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Abstract
Recent shifts in the Australian climate including both higher temperatures and lower winter 
rainfall have had significant effects on the agriculture sector. Despite these recent trends, 
there remains uncertainty over the future climate and its potential impacts on Australian 
farm businesses. In this study, a statistical model of Australian cropping and livestock 
farms is combined with downscaled temperature and rainfall projections for 2050, to simu-
late the effects of climate change on farm profits. These future projections are compared 
against both a historical reference climate (1950 to 2000) and recent conditions (2001 to 
2020). The results provide an indication of ‘adaptation pressure’: showing which regions, 
sectors and farm types may be under greater pressure to adapt or adjust to climate change. 
Future scenarios produce a wide range of outcomes, with simulated change in average farm 
profits (without any long-run adaptation or technological advance) ranging from −2 to 
-32% under RCP4.5 and −11 to −50% under RCP8.5, compared with a decline of 22.3% 
under observed post-2000 conditions (all relative to 1950 to 2000 climate). In contrast with 
the recent observed changes, projections show relatively moderate effects in south-eastern 
Australia, but relatively stronger effects for livestock farms in northern Australia.

Keywords  Climate change · Agriculture · Farm · Simulation · Economics

1  Introduction

Recent droughts across eastern Australia in 2018–2019 and 2019–2020 had dra-
matic effects on farm businesses (Martin and Topp 2019; Hughes et  al. 2019) adding 
to longstanding concerns around the emerging effects of climate change on Australian 
agriculture.

In addition to higher temperatures, Australia has experienced significant changes in 
rainfall over the last 20 to 30 years. In particular, average winter rainfall has declined in 
southern Australia, while summer rainfall has increased in north-western Australia (CSIRO 
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and BoM 2020). These rainfall trends are at least partly related to global warming atmos-
pheric changes (Cai et al. 2014; Cai and Cowan 2013; Cai et al. 2012).

These changes have already had large effects on Australian agriculture. Hochman et al. 
(2017) estimate that changes in climate have reduced Australian wheat yields by around 
27% since 1990. Hughes et  al. (2017) found that changes in climate have negatively 
affected the productivity of Australian cropping farms since 2000, while Kingwell et  al. 
(2014), Islam et al. (2014) found similar effects for farms in south-western Australia. These 
studies also find evidence of adaptation, including improvements in farming practices and 
migration of cropping activity helping to offset climate effects (Chancellor et  al. 2021; 
Hochman et al. 2017; Hughes et al. 2017; Kingwell et al. 2014).

Given the difficulty in separating global climate change from natural variability, there 
remains uncertainty over what these trends will mean for Australian farmers over the long 
term. Estimating the future effects of climate change on farms, therefore remains an active 
area of research (see Pearson et al. 2011; Hertel 2018; Blanc and Reilly 2017; Wang et al. 
2022). Estimates of farm climate change impacts are important both in informing local 
adaptation responses and as an input to global assessments of agricultural supply and 
demand under climate change (see IPCC 2019).

Historically, Australian and international research on this subject has focused heav-
ily on assessing effects on crop yield via ‘process-based’ bio-physical simulation models 
(Wang et al. 2022). Recent studies of Australian wheat yields include Ghahramani et al. 
(2015) and Wang et al. (2019) who both apply the APSIM model (Keating et al. 2003). 
Although crop yield modelling remains dominated by process-based approaches, statistical 
crop yield models are also common. Recent reviews (Lobell and Burke 2010; Lobell and 
Asseng 2017; Moore et al. 2017) show both methods generate similar responses to climate 
change, at least after accounting for CO2 fertilisation effects (which are excluded from sta-
tistical models).

In Australia in particular, less research has focused on whole-of-farm outcomes particu-
larly farm profits. This is important in the context of Australian broadacre farms, which 
undertake a wide range of interrelated crop and livestock activities. Further, a focus on 
farm profits can provide a meaningful picture of climate change ‘adaptation pressure’, 
since changes in profits are ultimately what motivate farmer adaptation responses.

Most Australian studies of farm-scale outcomes have applied process-based models to 
case-study farms (often using the AusFarm framework, building on the APSIM model, see 
Ghahramani et al. 2020; Ghahramani and Bowran 2018; Thamo et al. 2017; Ghahramani 
and Moore 2016; Rodriguez et al. 2014). These studies generally find negative effects of 
climate change on Australian farm profits on average (Ghahramani and Bowran 2018; 
Ghahramani et al. 2020) with a wide range of potential outcomes, with this variation due 
mostly to uncertainty over rainfall projections.

Bio-physical models are subject to some well-established advantages and limitations 
(see Blanc and Reilly 2017; Antle 2019). In particular, these models often have limited 
spatial and industry coverage, with studies usually focusing on a small number of repre-
sentative farm businesses/locations. Further, while they contain highly detailed environ-
mental processes their representation of farmer behaviour and decision making tends to be 
more simplistic.

Internationally, farm bio-economic models have been commonly applied to measure 
agricultural outcomes of climate change (particularly in Europe see for example Louhi-
chi et al. 2010; Blanco et al. 2017). These models draw on economic theory (profit maxi-
misation and partial equilibrium) to represent farm management as a mathematical pro-
gramming problem usually at a regional (rather than farm location) scale. Larger scale 
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bio-economic models (linked to bio-physical models) are often used for global integrated 
assessments of agricultural supply and demand (see Nelson et al. 2014).

As with crop yields, statistical approaches to modelling farm-level economic outcomes 
have also emerged. One approach involves development of reduced-form statistical mod-
els, given panel data on farm economic outcomes and linked weather data (see Blanc and 
Reilly 2017; Fisher et  al. 2012; Deschênes and Greenstone 2012; Segerson and Dixon 
1999). Another involves hybrid or ‘econometric process’ models, which link farm panel 
data with outputs from bio-physical simulation models (see Antle et al. 2014; Antle 2019). 
This hybrid approach has previously been applied to examine climate change effects on 
Australian broadacre farms (Nelson et al. 2010)1.

Such statistical models capture the responses of farms as observed under real world con-
ditions, simultaneously taking into account both bio-physical and socio-economic factors 
(i.e. the behaviour of farm managers). They also can provide both farm-scale detail and 
broad spatial coverage, supporting the simulation of national and sector wide outcomes of 
relevance to policy makers.

In this study, a new statistical model of Australian farms farmpredict  is applied to simu-
late the potential effects of climate change on the profits of Australian farms. farmpredict is 
a data-driven reduced-form model of Australian broadacre (extensive cropping/livestock) 
farms, which simulates the effects of weather conditions and prices on the production and 
financial outcomes of individual farm businesses. This micro-simulation model combines 
farm panel data with site specific temperature and rainfall data to estimate non-parametric 
statistical models. The model provides detailed farm-scale estimates of output and revenue; 
input use and costs; and changes in farm inventories and farm profit, with national cover-
age of the Australian broadacre (extensive cropping and livestock) industries.

Downscaled climate change projections for rainfall and temperature (produced by the 
CSIRO and BoM 2015) are applied to the farmpredict model. Farm outcomes are simulated 
under projected 2050 climate (for a range of greenhouse gas pathways and general circula-
tion models) and compared to the historical reference period 1949–1950 to 1999–2000. 
For contrast, results are also presented for the recently observed climate (2000–2001 to 
2019–2020).

Given the reduced-form statistical approach, the results of this study do not account for 
the positive effects of long-run adaptation, technological advance or CO2 fertilisation. Fur-
ther, the scenarios also do not account for potential long-run changes in global supply and 
demand of agricultural commodities and related effects on world prices, or the effects on 
Australian farms of domestic or international climate change mitigation policy.

In effect, the model results simulate how current day farmers, facing current technology 
and prices would perform under a shift to 2050 climate conditions (relative to a long-run 
historical climate). As such, the study does not attempt to estimate long-term changes in 
agricultural land use or supply. Rather, the results provide an indication of current adapta-
tion pressure: identifying which regions, sectors and farm types may be under greater pres-
sure to adapt or adjust to climate change.

1  An alternative statistical approach involves the estimation of hedonic models of farm-land prices using 
cross-sectional rather than panel data, referred to as a ‘Ricardian’ approach (Mendelsohn et al. 1994).
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2 � Method

2.1 � Study focus: Australian broadacre farms

Broadacre (extensive cropping and grazing) farms produce Australia’s main agricultural 
export commodities including wheat, beef, lamb and wool. Australian broadacre farms 
occupy around 450 million hectares of agricultural land (around 60% of Australia’s land 
mass). The industry generates a total annual production of around $30–35 billion AUD (of 
which 70–90% is typically exported).

Cropping activity occurs mostly within the Australian ‘Wheat-Sheep zone’ (Fig.  1), 
with livestock tending to dominate in the coastal ‘high-rainfall’ zones (where rainfall is 
often too high for extensive cropping) and the more in-land ‘Pastoral’ zones (where rainfall 
is generally too low for cropping). Australian broadacre farms are highly diverse, both in 
terms of their production systems and sizes. Central Australia is dominated by large graz-
ing farms, some over 1 million hectares in size each, while coastal areas are populated with 
large numbers of smaller properties (of 500 hectares or less).

The Australian Agricultural and Grazing Industry Survey (AAGIS) collects detailed 
physical and financial information for around 1600 broadacre farms across Australia annu-
ally (ABARES 2021). The survey is designed to provide representative coverage of all 
Australian broadacre farming regions and industries, including extensive cropping, live-
stock (beef and sheep) and mixed farming types. The survey uses a rotating sampling 

Fig. 1   Broadacre farm industry/region groups
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strategy leading to an unbalanced panel data set (with farm businesses in the sample for an 
average of 3.4 years).

In this study farms sampled in AAGIS between 2015–2016 and 2018–2019 are taken as 
the basis for all model simulations. This sample consists of 6312 observations (2251 dis-
tinct farm businesses/locations) providing representative coverage of the broadacre farm-
ing sector including both broad spatial coverage (multiple locations/regions) and cross-sec-
tional coverage (multiple farm types/sizes, see Table 1). The model simulations take farm 
characteristics (e.g. land area, capital and opening stock holdings and other controls) as 
observed in the survey data during these years. All model results are generated at the indi-
vidual farm business level, but for reporting purposes the results are aggregated into seven 
key farm industry/region groupings (shown in Fig. 1 and defined in full in the Appendix).

2.2 � A micro‑simulation model of Australian broadacre farms

farmpredict is a data-driven micro-simulation model of Australian broadacre farming 
businesses based on AAGIS data. The model involves two main components: a statistical 
model estimated from historical farm-level data, and a simulation model which takes the 
statistical model and applies a range of feasibility constraints, accounting rules and other 
assumptions to produce scenario results (Fig. 2).

The model simulates production of six crop outputs, four livestock outputs and seven 
stock (inventory) holdings including livestock numbers and on-farm crop and wool storage 
(Table 2). These production outcomes are then combined with input and output prices to 
simulate farm financial results including various measures of profit. In this study, we use 
the AAGIS profit at full equity measure.

2.2.1 � The statistical model

The core of farmpredict is a statistical model estimated from historical data. A sample of 
40,269 farms (drawn from the AAGIS over the period 1988–1989 to 2018–2019) is used 
to estimate the model, with each farm linked (via point location geocoding) to spatial cli-
mate data obtained from the Bureau of Metrology (BoM). The theoretical structure of the 
statistical model follows that of a ‘reduced-form’ economic multi-product framework (see 
Mundlak 2001) in which output supply Qit and input demand Vit (for farm i in year t) are 
functions of exogenous factors including: farm ‘fixed inputs’ Kit (i.e. land and capital), 

Table 1   Summary statistics for 
sample farm observations by 
industry group

Industry group Sample Area ’000 ha

5th percentile Mean 95th percentile

Beef-Northern 1317 0.3 21.3 863.1
Beef-Southern 738 0.1 0.8 15.3
Sheep-Lamb 540 0.3 1.5 18.0
Sheep-Mixed 1005 0.3 1.7 60.7
Cropping-Northern 993 0.2 2.2 18.4
Cropping-Southern 1216 0.4 1.8 9.1
Cropping-Western 503 1.1 5.0 18.4
All farms 6312 0.2 2.4 212.6
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opening farm stocks �op
it

 (i.e. grain and livestock holdings), input and output prices Pt, 
weather conditions Wit and other controls Zit (i.e. farm and farmer characteristics).

The dependent variables in this model extend beyond farm outputs and inputs to include 
other intermediate aspects of farm production and stock dynamics. The dependent (target) 
variables in the model are mostly defined as ratios of farm fixed inputs or other variables as 
described in Fig. 2 and Table 4 (see Hughes et al. 2022b for full details).

In contrast with more traditional multi-product models (which rely on parametric 
econometric methods), farmpredict adopts a non-parametric machine learning approach. 
This machine learning approach makes use of the xgboost regression algorithm (Chen and 
Guestrin 2016; Friedman 2002) combined with multi-target ‘stacking’ (Spyromitros-Xiou-
fis et al. 2016). Hughes et al. (2022b) demonstrate the performance of the model with out-
of-sample validation tests, showing significant gains in predictive power relative to a linear 
benchmark model and traditional econometric models.

Fig. 2   An overview of the farmpredict model

Table 2   Farm output, variable 
input and stock types

Outputs Variable inputs Stocks

Beef cattle Electricity Beef cattle
Sheep Fertiliser Sheep
Lamb Fuel
Wool Chemicals Wool
Wheat Shearing labour Wheat
Barley Materials & services Barley
Canola Canola
Sorghum Sorghum
Legumes
Misc. grains
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The statistical models include a wider range of different climate variables, across multi-
ple climate measures (Table 3) and time periods/seasons (Fig. 3) of relevance to Australian 
broadacre farms. For example, daily rainfall and temperature data at each farm location are 
aggregated into winter and summer crop growing season values (i.e. April to October, and 
November to March respectively) along with a range of shorter seasonal values and longer-
term lags (Fig. 3). For each of these, a range of climate measures are considered including 
rainfall volume, average maximum and minimum temperatures and exposure to upper and 
lower temperature extremes (Table 3).

As would be expected, growing season rainfall (via its effect on crop yields) is identified 
as a key driver of climate effects in the model. However, the statistical models identify a 
wide range of relationships, with climate impacting: crop planting and storage decisions; 
input usage (particularly fertiliser and fodder); livestock turn-off, birth and death rates; and 
farm prices received (via quality effects on livestock and crop outputs). Temperatures play 
an important role in many of these responses, proving particularly important for livestock 
birth and death rates (see  Appendix Tables A7 and A8 for more detail on climate relation-
ships in the model).

2.2.2 � Simulation model

Model scenarios are defined by data for the predictors 
∼

�it . For each scenario, predicted values 

for the target variables �̂it = f

(

∼

�it

)

 are obtained from the statistical models. The simulation 

model then combines these predictions with a range of assumptions including feasibility con-
straints (i.e. stocks, outputs, inputs, prices must all be positive) and farm accounting rules to 

Table 3   Climate variable 
measures

Data on hail storms were obtained from the BoM Severe Storms 
Archive

Name Description Units

rain Rainfall volume mm
tmax Average maximum temperature °C
tmin Average minimum temperature °C
fr2 Exposure to frost (days below 2°C) days
gdd Heat accumulation (growing degree days) °C
hgdd Exposure to high temperature extremes °C
gni Rainfall volatility (Gini coefficient) index
pci Precipitation Concentration Index (PCI) index
hail Exposure to hail storms index (0–1)

Fig. 3   Climate variable time periods
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produce final results. A summary of this process is provided below (with variable definitions 
in Table 4, and Fig. 2), for further detail see Hughes et al. (2022b).

For each farm i and crop j, crop area, production, sales and closing stocks are simulated as:

where Ait is the total cropping land area and Snp
jit

 are net crop purchases (which are assumed 
exogenous).

Livestock production is simulated as:

where Ŝb
it
 and Ŝd

it
 are simulated livestock (beef and sheep) births and deaths and Snp

jit
 are net 

livestock purchases (which are assumed exogenous).
Closing stock holdings are then generated for each livestock (beef cattle and sheep) and 

crop type, in the case of livestock closing stocks are defined:

Revenue for each output is then simply:

While farm costs are simulated as:

(1)Ĥjit = D̂jitAit
̂̇Ajit

̂̇Hjit

(2)Q̂jit =
̂̇Qjit

(

S
op

jit
+ Ĥjit + S

np

jit

)

(3)Ŝcl
jit
= S

op

it
+ Ĥjit − Q̂jit + S

np

jit

(4)Q̂jit =
̂̇Qjit

(

S
op

jit
+ Ŝb

jit
− Ŝd

jit
+ S

np

jit

)

(5)Ŝcl
jit
= S

op

it
− Q̂jit + Ŝb

jit
− Ŝd

jit
+ S

np

jit

(6)R̂jit =
̂̈RjitPjtQ̂jit

Table 4   Variable definitions

Variable Description

Djit Crop classification, = 1 if crop j planted on farm i in year t
Ajit Area of crop j planted (ha)
Ȧjit

Proportion of farm total crop land planted to crop j,
Hjit Quantity of crop j produced (harvested) (tonnes)
Ḣjit

Yield for crop j, Hjit/Ajit (tonnes/ha)
Qjit Quantity of output j sold on farm i (tonnes or no. of livestock)
Q̇jit

Proportion of stock holdings sold for output j,
Rjit Revenue for output j ($)
R̈jit

Relative farm price received for output j,
Pjt, Pvt Price indexes for outputs j and variable inputs v
Cvit Cost for variable input v ($)
V̇vit

Quantity index for variable input v relative to a farm size index (Fit),

S
op

jit
, Scl

jit
Opening and closing quantities of farm stocks (tonnes or no. of livestock)
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Given the final estimates of revenue, cost and changes in stock values for each farm, the 
model then generates a range of farm financial indicators in keeping with AAGIS account-
ing rules. Here, farm profit can be defined broadly as total farm revenue less, total costs 
plus the value of net changes in stocks:

where ̂̇Rjit are the simulated prices for stock j. More specifically, this study uses the AAGIS 
measure of farm profit at full equity which includes further adjustments for imputed depre-
ciation, family labour costs and financing costs (see Hughes et al. 2022b).

2.3 � Commodity prices

Farm input and output commodity prices are held fixed at recently observed (2015–2016 
to 2018–2019) levels, consistent with related studies (see Ghahramani et al. 2020). While 
there are ongoing efforts to project long-run global agricultural commodity prices, much 
uncertainty remains. Based on an ensemble of models, the IPCC (2019)) generally pro-
ject higher real food prices by 2050, with increases of 1–29% (median 7%) for cereals and 
smaller (median 1%) increases for animal sourced foods. The latest medium-term forecasts 
from the OECD/FAO (2020) and World Bank (2020) suggest limited real change (and 
some slight decreases) for most agricultural commodity prices to 2030 and 2035. In prac-
tice, there remains much uncertainty over global commodity prices to 2050 for reasons 
beyond climate change including potential technology and consumer preference changes.

While global prices are assumed to be fixed at current levels, grain (wheat, barley and 
sorghum) output and fodder input prices are adjusted in the model simulations to account 
for the effects of climate on domestic Australian grain and fodder markets. While prices for 
most broadacre commodities are determined in world markets (and are largely unaffected 
by Australian climate conditions), price gaps emerge between Australian and world prices 
of grain in years of widespread drought, as constraints on importing can lead to domestic 
shortages (see Hughes et al. 2022a). These price spikes tend to lessen the financial impacts 
of drought on cropping farms (as net producers of grain and fodder) and exacerbate them 
for livestock farms (as net consumers).

Following, Hughes et al. (2022b), a statistical model is applied to simulate the poten-
tial impact of future climate scenarios on Australian grain and fodder prices. These results 
assume fixed world prices for grain (as observed between 2015–2016 and 2018–2019) but 
allow for variation in Australian-world price spreads.

2.4 � Technology

Farm technology/productivity is held fixed at recently observed (2015–2016 to 2018–2019) 
levels. As such, the model scenarios reflect how farms with recent technology would 
respond to projected future climate conditions, excluding any future long-term adaptation/
technological advancement. However, by default, the farmpredict model does take into 
account typical short-run adaptation of farm managers (as reflected in the historical model 

(7)Ĉvit =
̂̇VvitFvitPvit

(8)𝜋̂it =

∑

j

R̂jit −

∑

v

Ĉjit +

∑

j

̂̇Rjit

(

Ŝcl
jit
− S

op

jit

)
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training data) in response to annual climate variability including for example changes in 
crop areas planted, livestock turn-off and birth rates and input usage.

2.5 � Climate scenarios

Climate projection data are taken from the Climate Change in Australia portal (CSIRO 
and BoM 2015). Specifically, this study makes use of rainfall and temperature projections 
downscaled using the delta change method with quantile scaling (CSIRO and BoM 2015). 
Daily time-step data are obtained for a 24-year sequence centred on 2050.

CSIRO and BoM (2015) provide this data for 8 of the 40 Global Circulation Models 
(GCMs) in CMIP5 (Coupled Model Intercomparison Project 5) selected partly for their 
skill in representing historical Australian climate data. In this study, 6 of these 8 GCMs 
are included (ACCESS1.0, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, HadGEM2-CC, 
CanESM2) with NorESM1-M and MIROC5 omitted due to their low skill for historical 
Australian rainfall (see CSIRO and BoM 2015). The CSIRO and BoM (2015) data include 
two representative concentration pathways (RCPs) for each GCM: RCP4.5 (where green-
house gas concentrations reach around 500 ppm CO2 equivalent by 2050) and RCP8.5 
(where concentrations reach around 600 ppm by 2050). Daily time-step rainfall and tem-
perature projection data are matched to each of the 2251 farm study locations and trans-
lated into the climate variables (growing season rainfall etc.) required for farmpredict.

One concern with statistical models is that projected climate data may fall outside the 
range of historical data on which the models were trained on. In the Appendix, we show that 
on average only 0.06 to 0.09% of the observations in these projection scenarios lie outside of 
the training data ranges. Note that while climate variables (particularly temperatures) often 
move outside of historically observed values at a given point location, statistical models can 
still generalise from farms in other locations where such conditions have been observed.

Selecting an appropriate reference period is complicated given the dramatic shifts in 
Australian rainfall observed in recent decades (and uncertainty over the relative influ-
ence of climate change and natural variability). To account for this, we contrast our future 
climate scenarios against both a long-term historical reference period of 1949–1950 to 
1999–2000 and to the more recent period 2000–2001 to 2019–2020. We refer to the four 
climate scenarios in our study as Historical (1950 to 2000), Recent (2001 to 2020), Future 
(2050 RCP4.5) and Future (2050 RCP8.5).

Tables A1, A2 and A3 in the Appendix compare the four climate scenarios for average 
winter (April to October) rainfall and average summer (November to March) rainfall and 
maximum temperatures for key farm groups (as defined in Fig. 1).

For most farms, reductions in winter rainfall over the Recent period relative to the His-
torical are larger than the mean projections for 2050 (−16.3% on average compared with 
mean −5.3% under RCP4.5 and −12.2% under RCP8.5). As BoM and CSIRO (2020) note, 
observed changes in rainfall to date have tended to track the dry end of the projected range 
(particularly in southern Australia). Under the driest GCM scenarios included in this study, 
declines in winter rainfall on Australian farms of 21.4% (RCP4.5) and 30.6% (RCP8.5) 
are projected. For Western Australian cropping farms, projections show a higher level of 
agreement, with reductions in winter rainfall projected under most GCMs.

Increases in Australian summer rainfall have been observed over the last 20 years in 
some regions, particularly in parts of western and northern Australia (BoM and CSIRO 
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2020). However, on average, Australian farmers have seen limited change in summer rain-
fall over the Recent period, with some slight increases amongst western Australian crop-
ping farms. Projections suggest declines in summer rainfall by 2050 for most farming 
groups (−7.4% and −10.8% under the mean RCP4.5 and RCP8.5 projections on average). 
Climate models project increases in average summer maximum temperatures for farmers of 
+0.5 to +1.2°C and +1.3 to +2.0°C under the RCP4.5 and RCP8.5 scenarios respectively.

3 � Results

Simulated changes in farm profits are presented in Table 5, Figs. 4, 5 and 6 (with regional 
level profit results presented in the Appendix). Note these tables and charts present aver-
ages of farm-scale estimates, and results can vary considerably at the farm level even for 
farms within a given region or industry (particularly with respect to farm size, see Table 7). 
For future scenarios the mean, minimum and maximum across the 6 GCMs are presented.

Under the Recent (2001 to 2020) scenario, simulated farm profits are 23% lower on 
average compared to the Historical (1950 to 2000) period (Table 5). Recent climate effects 
have been felt most strongly amongst cropping farms particularly in south-western and 
south-eastern Australian (Table 5, Fig. 6).

Climate projections for 2050 show a wide range of outcomes across the 6 included 
GCMs. Simulated changes in average farm profits under the Future (2050 RCP4.5) sce-
nario range from −31.9 to −2.0%, while RCP8.5 ranges from −49.9 to −10.7% (Table 4).

Western cropping farms show the largest mean reductions in average farm profits under 
the future scenarios (−55.9 to −5.1% under RCP4.5 and −68.1 to −7.3% under RCP8.5). 
This mainly reflects projected declines in winter growing season rainfall in this region and 
the resulting effects on crop yields (Table A10 in the Appendix) and revenue (Table 5).

Beef farms in northern Australia also show significant reductions in average profit under 
the Future 2050 scenarios (−22.1 to −3.0% under RCP4.5 and −54.5 to −16.3% under 
RCP8.5). These changes are driven by projected declines in winter and summer rainfall 
along with increases in maximum temperatures. As discussed in Hughes et  al. (2022b), 
the climate response of livestock farms in the farmpredict model depends more heavily on 
temperature compared to cropping farms, explaining why simulated livestock farm profits 
are considerably worse under RCP8.5 than RCP4.5.

Table 5   Percentage change in average farm profits relative to Historical (1950 to 2000) 

Industry group Historical ($) Recent Future (RCP4.5 2050) Future (RCP8.5 2050)

Min. Mean Max. Min. Mean Max.

Beef-Northern 152,815 −3.1 −22.1 −11.7 −3.0 −54.5 −27.6 −16.3
Beef-Southern 20,968 −22.5 −26.6 +0.5 +10.3 −63.8 −18.0 −2.7
Sheep-Lamb 108,234 −14.9 −16.6 −5.8 −0.1 −31.6 −12.9 −5.6
Sheep-Mixed 58,817 −26.7 −37.3 −13.2 −6.3 −66.3 −28.1 −15.9
Cropping-Northern 212,491 −36.2 −23.7 −9.8 −3.6 −43.1 −20.1 −4.8
Cropping-Southern 179,423 −21.7 −27.7 −3.3 +11.5 −30.8 −8.5 +4.1
Cropping-Western 437,227 −26.8 −55.9 −31.6 −5.1 −68.1 −50.5 −7.3
All farms 129,187 −22.6 −31.9 −13.1 −2.0 −49.9 −25.6 −10.7
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In south-eastern Australia, future scenarios show a very wide range of potential out-
comes, due largely to differences in rainfall across the 6 GCMs. For cropping farms in the 
southern region (Vic., SA, Tas.), changes in average simulated profits under Future (2050 
RCP8.5) range from −30.8 to +4.1%. Under Future (2050 RCP4.5), increases in farm prof-
its for southern cropping farms are observed under the most favourable climate scenarios 
(+11.5% under CNRM-CM5) due to projected increases in winter rainfall.

Fig. 4   Percentage change in farm profits under the Future 2050 (RCP4.5) scenario relative to Historical 
(1950 to 2000) 

Fig. 5   Percentage change in farm profits under the Future 2050 (RCP8.5) scenario relative to Historical 
(1950 to 2000). Based on farm-level scenario results calculated using a symmetric percentage change met-
ric: 

(

Y
ia
−Y

ib

(|Yia|+|Yib|)∕2

)

 , where Yia is average annual profit for farm i under the Future 2050 (RCP4.5) scenario, 
and Yib average annual farm profits under the Historical (1950 to 2000) scenario
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Fig. 6   Percentage change in farm profits under the Recent (2001 to 2020) scenario, relative to Historical 
(1950 to 2000). Based on farm-level scenario, results calculated using a symmetric percentage change met-
ric: 

(

Y
ia
−Y

ib

(|Yia|+|Yib|)∕2

)

 , where Yia is average annual profit for farm i under the Recent (2001 to 2020) scenario, 
and Yib average annual farm profits under the Historical (1950 to 2000) scenario
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Under Future (2050) RCP4.5, simulated impacts for beef farms in southern Australia  
are modest on average (0.5% mean profit increase). Many southern Beef farms are 
located in relatively cool and high-rainfall coastal regions (see Fig.  1), where small 
increases in temperature/declines in rainfall can feasibly be productivity increasing. 
However, under the more extreme Future (2050 RCP8.5), scenarios simulated changes 
in average farm profits for southern Beef farms become clearly negative: −63.8 to 
−2.7%.

While the spatial pattern of the effects varies under each GCM, in general, the largest 
changes in farm profits are simulated in the northern parts of the western cropping zone 
(WA:North and East Wheat Belt region, Table A9 in the Appendix), along with parts of 
western NSW (NSW:Far West, NSW:Central West) and central QLD (QLD:West and South 
West, QLD:Charleville-Longreach regions). Similar to recent historical trends and past 
projection studies, these results generally show larger climate change impacts in more mar-
ginal (hotter, lower-rainfall and more in-land) areas. Compared with recent trends (Fig. 6), 
future scenarios show generally smaller effects in south-eastern Australia and larger 
impacts in Queensland (see Figs. 4 and 5).

Table 6   Average percentage change in farm revenue relative to Historical (1950 to 2000) 

Industry group Historical ($) Recent Future (RCP4.5 2050) Future (RCP8.5 2050)

Min. Mean Max. Min. Mean Max.

Beef-Northern 634,004 +2.38 +3.13 +4.65 +6.39 +6.05 +8.23 +13.94
Beef-Southern 256,699 −0.08 +0.15 +0.49 +1.00 −0.00 +0.65 +2.38
Sheep-Lamb 551,558 −0.80 +0.39 +1.04 +1.47 +0.12 +0.68 +1.26
Sheep-Mixed 332,995 −0.80 +0.53 +1.29 +1.79 +0.04 +0.72 +1.43
Cropping-Northern 890,090 −8.89 −5.60 −2.13 −0.27 −9.35 −4.22 −0.51
Cropping-Southern 735,279 −6.23 −9.30 −1.82 +2.57 −10.64 −3.56 +0.54
Cropping-Western 1,636,559 −8.30 −19.49 −11.30 −2.83 −24.37 −17.57 −3.28
All farms 590,105 −4.08 −4.81 −1.71 +0.44 −5.34 −3.03 +0.11

Table 7   Average percentage change in farm costs relative to Historical (1950 to 2000) 

Industry group Historical ($) Recent Future (RCP4.5 2050) Future (RCP8.5 2050)

Min. Mean Max. Min. Mean Max.

Beef-Northern 399,791 +1.60 +0.95 +2.23 +4.41 +2.70 +4.69 +9.98
Beef-Southern 174,313 +0.74 -0.49 +0.01 +1.42 −0.52 +0.31 +2.75
Sheep-Lamb 326,247 +0.84 +0.08 +0.54 +1.83 +0.11 +0.98 +3.36
Sheep-Mixed 230,312 +1.28 +0.10 +0.67 +2.45 +0.21 +1.50 +5.03
Cropping-Northern 588,016 −3.78 −2.93 −0.52 +0.39 −5.25 −1.71 −0.05
Cropping-Southern 482,816 −3.13 −7.13 −2.50 −0.12 −9.27 −3.84 −1.14
Cropping-Western 1,083,363 −3.38 −9.75 −5.65 −2.29 −13.79 −8.67 −2.28
All farms 386,662 −1.36 −2.35 −1.10 −0.25 −2.50 −1.57 −0.10
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In Tasmania, simulation results are highly consistent across the 6 GCMs with rel-
atively modest declines in profit overall, and negative effects appearing to be con-
centrated in the south of the state. In contrast, extremely wide variation is observed 
in parts of South Australia. In the SA: Eyre Peninsula region, simulated changes in 
farm profits range from −76 to +41% under the future scenarios (Table  A9 in the 
Appendix).

While not directly comparable (due to differences in climate scenarios, reference peri-
ods, farm locations and profit measures), these results are broadly consistent with the 
recent literature. For example, Ghahramani et al. (2020) simulated percentage changes in 
farm profits by 2030 of between −74% and +16% (mean -26%) across a range of farm 
sites in the southern Australian wheat belt (under a ‘Hot and dry’ RCP8.5 scenario). While 
Thamo et al. (2017) simulated changes in farm net returns by 2050 of −100 to −160% for 
farms in the Western Australian wheat belt.

Table 6 and 7 show simulated changes in average farm revenues and costs. As dis-
cussed in Hughes et  al. (2022b) the effects of hotter and drier conditions on live-
stock farms tend to be transmitted more through herd (stock) changes (Table 8) due to 
lower livestock net birth rates (along with some small increase in costs due to higher 
fodder expenses). Cropping farms show reductions in revenue and costs under most 
future climate scenarios (due to declines in crop production, see Table  A10 in the 
Appendix).

Table 8   Average percentage change in farm closing stock value relative to Historical (1950 to 2000) 

Industry group Historical ($) Recent Future (RCP4.5 2050) Future (RCP8.5 2050)

Min. Mean Max. Min. Mean Max.

Beef-Northern 1,753,457 −0.72 −3.23 −2.07 −1.07 −7.28 −4.08 −2.92
Beef-Southern 510,187 −0.59 −0.86 −0.00 +0.35 −2.62 −0.74 −0.14
Sheep-Lamb 562,442 −1.54 −3.06 −1.75 −1.28 −4.92 −2.49 −1.62
Sheep-Mixed 527,776 −1.84 −3.87 −1.83 −1.20 −5.79 −2.72 −1.58
Cropping-Northern 434,243 −4.48 −3.95 −1.04 −0.04 −8.70 −3.27 −1.19
Cropping-Southern 273,436 −3.25 −5.74 −1.77 +0.21 −8.03 −2.97 −1.06
Cropping-Western 437,593 −3.92 −7.43 −3.56 −0.59 −10.83 −6.14 −0.96
All farms 650,512 −1.55 −3.24 −1.59 −0.86 −6.34 −3.09 −2.10

Table 9   Average percentage change in profit by farm size group relative to Historical (1950 to 2000) 

Farm size Historical ($) Recent Future (RCP4.5 2050) Future (RCP8.5 2050)

Min. Mean Max. Min. Mean Max.

Small farms 17,688 −96.0 −130.9 −52.8 −9.4 −197.9 −100.4 −41.5
Medium farms 171,877 −22.6 −32.2 −14.6 −4.1 −49.6 −26.8 −12.2
Large farms 661,259 −11.9 −19.4 −9.1 −2.6 −29.7 −16.2 −7.8
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In contrast, increases in revenue are observed for livestock farms due to increases in 
turn-off. This reflects the ‘short-run’ nature of the farmpredict model where (year opening) 
livestock holdings are held fixed2.

The results in Table  6 and 7 also illustrate how small changes in farm revenues and 
costs can have large effects on profits, particularly for farm groups with low profit margins. 
This is reinforced by Table 9 which shows changes in profits by farm size. These farm size 
groupings are based on farm capital holdings relative to farms in the same industry and 
region group. In general, smaller farms tend to have lower profit margins than larger farms 
(Boult and Jackson 2019; Jackson et al. 2020), as a result they show significantly higher 
percentage change in profits under future climate scenarios.

Table 10 presents the average simulated domestic grain (and fodder prices) under each 
climate scenario. Future scenarios show that increases in average Australian prices for 
major grain crops (wheat, barley and sorghum) are possible (of between 1 and 40%) with 
increases in prices for livestock fodder (hay) of between 3 and 24%.

Additional model results are presented in the Appendix. Table A10 in the Appendix  
presents modelled change in crop yields under each climate scenario, with larger 
changes simulated for winter crops. In particular, declines in national wheat yields of 
2.8 to 24.1% are estimated under RCP4.5, compared with 2.7 to 11.9% for sorghum. 
Table A11 in the Appendix presents changes in livestock birth and death rates, with 
declines in birth rates (−2.6% to +0.1% for beef cattle under RCP8.5) and increases 
in death rates (+8.2% to +17.2% under RCP8.5) typically simulated under future 
scenarios.

Finally, Table A12 in the Appendix presents estimates of the frequency of drought under 
each scenario, drawing on drought indicators developed in Hughes et al. (2021). Here, the 
model predicts the percentage of years that farmers would self-assess their property as 
being ‘in-drought’ under each future scenario given contemporary farmer perceptions of 
drought (Hughes et al. 2021). On average, drought frequency changes from 5.2% under the 
Historical scenario (and 14.7% under the Recent scenario) to 8.7 to 11.4% under RCP4.5 
and 10.6 to 39.4% under RCP8.5.

Table 10   Percentage change in 
average Australian grain and 
fodder prices by climate scenario 
relative to Historical (1950 to 
2000) 

Commodity Recent Future (RCP4.5 2050) Future (RCP8.5 2050)

Min. Mean Max. Min. Mean Max.

Wheat +6.1 +1.5 +4.0 +13.0 +3.0 +8.3 +26.9
Barley +7.4 +0.9 +5.0 +19.2 +3.6 +11.7 +40.0
Sorghum +4.1 +3.1 +6.8 +16.1 +5.5 +12.6 +33.5
Fodder +7.6 +3.3 +6.2 +14.9 +6.0 +10.5 +24.3

2  Within the model, short-term decreases in livestock holdings (due to higher turn-off and death rates and 
lower birth rates) are captured in the profit accounting rules by deducting the value these stock losses from 
farm profits. Explicit consideration of multi-year livestock dynamics remains a subject for future research.
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4 � Discussion

4.1 � Climate change adaptation

As with the previous literature, the results in this study show a wide range of outcomes 
reflecting uncertainty over projected temperature and rainfall. Of key importance are pro-
jections for Australian winter rainfall where there is a high level of disagreement amongst 
GCMs. While rainfall projections in south-eastern Australia are highly uncertain, recent 
data (particularly the last 20–25 years) show a strong negative trend, such that observed 
rainfall is now tracking the extreme dry end of the projected range in key parts of southern 
Australia (see BoM and CSIRO 2020).

While future projections are subject to much uncertainty, the above results confirm that 
climate change has the potential to make conditions tougher for Australian farmers. Under 
the most severe future scenario (RCP8.5 with the GFDL-ESM2M GCM), average Austral-
ian farm profits are simulated to decline by 50% relative to the period 1950 to 2000.

Clearly, the impacts of this magnitude would induce strong adaptation responses. Already, 
there is evidence of significant farmer adaptation in response to the climate shifts in recent 
decades. This has included significant gains in productivity within the cropping sector with 
the emergence of a range of new technologies and practices focused on better conserving 
soil moisture in response to declining in-season rainfall (Hochman et al. 2017; Chancellor 
et al. 2021; Hughes et al. 2017; Hunt and Kirkegaard 2012). In addition, there is now grow-
ing evidence of migration of the Australian cropping zone in response to changes in climate 
observed to date (see Fletcher et al. 2020; Nidumolo et al. 2012;  Hughes and Gooday 2021).

While many of the future scenarios are less severe than the Recent (2001 to 2020) 
period, long-term shifts in climate could still induce stronger adaption responses, particu-
larly where they lead farmers to update their expectations over future climate conditions3.

Over the longer term, improvements in technology could help offset the effects of cli-
mate change. A simple continuation of long-run productivity trends (average annual 
TFP growth of 1.6% since 1960, Sheng et al. 2013) would be sufficient to prevent abso-
lute declines in Australian farm productivity or production levels by 2050 even under the 
most severe climate projections. However, there remains uncertainty over the extent to 
which new technologies will support further adaptation to dry and hot conditions, and also 
the adjustment costs this adaptation might involve. Further, even with strong adaptation 
responses, climate change could still reduce Australian farmers’ international competitive-
ness depending on the climate change impacts and productivity trends in other nations.

4.2 � Strengths and weaknesses of a statistical modelling approach

A variety of modelling techniques have been applied to estimated climate change impacts 
in agriculture each with their own strengths and weaknesses. While the statistical approach 
applied in this study offers both farm-scale analysis and broad regional coverage, the 
approach is unable to account for longer-term adaptation (or CO2 fertilisation effects) and 
so may lead to larger estimated impacts than comparable bio-physical model studies.

3  Hughes et al. (2021) provide evidence that the recent shifts in climate have already led to some updating 
in climate expectations by Australian farmers, while Severen et al. (2018) present evidence for US farmers.
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Future technological change remains extremely difficult to predict regardless of the modelling 
approach adopted. However, bio-physical models do have some additional flexibility in account-
ing for long-term adaptation, since they can simulate adjustment in capital inputs such as land 
areas, (opening) livestock holdings and equipment (which are typically held fixed in statistical 
models like farmpredict4). For example, some recent studies (Ghahramani and Bowran 2018; 
Ghahramani et al. 2020) considered structural adjustments such as changes in the mix of crop-
ping and livestock activity. These studies show potential benefits, although such adaptations 
are still typically insufficient to fully offset climate change impacts, particularly under the more 
severe GCM projection scenarios (Ghahramani and Bowran 2018; Ghahramani et al. 2020).

By their nature, statistical production models also assume that farmer behaviour remains 
reflective of that observed in the recent past. As such, while these models allow for typi-
cal short-term responses of farmers to annual climate variability, they do not account for 
longer-term responses farmers may make in response to permanent shifts in climate, even 
those possible with existing technology, such as adoption of management practices or live-
stock breeds/crop types better suited to their new local climate.

For this reason, some economists have argued in favour of a ‘Ricardian’ approach (Mendelsohn  
et  al. 1994). While common in the economic literature (Huong et  al. 2019; Dall’Erba and 
Domínguez 2016; Gbetibouo and Hassan 2005), such studies not generally used in integrated 
assessments of climate change (see Nelson et al. 2014). The Ricardian approach assumes that 
land prices reflect the expected future profits of farmers operating under the prevailing local cli-
mate (as proxied by historical climate data). However, this approach becomes problematic in a 
modern context where the climate is in transition, and historical data becomes a poor proxy for 
the ‘current’ or expected climate in each region5. Further, as Quiggin and Horowitz (1999) note, 
the approach does not account for adjustment costs farmers face in modifying their practices or 
farm capital, and so will tend to understate the costs of climate change.

Increasingly, global analysis of agricultural climate change impacts involves an ‘inte-
grated assessment’ approach (see Nelson et al. 2014; IPCC 2019) involving multiple linked 
models, most commonly bio-physical (crop production) models linked to global bio-eco-
nomic (land use/supply and demand) models. In future, farmpredict could play a role in 
this type of modelling chain, helping to bridge the gap between purely bio-physical and 
purely economic models. For example, a key option for future research is to include out-
puts from bio-physical models (such as APSIM, Keating et al. 2003) within the farmpredict 
training data. This hybrid approach (as advocated by Antle 2019) could help to improve 
model extrapolation and better account for CO2 fertilisation effects. Further, it could be 
used to provide inputs (i.e. changes in farm profits) for economic optimisation models sim-
ulating long-term changes in land use and/or agricultural supply.

Given the extreme uncertainty surrounding future climates and technology and persis-
tent differences in agricultural model responses (Nelson et al. 2014), projections of long-
term agricultural outcomes (both in Australia and internationally) remain highly specula-
tive. Over time, research focus has naturally shifted from predicting the future effects of 
climate change on agriculture towards also measuring observed impacts. In this modern 
context, where climate and farming systems are in transition and there is increasing policy 
attention on adaptation, statistical models like farmpredict could have some advantages.

5  Particularly since farmer expectations over the future climate (and therefore current land prices) are 
already being influenced by climate projection information (see Severen et al. 2018).

4  While it remains possible to simulate exogenous changes in capital in models like farmpredict (including 
for example changes in the mix of cropping and livestock activity on farms), accuracy could be limited if 
this leads to farm structures significantly different to those observed in the historical training data.
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Firstly, statistical models based on farm survey data can be useful in measuring the 
effects of climate changes on farm outcomes to date, and since the models can be easily 
updated (as each year of new farm data becomes available), they can incorporate the latest 
industry adaptation responses as they emerge. As such, these models can be effective in 
tracking the climate transition in the farm sector, with climate projection scenarios then 
being used more to assess adaptation pressure (i.e. the prevailing direction of change rather 
than the potential endpoint).

While statistical models like farmpredict cannot estimate long-term land use or supply 
changes (unless coupled with economic optimisation models), they can still provide useful infor-
mation to support government adaptation policy and industry responses. For example, the abil-
ity of statistical models to produce farm-scale results could be leveraged to generate customised 
reports for farmers, showing the recent and/or potential future impacts of climate change on their 
farm business (given its specific location, size, structure etc.). These reports could support local 
adaptation, by translating abstract rainfall and temperature data into actionable information for 
farm business owners. Similar reports could also be useful in helping the financial sector (farm 
lenders and insurers) assess the exposure of their portfolios to climate change risk.
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