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Abstract
This study assesses the performance of large ensembles of global (CMIP5, CMIP6) and 
regional (CORDEX, CORE) climate models in simulating extreme precipitation over four 
major river basins (Limpopo, Okavango, Orange, and Zambezi) in southern Africa during 
the period 1983–2005. The ability of the model ensembles to simulate seasonal extreme 
precipitation indices is assessed using three high-resolution satellite-based datasets. The 
results show that all ensembles overestimate the annual cycle of mean precipitation over 
all basins, although the intermodel spread is large, with CORDEX being the closest to the 
observed values. Generally, all ensembles overestimate the mean and interannual variabil-
ity of rainy days (RR1), maximum consecutive wet days (CWD), and heavy and very heavy 
precipitation days (R10mm and R20mm, respectively) over all basins during all three sea-
sons. Simple daily rainfall intensity (SDII) and the number of consecutive dry days (CDD) 
are generally underestimated. The lowest Taylor skill scores (TSS) and spatial correlation 
coefficients (SCC) are depicted for CDD over Limpopo compared with the other indices 
and basins, respectively. Additionally, the ensembles exhibit the highest normalized stand-
ard deviations (NSD) for CWD compared to other indices. The intermodel spread and per-
formance of the RCM ensembles are lower and better, respectively, than those of GCM 
ensembles (except for the interannual variability of CDD). In particular, CORDEX per-
forms better than CORE in simulating extreme precipitation over all basins. Although the 
ensemble biases are often within the range of observations, the statistically significant wet 
biases shown by all ensembles underline the need for bias correction when using these 
ensembles in impact assessments.
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1 Introduction

Most extreme climate events, especially those related to precipitation, have profound 
effects on human populations, ecosystems, and the environment (Lu et al. 2022). In many 
parts of the globe, substantial changes in the intensity and frequency of extreme precipita-
tion events have already been reported (Wan et al. 2021, Seneviratne et al. 2021). Because 
of poor adaptive capacity due to restricted access to climate-related information, technol-
ogy, finance, and capital assets, developing nations are particularly vulnerable to the effects 
of precipitation extremes, including floods and droughts (Stephenson et  al. 2010; Sylla 
et al. 2016; Yaduvanshi et al. 2021; Abiodun et al. 2020; Akinsanola et al. 2021). This is 
particularly evident in southern African nations; for instance, during the 2015–16 rainy 
season in southern Africa, a severe drought and subsequent dry spells caused widespread 
crop failure, which resulted in severe food insecurity in the region (approximately 40 mil-
lion people required humanitarian support, SADC 2016). Recently, thousands of people 
have died, millions of people have been forced to evacuate, and infrastructure has been 
destroyed by heavy precipitation events caused by tropical cyclones (e.g., cyclones Idai in 
2019, Chalane in 2020, and Eloise in 2021).

River basins are not exceptional to the effects of climate change, and they contribute 
substantially to socioeconomic development (Jain and Singh 2020). For instance, agricul-
tural production was weakened over the Zambezi basin during droughts that occurred dur-
ing the rainy seasons of 1991–1992 and 1994–1995 (SADC-WD/ZRA 2008). In addition, 
river levels in sub-Saharan Africa were very low in 2019, reducing the water available in 
Kariba to run the hydropower plant to 10% (Hulsman et  al. 2021). Climate change and 
human population growth are expected to impose more stress on the ecology of the Zam-
bezi basin (SADC-WD/ZRA 2008). The Limpopo and Orange basins are also expected to 
experience significant desiccation and a decline in water levels due to changes in precipita-
tion and temperature (Mitchell 2013).

The construction of climate information, especially when relevant for decision-making 
at local and regional scales, must be based on multiple lines of evidence, including but not 
limited to the analysis of the results of different classes of climate models (Doblas-Reyes 
et al. 2021). In fact, using different classes of model ensembles is very useful for detect-
ing areas of disagreement and agreement in climate information across various ensembles 
(Dosio et al. 2021a; Doblas-Reyes et al. 2021).

The World Climate Research Programme (WCRP) launched several coordinated pro-
grams to provide historical and future climate projections using large ensembles of global 
climate models (GCMs) and regional climate models (RCMs). The most prominent among 
these coordinated programs are Coupled Model Intercomparison Project Phase 5 (CMIP5; 
Taylor et al. 2012), Phase 6 (CMIP6; Eyring et al. 2016), and the Coordinated Regional 
Climate Downscaling Experiment (CORDEX; Giorgi and Gutowski 2015). CMIP experi-
ments provide historical and future climate projections from a large ensemble (approxi-
mately 30) of GCMs (Luo et al. 2022). CMIP6 was launched as an improvement to CMIP5, 
particularly due to improved physical processes, parameterizations, increased spatial 
resolutions, and additional biogeochemical processes (Eyring et  al. 2016). However, for 
regionally and locally tailored impact assessments, high-resolution climate projections 
are required (Doblas-Reyes et  al. 2021). The simulation of regional phenomena, espe-
cially those impacted by complex topography, land use heterogeneity, coastal lines, and 
mesoscale convection, is often poor in GCMs because of their low horizontal resolution 
(typically on the order of a hundred kilometers or more). To this extent, although dynamic 
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downscaling does not always add value, compared to GCMs, in the simulation of mean 
quantities (e.g., Dosio et al. 2015), RCMs improve the simulation of precipitation charac-
teristics, especially for extreme events (e.g., Gibba et al. 2019).

Under the CORDEX initiative, RCMs were used to dynamically downscale several 
CMIP5 GCMs to an ~ 50  km horizontal resolution over several domains (Giorgi et  al. 
2021). More recently, the CORDEX-CORE (Coordinated Output for Regional Evaluations) 
initiative was launched, aiming at producing climate projections in a more homogeneous 
framework, where all participating RCMs were required to downscale the same set of driv-
ing GCMs (in contrast to CORDEX, where the choice of GCMs was left to the individual 
RCM modeling groups). Additionally, to make the CORE results more suitable for applica-
tion in impact studies, the horizontal resolution was set twice as high as that of CORDEX 
(~ 25 km).

The application of climate projections from CMIP and CORDEX is an important tool 
for generating information on climate change, which is important for policymaking and 
developing adaptation strategies. However, before their use, it is essential to validate the 
performance of climate models over a historical reference period, especially when climate 
simulations are used as inputs to impact models. Most studies evaluating the ability of 
CMIP, CORDEX, and CORE to simulate extreme precipitation over Africa have focused 
on continental or regional scales (Pinto et al. 2016; Abiodun et al. 2017; Gibba et al. 2019; 
Abiodun et  al. 2020; Dosio et  al. 2021a; Ogega et  al. 2020; Faye and Akinsanola 2022; 
Akinsanola et  al. 2021 Ayugi et  al. 2021; Dosio et  al. 2022a, b). Additionally, most of 
these studies are based on climate models from one or two coordinated projects or use a 
limited subset of the model ensembles. Recently, studies have been conducted in Africa 
using ensembles of CMIP5, CMIP6, CORDEX, and CORE. For instance, extreme precipi-
tations from large CMIP (approximately 30 CMIP5 and CMIP6 models), CORDEX (24), 
and CORE (9) simulations were compared by Dosio et al. (2021a) over Africa, but their 
analysis was focused on future projections. Focusing on southern Africa, Karypidou et al. 
(2022) assessed the performance of CMIP5, CMIP6, CORDEX, and CORE ensembles 
in simulating mean and extreme precipitation. However, their findings were confined to a 
relatively small subset of the CMIP ensembles (13 CMIP5 and 8 CMIP6 models), and the 
study’s main emphasis was on mean precipitation.

Several studies have evaluated how well GCMs and RCMs can simulate extreme rainfall 
in African river basins. Diatta et al. (2020) investigated the Rossby Center Regional Cli-
mate Model’s (RCA4) ability to simulate extreme precipitation over the Casamance river 
basin. Salaudeen et al. (2021) evaluated the CMIP5 GCMs’ ability to reproduce extreme 
precipitation in the Gongola Basin. Agyekum et  al. (2022) investigated the performance 
of CMIP6 in simulating extreme precipitation over the Volta Basin. Samuel et al. (2022) 
evaluated CORE’s capacity to reproduce Zambezi’s extreme precipitation.

Although prior studies have evaluated climate models’ capacity to reproduce extreme 
precipitation over southern Africa, to our knowledge, no studies have compared the sea-
sonal performance of large ensembles over southern Africa and its major river basins. In 
this study, we investigate how well GCM (CMIP5 and CMIP6) and RCM (CORDEX and 
CORE) ensembles can reproduce observed extreme precipitation during the rainy season. 
This study focuses on DJF and transitional seasons (SON and MAM). These seasons are 
chosen because of their impact on southern Africa’s rain-fed agriculture. Understanding 
climate model simulations performances during these seasons is vital for southern African 
policymakers and climate information users. We employed six indices to characterize mean 
and extreme precipitation as established by the Expert Team on Climate Change Detection 
and Indices (ETCCDI, Zhang et  al. 2011), focusing on indices for identifying excessive 
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dryness and moderately wet conditions. The results of this research provide information 
that is beneficial to the scientific and user communities, especially regarding the use of 
these ensembles as inputs in impact models. The remainder of this paper is organized as 
follows: Sect. 2 presents the study area, data, and methods. The results and discussion are 
presented in Sect. 3, and a summary and concluding remarks are presented in Sect. 4.

2  Study area, data, and methods

2.1  Definition of the study area and sub‑regions

In this study, we define southern Africa as the region that lies between 10–35°S and 
10–40°E, focusing on four major river basins (the Limpopo, Okavango, Orange, and Zam-
bezi basins), as shown in Fig. 1. In fact, major economic activities, such as agriculture and 
power production, occur within the basins, making them vital in socioeconomic activities 
across the region (Abiodun et al. 2019).

2.2  Observational data

Several studies (Gibba et al. 2019; Abiodun et al. 2020; Dosio et al. 2021b; Hamadalnel et al. 
2022; Olusegun et al. 2022) have highlighted the lack of reliable high-quality in situ datasets 
at spatiotemporal coverage suitable for model evaluation as a key challenge in model evalua-
tion in Africa. Despite the considerable differences between merged satellite and gauged sta-
tion data, they are widely used as references for model evaluation over Africa (e.g., Abiodun 
et al. 2020; Ayugi et al. 2021; Klutse et al. 2021; Samuel et al. 2022). Discrepancies among 
the observations make it difficult to choose a specific dataset as a reference for model evalu-
ation. Therefore, the mean of multiple observational data has been used as a reference for 

Fig. 1  Topography of southern 
Africa. The black lines represent 
the four major river basins (Lim-
popo, Okavango, Orange and 
Zambezi) in southern Africa
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model evaluation in previous studies (e.g., Abidium et al. 2020; Wan et al. 2021; Karypidou 
et al. 2022; Ilori and Balogun 2021).

In this study, we used gridded data based on merged satellite and gauge observations. In 
particular, we used daily precipitation datasets obtained from the Climate Hazards Group 
Infrared Precipitation with Station (CHIRPs version 2, Funk et al. 2015), with a spatial resolu-
tion of 0.05° × 0.05°, the Tropical Applications of Meteorology using SATellite and ground-
based observations (TAMSAT version 3.1, Maidment et al. 2017), with a spatial resolution 
of 0.04° × 0.04°, and the African Rainfall Climatology (ARC version 2, Novella and Thiaw. 
2013) from the Famine Early Warning System, with a spatial resolution of 0.1° × 0.1°. These 
datasets have been evaluated against gauge stations over southern Africa and have demon-
strated better performance compared to other existing gridded observational data over the 
region (Maidment et al. 2017). Their high spatial resolution and superior performance over 
southern Africa make these datasets suitable for climate model evaluation, particularly over 
small regions such as river basins.

2.3  Climate model simulations

In this study, we used historical daily precipitation simulations from both global (CMIP5, 
CMIP6) and regional (CORDEX, CORE) climate models. Tables S1–4 provide a list of the 
models and their basic descriptions. In particular, we used 30 simulations from CMIP5, 26 
simulations from CMIP6, 25 simulations based on six RCMs downscaling 13 CMIP5 GCMs 
under the CORDEX experiment, and 9 simulations based on three RCMs downscaling three 
CMIP5 GCMs under the CORE experiment, obtained from the Earth System Grid Federation 
(ESGF) servers. The models are selected based on the availability of both historical and future 
(SSP5-8.5 for CMIP6 and RCP 8.5 for CMIP5, CORDEX, and CORE) simulations at the time 
of writing. The models selected here are used to project future changes in the second part of 
our study. To simplify the evaluation, we used simulations of one ensemble member for each 
model.

2.4  Extreme precipitation indices

This study analyzes six extreme precipitation indices (Table 1) as defined by the Expert Team 
on Climate Change Detection and Indices (ETCCDI) (Zhang et al. 2011). We used Climate 
Data Operators (CDO, https:// code. zmaw. de/ proje cts/ cdo) to compute all the indices. The 
selected indices provide information on the present and future characteristics of both wet and 
dry conditions in terms of intensity and duration. These indices have been widely used to 
define extreme precipitation (Gibba et al. 2019; Akinsanola et al. 2021; Zhu et al. 2021a, b; 
Abiodun et al. 2020; Dosio et al. 2021a; Ayugi et al. 2021; Yao et al. 2021; Dike et al. 2022; 
Luo et al. 2022; Samuel et al. 2022). The indices we used can be classified into three catego-
ries: duration indices, frequency indices, and intensity indices (Table 1). We analyze the indi-
ces for each year during December–January–February (DJF), March–April–May (MAM), and 
September–October–November (SON) from each observational dataset and climate model 
simulation on their native grids.

https://code.zmaw.de/projects/cdo
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2.5  Evaluation methods

The performance of the CMIP5, CMIP6, CORDEX, and CORE simulations in rep-
resenting historical extreme precipitation indices over southern Africa is evaluated 
for 23 years (1983–2005), which is common for both observations and climate model 
simulations. The spatial resolution differs across the individual models for CMIP5 and 
CMIP6. Although individual simulations for CORDEX and CORE are available on 
0.5° and 0.25° grids, respectively, the grid types differ across climate models. Hence, 
for CMIP5 and CMIP6, the indices are regridded onto a 1.32° × 1.32° grid using the 
bilinear method, while for CORDEX and CORE, are remapped to a common grid type 
(latitude × longitude) at their original resolution. The equal-weighted method is used 
for computing multimodel ensemble means (MMEs). We admit that the equal-weighted 
technique utilized here is constrained because models generated by the same institute or 
GCMs downscaled by the same RCM may have similar structural biases. This method 
has been used by most research dealing with ensembles of climate models over different 
regions of the world, including the “Africa-box” in the recent IPCC Special Report on 
1.5 °C warming (Hoegh-Guldberg et al. 2018) and AR6 (Gutiérrez et al. 2021). Weigel 
et al. (2010) found that, for many applications, equal weighting may be the more trans-
parent way to combine models and is preferable to a weighting that does not appropri-
ately represent the true underlying uncertainties, as “optimum weighting” requires both 
accurate knowledge of the single model skill and the relative contributions of the joint 
model error and unpredictable noise; both issues are still open to discussion.

To compute the mean of the three observations (OBSE) and evaluate the MMEs 
using statistical methods, we regridded the indices for each observation onto the cor-
responding MME grid using a conservative method.

The mean bias (MB; MME minus OBSE) is used to evaluate the performance of the 
MMEs in reproducing the spatial distribution of the magnitude of extreme precipitation. 
To assess the statistical significance of the bias, we used the method defined by Dosio 
et  al. (2021a), which is similar to that developed for the Intergovernmental Panel on 
Climate Change (IPCC) 6th Assessment Report (AR6, Gutiérrez et  al. 2021). Briefly, 
the bias of each simulation is considered statistically significant if it is greater than the 
interannual variability of the observations (regardless of the sign of bias). The interan-
nual variability is defined as γ = √(2⁄23) × 1.645 × σ, where sigma is the standard devia-
tion of the linearly detrended annual time series of the observations.

If more than 66% of the individual models exhibit significant bias and more than 66% of 
those models agree on the sign of the bias, the bias of the MMEs is deemed significant.
If more than 66% of simulations show significant bias but less than 66% agree on its 
sign, the bias of the MMEs is deemed conflicting.

We further evaluated the performance of the model ensembles in simulating the 
observed extreme precipitation indices spatially averaged over four major river basins in 
southern Africa. The Taylor diagram (Taylor 2001) is used to evaluate the ability of the 
models to reproduce the observed spatial patterns of extreme precipitation. The Taylor 
diagram is used to summarize the three statistics (spatial correlation coefficients: SCC; 
standard deviation: SD; and root mean square error: RMSE). The Taylor skill score 
(TSS; Wang et al. 2018) is used to further quantify the similarities between the ensem-
bles and the observation. The TSS is calculated as follows:
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Furthermore, the skill of the ensembles is quantified using the Kling–Gupta efficiency 
(KGE; Gupta et al. 2009). The KGE is calculated as follows:

where PC is the SCC between the OBSE and models and PC
0
 is the maximum SCC (here, 

we used 1). �
o
 and �

m
 are the SDs of the OBSE and models, respectively. �

o
 and �

m
 are the 

means of the OBSE and models, respectively.
The standard deviation (SD) of basin-averaged time series is used to evaluate the ability 

of the models to represent the magnitude of the observed interannual variability of each 
extreme precipitation index. The SD has been used to assess interannual variability in pre-
vious studies (e.g., Rajendran et al. 2022; Dosio et al. 2022a, b) and the IPCC AR6 report 
(Gutiérrez et al. 2021).

3  Results and discussion

The main focus of this section is on the performance of multimodel ensembles in reproduc-
ing extreme precipitation, with a brief evaluation of the monthly mean precipitation annual 
cycle.

3.1  Annual cycle of daily precipitation

Figure  2 shows the annual cycles of monthly averaged daily precipitation for the 
OBSE and multimodel ensemble means (MMEs) for CMIP5, CMIP6, CORDEX, and 
CORE. The results have been spatially averaged over the four southern Africa major 
river basins (Limpopo, Okavango, Orange, and Zambezi) shown in Fig. 1. Generally, 
all MMEs can reproduce the annual cycle of precipitation over all four river basins 
(Fig.  2). This is consistent with the findings of Karypidou et  al. (2022) over south-
ern Africa and Dosio et al. (2021a) over western southern Africa and eastern southern 
Africa, respectively. Although MMEs generally capture the temporal evolution of the 
precipitation cycle, they overestimate precipitation over all basins, especially between 
November and March. CMIP6 (CORDEX) exhibits the largest (lowest) biases over all 
basins except over the Orange basin. Similar to the findings of previous studies (Lim 
Kam Sian 2022; Karypidou et al. 2022), the wet biases of the MMEs are larger during 
the peak of the rainy season (DJF). Generally, the intermodel spread is very large, with 
larger uncertainties for CMIP5 than for the other ensembles. More specifically, CMIP5 
(CORDEX) shows the largest (smallest) intermodel uncertainty over the Okavango 
and Orange (Limpopo and Zambezi) basins, while CMIP6 (CORE) shows the smallest 
(largest) intermodel uncertainty over the Limpopo (Zambezi) basins. The performance 
of the RCM MMEs is better than that of the GCM MMEs, especially during the peak 
(DJF) of precipitation. CORDEX shows good agreement with the observed precipita-
tion peak during the DJF over the Zambezi basin. In agreement with a previous study 
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(Karypidou et al. 2022), CORDEX and CORE MMEs perform better than CMIP5 and 
CMIP6, which shows the added value of downscaling in simulating annual precipita-
tion cycles over the four basins. However, better performance in CORDEX than in 
CORE shows that other than the resolution, the model physical configuration also 
plays a critical role in improving the performance of climate models in simulating pre-
cipitation. Similar findings were reported by Wu et al. (2020). For instance, the better 
performances in CCLM and REMO might be associated with improvements in the con-
vective scheme under CORE (Tiedtke with modifications) compared to under CODEX 
(Tiedtke). In fact, Olusegun et al. (2022) noted that the modified Tiedtke cumulus con-
vection scheme is more suitable for West Africa than cumulus convection. Figure 6 in 
Panitz et al. (2014) shows that the increase in resolution of CCLM at ~ 50 to ~ 25 km 
has no impact in simulating annual precipitation cycles over southern Africa.

3.2  Daily extreme indices

Here, we present the results of the performance of the ensembles in simulating extreme 
precipitation indices during the main rainy season (DJF) only, with results for other 
seasons (SON and MAM) available as supplementary materials (Figs. S1–S10).

Fig. 2  The climatological (1983–2005) annual cycle of mean precipitation (mm/day) for the avarage of the 
observation (OBSE) and model ensembles spatially averaged over southern Africa major river basins shown 
in Fig. 1. The shaded areas show the range of the OBSE and each model ensemble
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3.2.1  Spatial distribution of biases

Figure  3 shows the spatial distribution of the climatological biases of CDD, CWD, and 
RR1 from CMIP5, CMIP6, CORDEX, and CORE MMEs. Similar maps for the SON and 
MAM seasons are shown in Figs. S1 and S2. The results show that all the ensembles tend 
to significantly underestimate the observed values of CDD over most of southern Africa 
(Fig. 3d–g). In particular, all ensembles largely underestimate CDD values over most of 
the region, with negative biases of more than 10 days over coastal Angola, the northeastern 

Fig. 3  Spatial distribution 23-year observed (OBSE) climatological (1983–2005) for a CDD, b CWD, c 
RR1 during December–January–February (DJF); and the climatological biases of multimodel mean (MME 
minus OBSE) from top to bottom are CDD (d–g), CWD (h–k), and RR1 (l–o). Areas with full color are 
those where the bias is statistically significant. The regions where the bias is non-significant and uncertain 
are highlighted by vertical and horizontal lines, respectively
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Orange basin, and the eastern Limpopo basin. However, CORDEX and CORE overesti-
mate CDD values by up to 6 days over the eastern Zambezi basin, northern Mozambique, 
and in some areas over southwestern coastal south Africa and the southwestern Orange 
basin. CMIP5 overestimates CDD by 6 days over northern Mozambique and in some areas 
over the northeastern Zambezi basin, southwestern Orange, and southwestern coastal 
South Africa. The biases of MME for CDD are lower over the Zambezi basin than over the 
other three basins. Similar to the DJF season, all the ensembles significantly underestimate 
CDD over all basins during MAM (Fig. S1d–g). In contrast, during SON, the ensembles 
exhibit larger areas of overestimation of CDD (Fig.  S2d–g). For instance, during SON, 
the ensembles exhibit larger areas of statistically significant overestimation (underestima-
tion) of CDD values over the Orange basin (northern Mozambique and southern Tanza-
nia). Overall, for CDD, the ensembles exhibit less biases over the Zambezi basin than over 
the other three basins. All the ensembles tend to overestimate CWD (Fig. 3h–k) and RR1 
(Fig. 3l–o) over southern Africa. More specifically, CMIP6 and CMIP5 (CORE) overes-
timate CWD values by more than 20 days over the northern part of southern Africa and 
most of the Zambezi basin (northern part and northwestern Zambezi basin). CORDEX 
overestimates CWD values by more than 20 days over small-localized areas in the north-
ern part. CORDEX and CORE underestimate CWD values by up to 4 days over northern 
Mozambique and the southeastern Zambezi basin. A comparison of the seasonal biases 
shows that the large biases in both GCMs and RCM MMEs during DJF are reduced during 
MAM and SON, particularly in CMIP5, CMIP6, and CORE over the northern Zambezi 
basin (Figs. 3, S1, and S2).

Overall, CORDEX has better performance than CMIP5, CMIP6, and CORE in simulat-
ing CWD over southern Africa. The greater extent of overestimation of CWD in CORE 
than in CORDEX could be associated with the excess moisture supply in CORE than in 
CORDEX. Pinto et al. (2016) associated the wet biases in CORDEX RCMs with poor rep-
resentation of atmospheric circulation patterns such as the Angola low and hence increased 
moisture input from the Atlantic Ocean. In contrast to CDD, MME biases are larger over 
the Zambezi basin compared to the other three basins for CWD, especially in CMIP5, 
CMIP6, and CORE. The largest positive biases of RR1 are located in southeastern Zimba-
bwe, the southern Okavango basin, and the eastern Orange and Limpopo basins (Figs. 3, 
S1, and S2). Similar to previous studies (Abidum et al. 2020; Karypidou et al. 2022; Luo 
et al. 2022), larger biases over Drakensberg Mountain illustrate the influence of complex 
topography on precipitation. Furthermore, the lower biases in the RCM MMEs in this 
region demonstrate their ability to resolve fine-scale regional processes better than GCMs 
(e.g., complex topography; Mishra et  al. 2014; Karypidou et  al. 2022). CMIP6 shows a 
larger overestimation of RR1 over a larger area than CMIP5. For instance, CMIP6 exhibits 
an overestimation of RR1 by 24 days over large areas of the southeastern Zimbabwe, Oka-
vango, and Limpopo basins (eastern coastal areas of southern Africa) during (MAM) DJF 
(Figs. 3 and S1). Overall, RCM MMEs demonstrate better performance than GCM MMEs 
in simulating CWD and RR1, with slightly better performance in CORDEX. The better 
performance in CORDEX and CORE than CMIP5 and CMIP6 could be a result of their 
ability to better represent topography than GCMs and hence better in capturing northerly 
moisture transport into southern Africa (Munday and Washington 2018; Karypidou et al. 
2022). However, the smaller number of ensemble members in CORE compared to COR-
DEX and the larger overestimation of RR1 and CWD in RegCM simulations may partly be 
responsible for the slight underperformance of CORE compared to CORDEX.

The climatological spatial distribution biases of SDII, R10mm, and R20mm are shown 
in Fig.  4. All ensembles underestimate the observed SDII values over southern Africa, 
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except over a few areas where they slightly underestimate SDII. A common region with 
the largest underestimation of SDII values is shown in all MMEs. In particular, all MMEs 
exhibit a negative bias of more than 6 mm/day over southern coastal Mozambique and the 
southern and eastern Limpopo basin (Fig. 4d–g). Conversely, all MMEs show larger areas 
of slight overestimation over the southeastern Orange basin. Additionally, the CORDEX 
(CORE) MME shows areas of slight overestimation of SDII over south Angola, north-
coastal Namibia, southeastern Limpopo basin, and (southern Angola, northern-eastern 
Okavango basin, and most of Orange basin). A comparison of the three seasons shows that 

Fig. 4  Spatial distribution 23-year observed (OBSE) climatological (1983–2005) for a SDII, b R10mm, 
c R20mm during December–January–February (DJF); and the climatological biases of multimodel mean 
(MME minus OBSE) from top to bottom are SDII (d–g), R10mm (h–k), and R20mm (l–o). Areas with full 
color are those where the bias is statistically significant. The regions where the bias is non-significant and 
uncertain are highlighted by vertical and horizontal lines, respectively
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all MMEs exhibit larger biases during MAM than during DJF and SON, particularly dur-
ing MAM over the south coastal Mozambique, Limpopo basin, and northern Orange basin 
(Figs. 4, S3, and S4). It is important to note that GCM and RCM MMEs show similarities 
in the magnitude of biases for SDII. CMIP5 and CMIP6 MMEs show statistically signifi-
cant positive biases for R10mm and R20mm in most of southern Africa and small-negative 
biases over southern Tanzania, northern Mozambique, and northern Angola. CORDEX 
and CORE MMEs tend to overestimate R10mm over the Okavango, Orange, and Lim-
popo basins and western coastal Angola but show a strong underestimation (up to 12 days) 
over the northern Angola, northern Mozambique, southern Tanzania, and eastern Zambezi 
basin (Fig. 4j, k).

For R20mm, the CORDEX and CORE MMEs exhibit positive biases over most of 
southern Africa, with few areas of negative biases, particularly over Mozambique. Com-
paring the biases of the DJF season to those of the MAM and SON seasons shows that 
all MMEs show better performance in simulating R10mm and R20mm during MAM and 
SON (Fig. 4, S3, and S4). Furthermore, there are larger areas of statistically insignificant 
biases in all MMEs for R10mm and R20mm during the MAM and SON seasons compared 
to DJF. The MMEs show a common larger wet bias over Lesotho and southeast coastal 
South Africa. Diallo et al. (2015) associated the wet bias shown over Lesotho and south-
east coastal South Africa with the overestimation of southerly wind flux and the effects of 
complex topography on convection triggering. More specifically, the area of overestimation 
over Lesotho (southeastern coastal South Africa) is slightly larger in CMIP6 and CORE 
than in CMIP5 and CORDEX. However, the magnitude of the negative bias for R10mm 
and R20mm over northern Mozambique is slightly higher in CMIP5 than in CMIP6. 
Despite the persistence of statistically significant biases in MME simulations for the six 
extreme precipitation indices, they reasonably reproduce the spatial distribution of extreme 
precipitation over southern Africa (Fig. not shown). This implies that the MMEs can cap-
ture key climate systems that influence precipitation over southern Africa.

3.2.2  Regional analysis

Figure  5 shows the comparison between the observed and simulated extreme precipita-
tion indices averaged over the four southern Africa major river basins shown in Fig.  1. 
The differences between the observed mean CDD are larger during MAM than during DJF 
and SON, with the largest difference over the Limpopo and Orange basins (Figs. 5a, S5a, 
and S6a). The MMEs tend to underestimate the observed mean CDD over all basins dur-
ing the three seasons, with few cases of overestimation. The interquartile range of MMEs 
is smaller over the Zambezi basin, with ranges of 2.3, 2.0, 1.8, and 2.3 days for CMIP5, 
CMIP6, CORDEX, and CORE, respectively. Notably, all MMEs overestimate CDD rela-
tive to TAMSAT, while CMIP5, CMIP6, and CORE (CORDEX) underestimate (over-
estimate) mean CDD over the Orange basin during SON relative to ARC and CHIRPs 
(Fig.  S6a). The CMIP5, CMIP6, CORDEX, and CORE medians overestimate the mean 
CWD and RR1 over all basins (Fig. 5b, c). In particular, for RR1 and CWD, the interquar-
tile ranges of CMIP5 and CMIP6 are outside the maximum range of the observations over 
all basins, whereas CORDEX and CORE medians are generally higher than the largest 
mean of the observations (Fig. 5b, c).

In contrast to CDD, for CWD, the interquartile range for MMEs is larger over 
Zambezi compared to other basins, particularly for CMIP5 (24.4  days) and CMIP6 
(24.0 days). The differences between observations are larger for CDD (with a maximum 
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difference of 4.6 days over the Limpopo basin) than for CWD (with a maximum differ-
ence of 2.7 days over the Zambezi basin). For R10mm, R20mm, and SDII, the biases of 
MMEs are different depending on the reference observation and river basins (Fig. 5d, e, 
f). Previous studies have reported that the performance of climate models depends on 
the choice of reference observation and geographical location (Dosio et  al. 2021a, b; 
Faye and Akinsanola 2022). The differences between the observations are larger than 
the intermodel spread for the mean SDII over the Limpopo basin compared to other 
basins, with means of 10.4, 14.1, and 18.3 mm/day for ARC, CHIRPS, and TAMSAT, 
respectively. This illustrates that the agreement of the observations is less than that of 
the model simulations (see Fig. 5f and, e.g., Dosio et al. 2021b). Interestingly, CORE 
shows a larger overestimation of R20mm than CMIP5 and CMIP6 over the Orange basin 
(all basins) during DJF (MAM and SON, except for Zambezi during MAM). Addition-
ally, the intermodel spread of CORE is larger than those of CMIP5, CMIP6, and CORE 
during MAM for R20mm (Fig. S5e). Samuel et al. (2022) noted that RegCM (under the 
CORE experiment) has challenges in simulating precipitation indices over the Zambezi 
River basin, therefore largely contributing to the interquartile spread of the CORE. A 
comparison between CMIP5 and CMIP6 shows that CMIP5 performs slightly better for 
most indices, except SDII and CWD, over the Zambezi basin. However, the interquartile 
range of CMP5 is generally larger than that of CMIP6. Overall, the intermodel spread 
is larger during MAM and SON than during DJF for most of the indices over all basins. 
Generally, RCMs show better performance in simulating the magnitude of the observed 
extreme precipitation indices and have lower interquartile spreads than GCMs for most 

Fig. 5  December–January–February (DJF) climatological (1983–2005) means of a CDD, b CWD, c RR1, 
d R10mm, e R20mm, and f SDII spatially averaged over the four basins shown in Fig. 1. The results are 
shown for each observation (solid circles), CMIP5, CMIP6, CORDEX, and CORE ensembles (box and 
whisker plots). The boxes indicate the interquartile (25th and 75th) model range, the solid marks within the 
boxes show the multimodel median, and the whiskers indicate the total intermodal range
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indices, with some exceptions, particularly for CORE. In particular, CORDEX shows 
better performance than CORE in simulating extreme precipitation over the four basins.

Figures 6 and 7 show Taylor diagrams of the spatial correlation coefficient (SCC), nor-
malized standard deviation (NDS), and centered mean-square difference (CRMSD) of the 
simulated indices (for the individual models and the multimodel ensemble means) against 
CHIRPS for the four river basins. To assess the uncertainty among the observations, the 
results for ARC and TAMSAT are also shown. The performance of individual models and 
MMEs varies with basin and index (Figs. 6 and 7). For instance, individual models and 
MMEs show lower SCCs over Limpopo (< 0.4) and Zambezi (< 0.6) for CDD. However, 
agreement among observations is also weak over the two basins for CDD. The spread 
among the models is larger for CWD than for CDD, RR1, R10mm, R20mm, and SDII. 
Notably, the uncertainty of the observations is larger over the Orange and Zambezi basins. 
In particular, the NSDs for most of the models are > 1.5 for CWD (RR1) over all river 
basins (Orange River basin). In particular, the CORDEX MME shows better performance 
than CMIP5, CMIP6, and CORE in replicating CHIRPS NSDs for CWD over the Lim-
popo and Okavango basins, with NSD values of 1.0 and 1.66, respectively, in the COR-
DEX MME. CORDEX MME performs better than CMIP5, CMIP6, and CORE MMEs 
in simulating most of the extreme precipitation indices. The SCCs (NSDs) for individual 
models and MME range from 0.6 to 0.95 (0.5 to 1.5) for R10mm and R20mm. Similar to 
CDD, most individual models and MMEs exhibit lower SCC (< 0.7) over the Limpopo and 

Fig. 6  Taylor diagram illustrating the uncertainty of the observations and performance of multimodel 
ensembles (CMIP5, CMIP6, CORDE, and CORE) in simulating December–January–February (DJF) cli-
matological (1983–2005) CDD (first row), CWD (second row), and RR1 (third row) spatially averaged over 
Limpopo (first column). CHIRPS is used as a reference, while the black dots represent ARC and TAMSAT. 
Filled colored dots indicate multimodel ensembles, and crosses indicate ensemble members
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Zambezi basins compared to the Orange and Okavango basins for R10mm and R20mm. 
More specifically, the spread among models is larger over Okavango for R10mm. Most 
of the individual models underestimate CHIRPS NSDs for SDII, particularly over the 
Limpopo, Orange, and Zambezi basins. The model spread is smaller for CDD and SDII 
than for CWD, RR1, R10mm, and R20mm over the four river basins. Overall, individ-
ual models and MMEs exhibit the worst performance in simulating extreme precipitation 
over the Limpopo and Zambezi basins, although the uncertainty among the observations is 
also larger over the two river basins for most of the indices. Taking the uncertainty among 
the observations into account, all ensembles generally reproduce the spatial patterns of 
extreme precipitation over the four river basins, with better performance in MMEs com-
pared to individual models.

Figure  8 shows the Taylor skill score (TSS) for the model ensembles relative to the 
mean of the observations (OBS) during DJF, averaged over the four basins. For CDD, the 
MMEs show better (worst) skills in representing extreme precipitation over Okavango 
and Orange (Limpopo) with TSS greater than 0.8 (less than 0.2). For example, the TSS 
for CDD for CMIP5, CMIP6, CORDEX, and CORE ranges between 0.01 and 0.46, 0.03 
and 0.28, and 0.05 and 0.39, respectively. The higher TSS over the Limpopo basin during 
MAM and SON (> 0.40 in all ensembles with the exception of CMIP6 during MAM) com-
pared to DJF (< 0.2 in all ensembles) demonstrates the better performances of the ensem-
bles for CDD during MAM and SON compared to DJF (Figs. 8, S7, and S8). For CWD in 

Fig. 7  Taylor diagram illustrating the uncertainty of the observations and performance of multimodel 
ensembles (CMIP5, CMIP6, CORDE, and CORE) in simulating December–January–February (DJF) cli-
matological (1983–2005) R10mm (first row), R20mm (second row), and SDII (third row) spatially averaged 
over Limpopo (first column). CHIRPS is used as a reference, while the black dots represent ARC and TAM-
SAT. Filled colored dots indicate multimodel ensembles, and crosses indicate ensemble members
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DJF, MMEs exhibit the highest and lowest skills over Limpopo and Zambezi, respectively. 
The range of TSS is higher for CWD over the Zambezi basin despite lower skill in the 
ensembles, with TSS ranging from 0.05 to 0.7 for CMIP5, 0.08 to 0.66 for CMIP6, 0.03 
to 0.58 for CORDEX, and 0.02 to 0.42 for CORE. The TSS of the ensembles is gener-
ally greater than 0.5 for both R10mm and R20mm over all the basins. Over the Orange 
basin, the ensembles show TSS values less than 0.4 for SDII, with TSS values for individ-
ual models ranging from 0.10 to 0.72 for CMIP5, 0.06 to 0.72 for CMIP6, 0.12 to 0.62 for 
CORDEX, and 0.13 to 0.70 for CORE. Figures 8, S7, and S8 illustrate that MMEs can rea-
sonably represent extreme precipitation indices over the four basins, especially in DJF and 
SON. However, the range of TSS is higher for most extreme precipitation indices. Notably, 
the results show that CORDEX has better skills than the other ensembles in representing 
extreme precipitation during DJF, MAM, and SON.

Table 2 shows the Kling–Gupta efficiency (KGE) values of extreme precipitation for the 
ensembles over each basin. Generally, the ensembles show poor skills in simulating CWD, 
with all ensembles showing negative KGE values over the basins except for CORDEX over 
Limpopo and Okavango. In agreement with the Taylor diagram and the TSS discussed 
previously, the ensembles show poor skills in simulating CDD over the Limpopo basin. 
However, the ensembles show good skills in simulating CDD over Okavango, Orange, and 
Zambezi. The skills of the GCM ensemble (CORE) are poor in simulating RR1 over the 
Limpopo and Orange basins (Limpopo basin). On the other hand, CORDEX shows good 
skill in simulating RR1 over these basins. Generally, the KGE values for R10mm, R20mm, 
and SDII for the ensembles are positive over all basins, with few exceptions (Table  2). 
Overall, the ensembles show good skills in simulating CDD, RR1, SDII, R10mm, and 
R20mm.

Figure 9 shows the box and whisker plots of the interannual variability of extreme 
precipitation indices calculated using the standard deviation (SD) of the time series 
(1983–2005) for the MMEs. The circles show the interannual variability of each 

Fig. 8  Taylor skill scores (TSS) showing the performance of multimodel ensembles in simulating Decem-
ber–January–February (DJF) climatological (1983–2005) a CDD, b CWD, c RR1, d R10mm, e R20mm, 
and f SDII, spatially averaged over the four major river basins of southern Africa. The filled bars represent 
the TSS for the multimodel ensemble means. Error bars indicate the intermodal range for each ensemble
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observation. The results for CDD show the largest differences among the observa-
tions (4.9, 2.3, and 4.1 days for ARC, CHIRPS, and TAMSAT, respectively) over the 
Orange basin and the lowest (1.3, 1.4, and 1.7 days for ARC, CHIRPS, and TAMSAT, 
respectively) over the Zambezi basin (Fig. 9a). The sign of MME biases for the inter-
annual variability in CDD differs depending on the observation (Figs. 9a, S9a, S10a). 
For instance, all MMEs overestimate (underestimate) the interannual variability rela-
tive to TAMSAT (ARC and CHIRPS) over orange basins. Similar to the observations, 
the interquartile ranges of CDD for CMIP5 (0.7  days), CMIP6 (0.5  days), CORDEX 
(0.4 days), and CORE (0.8 days) are lower over the Zambezi basin and larger (1.8, 1.5, 
1.2, and 1.0  days, respectively) over the Orange basin. The larger intermodel spread 
shown for the interannual variability in CDD during MAM and SON is similar to that 
for the mean CDD (Figs. 9a, S9a, and S10a). It is interesting to note that CMIP5 and 
CMIP6 exhibit smaller biases than CORDEX and CORE for CDD over the Limpopo, 
Okavango, and Zambezi basins (Fig.  9a). For CWD, all MMEs tend to overestimate 
the interannual variability relative to all observations, except over the Zambezi basin, 
where the CORE underestimates interannual variability relative to the ARC. Similar 
to CDD, the biases of RR1, R10mm, and R20mm vary depending on the observation 
(Fig.  9c, d, e, f). MMEs overestimate the observed interannual variability for CWD, 
with larger positive biases in GCM ensembles compared to RCM ensembles over all 
basins (Fig. 9b–d). Generally, the intermodel spread is larger in GCM ensembles than 
in RCM ensembles for most of the indices over the basins. A comparison of CMIP5 
and CMIP6 shows that CMIP5 exhibits a larger intermodel spread than CMIP6 for most 
indices over all basins.

Fig. 9  DJF interannual variability (1983–2005) of a CDD, b CWD, c RR1, d R10mm, e R20mm, and f 
SDII for the four basins shown in Fig.  1. The results are shown for the observations (solid circles) and 
CMIP5, CMIP6, CORDEX, and CORE ensembles (box and whisker plots)
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4  Summary and concluding remarks

The evaluation of historical climate simulations is fundamental, especially before they 
are used to assess the future impacts of extreme precipitation on key sectors such as 
agriculture and water resources. This is particularly important over southern Africa 
because of the difficulties of climate models in representing precipitation over the 
region (Desbiolles et al. 2020; Samuel et al. 2022).

This study investigates the performance of large ensembles of global (CMIP5 and 
CMIP6) and regional (CORDEX and CORE) climate models in simulating extreme pre-
cipitation over the four major river basins (Limpopo, Okavango, Orange, and Zambezi) 
of southern Africa. The performance of climate models in simulating extreme precipi-
tation was evaluated for 23 years (1983–2005) during DJF, MAM, and SON using six 
extreme precipitation indices (CDD, CWD, RR1, R10mm, R20mm, and SDII) defined 
by ETCCDI. Three satellite-based observations (ARC, CHIRPS, and TAMSAT) are 
used. The assessment is mainly focused on the performance of MMEs compared to the 
mean of the three observations (OBSE) during the peak of the rainy season (DJF). How-
ever, we considered the spread of the observations and ensembles to assess their respec-
tive uncertainties. Several statistical metrics were used to quantify the performance of 
MMEs over the four basins.

The results show that all MMEs can reproduce precipitation peak during DJF over all 
basins, albeit with wet biases in all ensembles. The spread of the ensembles is generally 
larger than that of the observations, with a larger spread in the GCM than in the RCM. 
CORDEX is closer to the observations compared to the other three ensembles. The spa-
tial distributions of the biases of extreme precipitation are consistent across the ensem-
bles. In particular, all the ensembles overestimate (underestimate) CDD, RR1, R10mm, 
and R20mm (CDD and SDII) over all basins, except for CORDEX and CORE over the 
eastern region of the Zambezi basin for R10mm. Lower biases in CORDEX and CORE 
compared to CMIP5 and CMIP6 show the added value of dynamic downscaling. In 
particular, the biases of CORDEX simulations are lower than those of CORE, despite 
CORDEX having a lower spatial resolution than CORE. This can be partially because 
the number of CORE simulations is very limited (only 3 RCMs downscaling 3 GCMs), 
but a detailed analysis of the CORE performance over southern Africa is still missing.

The intermodel spread is larger than the observational spread for most of the indices 
over all basins. In particular, the spread of the CMIP5 and CMIP6 ensembles is larger 
than those of CORDEX and CORE.

The biases of interannual variability of extreme precipitation indices are generally 
consistent with those of the mean of extreme precipitation over the four basins, with 
regional models usually performing better than the GCMs, apart from CDD.

We used several statistical metrics to quantify the performance of the ensembles 
in simulating extreme precipitation spatially averaged over the four basins. The low-
est SCC and TSS are observed over the Limpopo basin for CDD compared with the 
other three basins. However, MMEs largely overestimate the NSD relative to CHIRPS, 
with NSD values greater than three for most ensemble members over all basins. Gener-
ally, the ensembles show good skill in simulating extreme precipitation over the basins, 
except for CDD and CWD over the Limpopo basin and all basins, respectively.

In summary, RCM ensembles perform better than GCM ensembles for most extreme 
precipitation indices over all basins, which illustrates the added value of dynamic 
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downscaling in simulating extreme precipitation. Generally, the intermodel spread is 
very large for all indices over all basins.

Without any claim for completeness, we acknowledge several caveats about this 
study. First, the results of this study provide a first-order assessment of multimodel 
ensemble performances in reproducing the observed extreme precipitation. However, 
persistent biases in the ensembles indicate the need for additional study on model 
evaluation over basins using a process-based approach. Second, multimode ensembles, 
which do not represent the performance of individual models, are the primary focus of 
this study. To account for individual model performance, we computed the intermodel 
spread for each ensemble. Nonetheless, a thorough assessment of individual model per-
formance may be helpful in better understanding ensemble biases. Third, due to the 
lower resolution of GCM simulations, regionally averaged assessments are restricted to 
basin averaging, which disregards spatial heterogeneity of precipitation within the basin 
borders. Even CORDEX simulations (at ~ 50  km resolution) may still be considered 
coarse to be used when subdividing basins into subregions with homogeneous precipi-
tation. As the main aim of our studies is to compare different classes of models (with 
different resolutions), we therefore believe that pour choice is a valid compromise and, 
while spatial heterogeneity of precipitation within basins is not considered in the basin-
averaged results, the information on model performance is still informative, as shown in 
previous studies (e.g., Abiodun et al. 2019; Zhu et al. 2021a, b). Finally, annual cycles 
of precipitation are evaluated using climatological monthly means, which may introduce 
some uncertainty into the results. Despite its shortcomings, this approach is frequently 
used to evaluate the ability of climate models to simulate annual precipitation cycles 
(Ayugi et al. 2021; Hamadalnel et al. 2022; Dike et al. 2022).

Despite the aforementioned caveats, the study still provided important information 
on the ability of CMIP5, CMIP6, CORDEX, and CORE to reproduce observed extreme 
precipitation over southern Africa’s major river basins. Hence, we believe the results 
in this study are robust and provide important information to the scientific community 
and policymakers on the capabilities and limitations of CMIP5, CMIP6, CORDEX, and 
CORE in representing extreme precipitation over southern Africa’s major river basins. 
In particular, this study shows that wet biases persist in all model ensembles across all 
of the basins for most indices except for SDII, which has not always been reduced (and 
sometimes has been increased) by model development (CMIP6 vs. CMIP5) or increased 
resolution (CORE vs. CORDEX).
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