In this section, we provide detailed case studies to concretely show this push for more objec-
tivity throughMLmodels. We examine cases in whichMLmodels are used in different ways
to overcome “subjective elements”, or “heuristic arguments” in traditional parameteriza-
tions. ML can be used for different purposes at different levels in Global Circulation Models
(GCMs) or Earth SystemModels (ESMs) (see Reichstein et al. 2019), and, depending on the
purpose, different kinds of ML are appropriate.

We distinguish, somewhat programmatically, between two ways of improving parameter-
izations using ML, depending on how much of traditional parameterizations the respective
proposals are willing to sacrifice. First, the conservatives want to retain existing parameteri-
zations, because of their built-in physicality and other advantages, but advocate utilizing ML
methods in parameter tuning. Second, the progressives propose to replace entire parameter-
izations with ML models, such as DNNs.

We will show that in both camps, some claim that the use of ML methods removes
subjective elements and leads to more objectivity in the parameterization context. However,
the two camps use different MLmethods to achieve their respective goals, and these methods
vary in the degree to which they lead to ‘objectivity’. The diverging degrees to which the
two camps are willing to abandon traditional parameterization may be rooted in different
attitudes towards the reliability or ad-hoc-ness of the parameterization schemes themselves.
Progressives, who consider parameterizations to be somewhat ad-hoc, may be more willing
to replace the parameterizations withMLmethods that come with a certain inductive risk and
may not be very well understood. Conservatives, who consider parameterizations to be (at
least partly) well-founded in physical principles, may be less willing to remove them. This
difference may ultimately be tied to different (subjective) attitudes towards the structural
uncertainty associated with parameterizations.

7 Convection and cloud-related parameterization is the focus of particular attention in the climate science
community because it is considered to be the main source of uncertainty in climate change projections (Bony
et al. 2015, Schneider et al. 2017a).
8 Cloud physics can be represented using even higher resolution models, such as large-eddy simulations,
which have a horizontal resolution of a few hundreds meters.
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3.2 The conservatives

Schneider et al. (2017b) propose to retain parameterization schemes that incorporate physical,
chemical and biological knowledge, but to tune parameters in a novel way, based on global
observations and high-resolution simulations. Schneider et al. illustrate their proposal with
the Lorentz-96 model, a simple dynamical model. They generate data from this model and
use two ML methods, the so-called Bayesian inversion approach (MCMC), as well as the
Kalman ensemble approach, to estimate four parameters of this model. This proof-of-concept
is encouraging, but also limited in scope: by using simulation data, it is not possible to gauge
what happens if there is not only parameter uncertainty, but also structural uncertainty.

Schneider et al. argue against discarding parameterizations that are based on theory: "The
machine learning of parameterizations in our view should be informed by the governing
equations of subgrid-scale processes whenever they are known" (p. 12,409). By doing so,
one avoids the problem of "unstructured parameterization schemes", e.g., DNNs, which
do not satisfy symmetries and conservation laws. Unstructured parameterization schemes
may lead to poor out-of-sample performance, which is very undesirable in the context of
climate change scenarios. This is the main argument against the progressive camp. However,
Schneider et al. also argue that their approach is more flexible than the "traditional approach
of fixing closure parameters ad hoc or on the basis of a small sample of observations or high-
resolution simulations" (p. 12,410). They note that "for non-computable processes whose
governing equations are unknown, like many ecological or biogeochemical processes, more
empirical, data-driven parameterization approaches may well be called for" (p. 12,410). This
argument against traditional parameterization schemes can be interpreted as a push for more
objectivity, in that the “ad hoc-ness” of traditional parameter tuning is avoided.

Schneider et al. acknowledge that utilizing ML methods brings about a different set of
challenges and requires expert knowledge in its own right. The first challenge is that in order
to use a ML model in parameter tuning, one has to choose an appropriate objective function
(also known as loss function), which encodes the optimization problem to be solved by the
ML models. The objective function should incorporate both bias correction (correction of
empirically observed systematic errors in ESMs) and so-called emergent constraints (empiri-
cally observed high-level relationships between observable quantities). Schneider et al. write
that determining an appropriate objective function requires domain expertise: "In practice, the
choice of objective functions will be guided by expertise specific to the relevant subdomains
of Earth system science, as well as computational cost" (p. 12,401). The second challenge is
that utilizing ML models also necessitates the choice of a learning algorithm that carries out
the optimization. Schneider et al. discuss three possibilities: ordinary least squares regular-
ization, Markov Chain Monte Carlo (MCMC) methods, and ensemble methods (ensemble
Kalman methods). The ultimate choice of ML (or statistical) method at this point involves
making a tradeoff “between computational expense and the amount of information about
the parameters they provide” (p. 12,403). This tradeoff, in turn, is ultimately in the hand of
experts.

Couvreux et al. (2020) take a similar approach as Schneider et al. (2017b), in that they
too aim to improve parameter tuning. They use ML models to emulate a traditional parame-
terization, a so-called single column model (SCM). The idea is to use the point predictions
from SCM runs as training data for the emulator, a so-called Gaussian Process (GP) model.
The predictions from the SCM emulator (GP) can then be compared to those of the so-called
reference (ground truth), the predictions of a high-resolution simulation (LES ensemble).
The comparison uses so-called history matching. The comparison with history matching can
lead to a rejection of parts of the parameter space as implausible.
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The choice of this approach is justified with two arguments. On the one hand, there
is an argument for retaining parameterizations: "[The choice of the strategy] is motivated
by the fact that parameterizations summarize our current understanding of the dynamics
and physics of atmospheric processes and offer the power of interpretation, crucial to build
our confidence in the extrapolation beyond observed conditions realized by any climate
projections" (Ibid., p. 3) This is an argument against the progressive camp. On the other
hand, it is desirable to systematize the use of parameterizations: "In the proposed approach,
machine learning is harnessed in a principled way to calibrate parameterizations at process
level. [...] Such a systematic use is not feasible however withoutmore objective and automatic
methods than the traditional trial/error approach used to fix parameter values during the
parameterization development" (p. 3). Thus, utilizing ML is supposed to make the tuning
process more systematic and objective, in contrast to a more ad-hoc trial and error approach,
which is ultimately subjective. Further important reasons for their approach, mentioned in
the conclusion, are computational speed-up and to explicate different kinds of uncertainty.

A third example from the conservative camp is McNeall et al. (2020), who use Gaussian
processes for bias correction in parameter tuning. They acknowledge that “[s]etting input
parameters traditionally relies heavily on insights from those involved in parameterisation”,
and continue: “this can be an imperfect process, leaving open questions about whether any
subsequent simulated biases result frommis-set parameters or wider structural model errors”
(p. 2488). McNeall et al. contrast subjective with algorithmic approaches: “Although climate
model tuning is overall a subjective process, individual parts of the process are amenable
to more algorithmic approaches” (p. 2489). However, they also write that the main goal of
using GPs is to help modelers identifying those parts of a model that “would most benefit
from development” (p. 2506). Thus, for McNeall et al., the goal of using ML models is not
objectivity or automation, but to improve climate models themselves.

Not all representatives of the conservative camp mention the objectivity of ML models as
a motivation to use them for parameter tuning. Proske et al. (2021) use Gaussian processes to
conduct a sensitivity analysis of parameterizations of cloud microphysical processes. They
do not wish to replace entire parameterizations with ML models, and follow Couvreux et al.
(2020) in using GP to build more interpretable climate models. They explicitly refer to Rudin
(2019), a machine learning scholar who emphasizes the need for physical and interpretable
models, as opposed to black-box models. The motivation of Proske et al. is not to make the
parameter tuning more objective, but to use it as a tool to gain understanding of the working
of climate models themselves.

3.3 Gaussian processes (ML for conservatives)

We have now seen how ML models are used in parameter tuning, and that their use is at
least sometimes motivated by the quest for objectivity. In this section, we examine the ML
model that is most often mentioned by the conservative camp, Gaussian processes (GPs),
and consider to what extent utilizing GPs itself is an objective and automated matter, and
whether it involves expertise.

Consider how GPs are used in tuning parameterizations. The use of GPs in combination
with history matching to automatize parameter tuning, as proposed by Couvreux et al. (2020)
has previously been used by Williamson et al. (2013). The GP is fit to the training data
using an adaptive procedure with two stages (Ibid., Appendix B). While this procedure is
somewhat automatic, it also involves choices at critical points. For example, different kinds
of basis functions can be chosen for the adaptive procedure, depending on the nature of
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the problem. Williamson et al. describe the transition to the second stage of the adaptive
procedure as follows: “When it becomes clear that adding more terms is not improving the
predictive power of the emulator (a judgement made by the statistician based on looking at
the proportion of variability explained by the regression and at plots of the residuals from the
fit) we begin a backwards elimination algorithm" (p. 1725), meaning that utilizing this ML
procedure involves a different, statistical, kind of expertise.

A standard textbook on GPs (Williams and Rasmussen 2006) provides a more theoretical
perspective. The authors note that one important problem of the application of GPs is the
model selection problem, which deals with the question of how to choose the right form of
GPs (covariance functions, hyperparameters, parameters). Williams and Rasmussen write:
“[...] model selection is essentially open ended. Even for the squared exponential covariance
function, there is a huge variety of possible distance measures. However, this should not be
a cause for despair, rather seen as a possibility to learn” (Ibid., Sec 5.1.). This means that
while it is possible to provide guidance for model selection and make informed choices, the
process is open ended rather than automated.

Finally, note that expert judgment is required for history matching, the framework in
which GPs are used for parameter tuning.9 As noted above, the goal of history matching is
to rule out regions of the parameter space as implausible. This is done via an implausibility
measure, a distance between reference and emulator prediction (see, e.g., Couvreux et al.
2020, equation (5)). Rejecting parts of the parameter space on the basis of the implausibility
measure involves a judgment about structural model error, also known as model discrepancy,
because high values of the implausibility measure can be due to an inherent inability of the
traditional parameterization (here: SCM) to reproduce the reference. In a paper applying
history matching to an ocean model, this judgment is described as follows: “Since ‘struc-
tural error’ is ‘real’, for any given metric, we might think of this as a random quantity that
could be estimated using a combination of expert modeller judgement and information from
dynamic observations and process-based high-resolution simulations" (p. 1794 Williamson
et al. 2017). The idea, as Williamson et al. detail, is that the expert has to use the implausi-
bility measure to determine, possibly through iterated tuning, whether a mismatch is due to
parameter values or the parameterization itself, i.e., model discrepancy. Thus, history match-
ing requires expert judgment in an essential manner. Note that while this aspect of expert
judgment does not involve the use of GPs themselves, it is a necessary requirement for using
GPs in history matching.

In sum, the above discussion speaks against the idea that by usingMLmodels such as GPs
in parameter tuning, this process becomes “objective” or “automatic”, such that the need for
(different kinds of) expert knowledge is obsolete. This, of course, is not an argument against
using these ML models in this context in principle.

3.4 The progressives

Gentine et al. (2018) agree with Schneider et al. (2017a) that current convection parameter-
ization schemes are responsible for biases that affect the predictive capabilities of GCMs.
They propose to replace super-parameterizations (SPs, see section 2) with deep neural net-
works (DNNs) in the grid cells of GCMs to speed up computations. Gentine et al. write that
ML models are suitable to overcome the convection parameterization deadlock because they
“have been used in many applications where a clear physically based algorithm could not be
defined” (p. 5743).

9 We thank an anonymous reviewer of this journal for pointing out this argument.
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Gentine et al. use the so-called SPCAM3 (super-parameterized community atmosphere
model), a GCM with SP, to generate simulated and labeled data, to train and test DNNs. The
input variables include temperature, humidity, surface pressure and heat fluxes, while the
output variables include temperature and humidity tendencies as well as heating tendencies.
The first year of the simulation data was used for training, while the second year served
as test data. The main results found by Gentine et al. are that predictions by DNNs show
good qualitative agreement with those of SP. Quantitatively, DNNs and simulations agree
well in midlevel regions and less well in boundary layers. Gentine et al. conclude that DNNs
show good ability to reproduce some qualitative and quantitative aspects of the simulation
data. The main advantage of the ML approach is that in preliminary tests, a GCM enhanced
with DNNs is up to 10 times faster than the original SPCAM3. However, they also note
several drawbacks: DNNs do not intrinsically conserve energy and moisture, which would
be necessary for climate models in particular, and it is unclear how well the new model will
generalize, i.e., how it will perform in situations not represented in the training data.

Rasp et al. (2018) continue Gentine et al.’s project. The main novelty is the integration
of trained DNNs into the GCM. Rasp et al. add a further justification for replacing entire
parameterizations withMLmodels: “To improve climate predictions, therefore, novel, objec-
tive, and computationally efficient approaches to subgrid parameterization development are
urgently needed” (p. 9684). ML methods are supposed to be such a novel and ‘objective’
approach: “In this study, we explore whether deep learning can provide an objective, data-
driven approach to using high-resolution modeling data for climate model parameterization”
(p. 9684).

The experimental setup by Rasp et al. is similar to Gentine et al.; the investigation is
based on SPCAM3, and the SPs are used to generate training data. The major difference,
the integration of DNNs into the GCM to make projections, makes it possible to compare
projections of theGCMenhancedwithDNNs (calledNNCAM)withprojections ofSPCAM3.
There is an additional comparison between NNCAM and the same GCM with a traditional
parameterization (called CTRLCAM). Rasp et al. report the followingmain results. NNCAM
is 20 times faster than SPCAM3, and 8 times faster than CTRLCAM. NNCAM reproduced
themean tendencies of the benchmark simulation SPCAM.NNCAM is also able to reproduce
qualitative aspects of climate variability, surpassing CTRLCAM, which exhibits well-known
biases. Interestingly, NNCAM also approximately satisfies energy conservation, even though
this was not explicitly enforced. Results concerning the generalization properties of NNCAM
are mixed. If boundary conditions (sea surface temperature) are changed, the model is not
able to reproduce projections for temperature changes of 4K, if it has not been trained with
simulation data resulting from such changes. On the other hand, if the model has been
trained with data from two extreme temperature scenarios, the model was able to reproduce
intermediate scenarios. Thus, the model can interpolate, but it cannot extrapolate.

Rasp et al. explicitly address the argument of the conservative camp (Schneider et al.,
2017b) about the use of ML in the context of parameterizations. According to Rasp et al., the
approach of the conservatives has several possible advantages, such as better generalization
properties, reduction of the required amount of data, and the possibility of using components
of the model for process studies. These advantages are grounded in the fact that known
physical properties are hard-coded into the parameterizations. However, this approach has
the problem of “heuristically finding the framework equations”. Note, again, the emphasis
of the heuristic nature of formulating parameterizations.

Not all researchers in the progressive camp justify their approach through objectivity.
Brenowitz and Bretherton (2018) trained DNNs on a near-global simulation model (CAM),
and evaluated the predictions for convection in a single column. They did not couple the
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trained DNNs to a GCM, similar to Gentine et al. (2018). Brenowitz et al. provide a different
motivation for the progressive approach: while ML methods could be used to tune param-
eters in traditional parameterizations, this approach is not ideal because the parameters of
traditional parameterizations are designed to have a physical interpretation. If DNNs are
used instead, this restriction is no longer necessary because their parameters are determined
automatically.

Brenowitz and Bretherton (2019) continued their 2018 work; the authors coupled the
DNNs to the dynamical core of a GCM, similar to Rasp et al. (2018). Brenowitz et al.
stress that automatically tuning traditional parameterizations, which are “usually designed
by human physical intuition, informed by high-resolution simulations and observations” (p.
2728) would be feasible, but caution that “these techniques can tune a few free parameters
but may not scale to larger numbers of parameters. Moreover, existing parametrizations may
not be flexible enough to be realistic in part because they have so few parameters.” (p. 2729).

In contrast to other progressives such as Rasp et al., Brenowitz et al. do not claim that
utilizing ML models would lead to more objectivity. Rather, they point out that “ML models
are typically trained by minimizing a loss function, such as the mean-square error (MSE)
compared to some reference outputs from the training data; the choice of the loss function
is subjective and a key to good performance” (p. 2729). Thus, similar to Schneider et al.
(2017b), Brenowitz et al. emphasize that ML models themselves necessitate (subjective)
choices.

The need for expertise when using ML methods in the context of parameterizations is
further stressed in the discussion, where Brenowitz et al. write that at first, utilizing DNNs
did not work as intended: “An attempt to couple a preliminary version of this NN to this GCM
caused themodel to blowup” (p. 2742). Brenowitz et al. then note that that adapting theDNNs
as a parameterization replacement required human intervention: “The spatially extended
simulations were stabilized by removing the upper atmospheric humidity and temperature
from the NN inputs. This configuration can run stably indefinitely, without blowing up. Thus,
stabilizing the parametrization required a rather crude human intervention. Future studies
will need to explore automatic ways to discover true causal relationships and forestall model
blow-up in a dynamically coupled setting” (p. 2742).

3.5 Deep neural networks (ML for progressives)

The previous section provided examples of utilizing DNNs for replacing traditional param-
eterizations, while also showing that utilizing DNNs runs into several problems. First,
DNNs sometimes show unphysical behavior, e.g., violation of conservation laws. Second,
the integration of DNNs into GCMs yields problems of its own, in particular numerical
instabilities. Third, DNNs are known to show poor generalization properties when used on
out-of-distribution data. Morrison et al. (2020, Sec. 4.4). note two additional problems of
utilizing ML models in the present context, which we add to the above list: Fourth, limited
uncertainty quantification, and fifth a lack of interpretability of some ML models, DNNs in
particular. What these problems show is that the use of DNNs to improve parameterizations
poses novel challenges. We will now examine recent attempts to overcome some of these
problems.

First, consider a proposal to tackle the problem of unphysical behavior. Beucler et al.
(2019) note that traditional parameterizations exhibit empirical biases (“a lack of extreme
precipitation events and unrealistic cloud structures”, p. 1); overcoming these is the main
motivation for the authors to use DNNs. However, DNNs suffer from problems such as a
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lack of mass and energy conservation. Beucler et al. propose to overcome these problems
by constraining DNNs to (approximately) satisfy conservation laws by i) using a suitable
regularization term, which yields an approximate satisfaction of conservation laws and ii) by
customizing the architecture of DNNs, such that they satisfy conservation laws exactly; see
also (Beucler et al. 2021). Beucler et al. apply these methods to a climate model, SP-CAM
with an aquaplanet boundary condition, similar toGentine et al. (2018) andRasp et al. (2018).
Beucler et al. find that on both approaches, the generalization abilities of the ML models are
significantly improved. This work is continued in Beucler et al. (2020), where the authors
use physical rescaling to improve the generalization properties of DNNs. Thus, to solve the
problem of unphysical behavior, it is useful to integrate physical constraints into MLmodels.

Second, consider a proposal to address numerical instabilities and a lack of interpretability.
Brenowitz et al. (2020) investigate both SP-CAM, the climate model investigated by Gentine
et al. (2018) and Rasp et al. (2018), and the coarse-grained global cloud resolving model
investigated by Brenowitz and Bretherton (2018, 2019). Brenowitz et al. (2020) identify
two problems. The first problem is that the coupling of DNNs replacing traditional param-
eterizations to GCMs leads to numerical instabilities (cf. Brenowitz and Bretherton 2019).
This phenomenon occurs for both SP-CAM and the coarse-grained global cloud resolving
model. The second, related problem is a lack of interpretability techniques to understand
DNN parameterizations. Such interpretability techniques are necessary to understand the
behavior of DNNs themselves, to overcome problems such as numerical instability; see Räz
and Beisbart (2022) for a discussion regarding the importance of interpretability for scientific
uses of DNNs. While techniques to interpret DNNs in general exist, these are unsuitable for
the case of parameterizations. This necessitates the development of novel, domain-specific
interpretability techniques.

Brenowitz et al. (2020) develop such domain-specific interpretability techniques, which
allowed them to also develop new regularizations to overcome the numerical instabilities.
In the summary, the authors write: “We hope that these interpretability techniques will aid
in discovering more elegant solutions to the coupled stability problem and facilitate a more
detailed exploration of neural network hyperparameters (e.g., depth) than has been possible in
the past” (p. 4373). Thismeans that thesemethods to better understandDNNswill help experts
to improvemachine learning parameterizations and, ultimately, the climatemodels. Expertise
is necessary on at least two levels: To develop and improve domain-specific interpretability
techniques, and to apply these techniques to improve parameterizations through MLmodels.

In sum, these examples show that the use of DNNs does not automatically lead to better
predictions. Rather, utilizing DNNs in the context of parameterizations requires a different,
novel kind of expert knowledge, viz. that of adapting DNNs to this particular domain. The
expert knowledge is novel because it requires the integration of knowledge about DNNs and
domain-specific knowledge.

4 Discussion

With this conception of the two ML camps, conservatives and progressives, we return to the
three kinds of subjectivity in expert judgment identified in Section 2.2 and discuss how the
use of ML in parameterizations affects these aspects of subjectivity.

Inductive skill / content knowledge The design of the phenomenological laws that enter into
the parameterization schemes require both inductive skills and content knowledge by the
domain experts. This content knowledge is closely tied to the current state of a particular
research field, in the present case, of the latest understanding of the climate phenomenawhich
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are to be represented in the parameterization. In the case studies we saw that a novel field,
ML, is being utilized and applied to climatemodel parameterizations. This means that a novel
kind of content knowledge is relevant, namely, that ofML and the structure thesemethods use
to represent a given target. This expertise can in principle be provided by ML researchers,
however, utilizing ML for parameterizations does not only necessitate expertise from this
additional field. Rather, ML and climate model parameterizations have to be amalgamated
because ML methods must be adapted to this novel context. Thus, this creates the need for
novel expertise of a new subfield, “ML for climate modeling”.

While the amalgamation of fields is an issue that affects both conservatives and progres-
sives, they are not affected equally. For the progressives, the inductive skill needed to replace
entire parameterization schemes is greater, in that using ML instead of traditional parameter-
ization schemes creates novel inductive problems.While parameterizations have well-known
empirical biases, DNNs have several shortcomings: They show unphysical behavior (e.g.,
lack of energy and moisture conservation), and they are unreliable when used on out-of-
distribution data. Both problems are particularly severe in the context of climate modeling
(see Gentine et al. 2018 and Rasp et al. 2018). So it may be difficult for these new experts
to answer the following key question: how are the relevant features of the target best or
adequately captured within the framework of the new ML methods? Additionally, DNNs
lack interpretability (Rudin 2019) and sometimes show a lack of numerical stability when
coupled with climate models (Brenowitz et al. 2020). Climate modelers and ML experts are
working on methods to overcome these difficulties of applying DNNs to replace parameter-
izations. However, doing this does not amount to automation or getting rid of the subjective
elements linked to expert judgment. Rather, it requires both ML expertise, and mixed exper-
tise to adapt DNNs to the context of parameterizations, e.g., to build DNNs that automatically
satisfy conservation laws, or avoid numerical instabilities.

Overall, the degree of subjectivity that stems from the inductive skills and content knowl-
edge of the expert does not decrease if ML methods are introduced. Rather, the use of ML
models creates different and novel challenges for experts in terms of amalgamating different
fields and applying theoretical knowledge in a novel context, all of which continue to involve
some subjective features of the expert.

Practical experience / track record The design/use of parameterizations is a matter of prac-
tical experience and know-how, which involves tacit knowledge that is difficult to be made
explicit and can only be acquired through an individual’s experience. As previously dis-
cussed, the way in which this aspect of expertise is evaluated is via the track record or the
repeated success of the expert using the practical knowledge in question. When we apply
this concept to the use of ML in parameterizations we find a problem, since gaining practi-
cal experience and building a track record requires some time, but the practical experience
for utilizing ML methods in this way has to be acquired anew and thus requires some time
before being ‘operational’. This situation is especially true for the progressive group, who
are calling for the complete replacement of the parameterization with new ML methods like
DNNs. Given this, we argue that one should actually expect that the degree of subjectivity
would increase through the use of ML methods rather than decrease, as currently there is
little robust track record for any expert. This however, is due to the simple fact that the use of
these methods is relatively new, and there has not been enough time for practical experience
and further expertise to be acquired and implemented. Thus, this may only be a temporary
problem and could diminish eventually, but as it currently stands one cannot guarantee a
robust track record will be produced in the short term for the use of DNNs or ML methods
more generally in this context.
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Values / bias Expert judgments can be biased by making choices in parameterizations based
on a preference for certain purposes, for example, making good predictions for a certain
geographic region, thereby (possibly) neglecting other regions. Such biases need not be
due to modeling choices, but can also be due to the availability of climate data for some
regions such as the Global North, and a lack of data for the Global South. As previously
discussed, these biases affect the practical application of the parameterization as they are
potentially only epistemically justified for use within the concerned region (or for a given
climate variable). Additionally, depending on the application of the parameterization within
the larger model, there can be additional concerns regarding the reliability of the outputs, if
incompatible values/biases were used to construct other aspects of the model. From this, we
see that the use of values in traditional parameterizations only comes into play when applied
to real world circumstances and can only be evaluated or managed on a case by case basis.

In the cases of using ML models in parameterizations, this kind of subjectivity does
not appear to play an important role. This, however, is probably due to the fact that these
studies focus on the development of novel methods. Some works (such as Gentine et al.
2018) characterize their contribution as proof-of-concept, i.e., as establishing the viability
of methods in principle, not necessarily utilizing these methods in practical circumstances.
Also, many of the above contributions rely on synthetic/simulation data and use idealized
scenarios such as aquaplanets. This means that issues related to data availability and the focus
on certain geographic regions are not considered—for the time being.

However, we should expect that these issues resurface eventually, in particular once ML-
parameterizations are used on real data. In the conservative camp, biases due to the use of
traditional parameterization schemes will persist. The challenge for the progressive camp
will be to adapt the ML tuning process to different purposes. Methods such as DNN are only
reliable to the extent that data relevant for a particular purpose is available. This raises the
abovementioned worry that for regions where data is scarce, prediction quality and epistemic
justification will be weaker than for regions with abundant data. This is very much analogous
to known cases of biases of DNNs; see, e.g., Rezk et al. (2022) on the consequences of the
underrepresentation of dark skin tones for cancer detection byDNNs. Unequal representation
in the data will lead to a differential in prediction quality and epistemic warrant, and thus,
ultimately, to an inadequacy for certain purposes.

5 Conclusion

Parameterization and parameter tuning are central aspects of climate modeling, and there is
widespread consensus that these procedures involve certain (possibly irreducible) subjective
(“artisanal”) elements, the nature of which we have discussed in Sect. 2. Even if these sub-
jective elements are not necessarily epistemically problematic, there is a general intuitive
appeal—at least in parts of the climate science community—for replacing them with more
objective (automated) methods. In this sense, machine learning techniques are very natural
candidates. Machine learning has been applied in different ways to climate model param-
eterization in the recent literature, and we have distinguished the conservatives from the
progressives according to their willingness to abandon standard parameterization and tuning
procedures for machine learning methods (Sect. 3). Relying on several case studies, we have
argued that the subjective elements we identified in the context of standard parameterization
and tuning procedures are still present—albeit in novel forms—when these standard proce-
dures are (partly or fully) replaced by machine learning methods (Sect. 4). The case studies
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show that using ML in this context poses various new challenges: Building the expertise
required to amalgamate ML and parameterizations will take time, and efforts to build phys-
ical constraints into ML models, and to develop domain-specific interpretability techniques,
have just started. This does not affect the relevance of machine learning methods for climate
model parameterization and tuning (in particular when it comes to the computational cost),
but it does call for a careful epistemic attitude, especially with respect to the (possible lack
of) representativity and the potential biases of the training data sets.
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