Skip to main content

Advertisement

Log in

Detection of anthropogenically driven trends in Arctic amplification

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The driving mechanism of Arctic amplification (AA) is so complex that no consistent and definitive conclusion has been formed yet. In particular, the internally and externally driven trends of AA have not been distinguished using observation-based methods. Given that the Arctic is more sensitive than other regions to anthropogenic greenhouse gas increases and other external forcings, we focus on separating anthropogenically driven trends from the Arctic surface air temperature (SAT) changes during 1979–2017 to quantify the contribution of anthropogenic effects on AA, with detection and attribution converted to probability distribution functions. Results indicate that the Arctic coast of the Siberian Great Plains, from the Barents Sea to the Kara Sea and eastward to the Bering Strait, has been warming most significantly, and is mainly dominated by anthropogenically driven trends. From 1979 to 2017, the minimum anthropogenically driven warming in most parts of the Arctic Ocean exceeds 2℃, especially the Kara Sea area, where the anthropogenically driven warming is significant, reaching 4℃. In addition, the minimum anthropogenic contributions exceed 60% in most parts of the Arctic Circle and are more than 80% of the warming trend in (75–90° N, 150–180° W). In 140° W–140° E Arctic region, the anthropogenically driven trend is the most remarkable, at 0.82℃ / decade, accounting for 84.5% of the measured warming trend. Meanwhile, the anthropogenically driven trend accelerates most rapidly in this area (0–140° W, 60–90° N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The NCEP-2 data are available for download: (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.gaussian.html).

The ERA-Interim data analysed during the current study are from (http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/).

Code availability

Not applicable.

References

  • AMAP Assessment (2015) Black Carbon and Ozone as Arctic Climate Forcers. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, (2015) 116

  • Barnes EA, Polvani LM (2015) CMIP5 projections of Arctic amplification, of the North American/Northl Atlantic circulation, and of their relationship. J Clim 28:5254–5271

    Article  Google Scholar 

  • Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Chapter 10-Detection and attribution of climate change: From global to regional. In: Climate change 2013: the physical science basis. IPCC Working Group I Contribution to AR5. Cambridge University Press, Cambridge

  • Bintanja R, Graversen RG, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversions and consequent low infrared cooling to space. Nat Geosci 4:758–761

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, K€archer B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380e5552. https://doi.org/10.1002/jgrd.50171

    Article  Google Scholar 

  • Burt MA, Randall DA, Branson MD (2016) Dark warming. J Clim 29:705–719

    Article  Google Scholar 

  • Cai M (2005) Dynamical amplification of polar warming. Geophys Res Lett 32:L22710

    Google Scholar 

  • Chen X et al (2019) Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model. Pollution Environ. https://doi.org/10.1016/j.envpol.2019.113127

    Article  Google Scholar 

  • Cheng L et al (2017) Improved estimates of ocean heat content from 1960 to 2015. Sci Adv 3:e1601545. https://doi.org/10.1126/sciadv.1601545

  • Cohen J et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Article  Google Scholar 

  • Crook JA, Forster PM, Stuber N (2011) Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J Clim 24:3575–3592

    Article  Google Scholar 

  • Dai A, Luo D, Song M, Liu J (2019) Arctic amplification is caused by sea-ice loss under increasing CO2. Nat Commun 10:121. https://doi.org/10.1038/s41467-018-07954-9

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Terray L, Phillips AS (2016) Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J Climate 29:2237–2258. https://doi.org/10.1175/jcli-d-15-0304.1

    Article  Google Scholar 

  • Ding Q, Schweiger A, L’Heureux M et al (2017) Influence of high latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–295

    Article  Google Scholar 

  • Ding Q, Wallace JM, Battisti DS et al (2014) Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509:209–212

    Article  Google Scholar 

  • Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Climate 13:4430–4440. https://doi.org/10.1175/1520-0442(2000)013%3c4430:ttpsac%3e2.0.co;2

    Article  Google Scholar 

  • Feldstein SB (2002) The recent trend and variance increase of the annular mode. J Climate 15:88–94. https://doi.org/10.1175/15200442(2002)015%3c0088:trtavi%3e2.0.co;2

    Article  Google Scholar 

  • Feng C, Wu B (2015) Enhancement of winter arctic warming by the Siberian high over the past decade. Atmos-Ocean 8(5):257–263

    Google Scholar 

  • Franzke C (2009) Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis. Nonlin Process Geophys 16:65. https://doi.org/10.5194/npg-16-65-2009

    Article  Google Scholar 

  • Franzke C (2010) Long-range dependence and climate noise characteristics of Antarctic temperature data. J Climate 23:6074–6081. https://doi.org/10.1175/2010jcli3654.1

    Article  Google Scholar 

  • Franzke C (2012) Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J Climate 25:4172–4183. https://doi.org/10.1175/jcli-d-11-00293.1

    Article  Google Scholar 

  • Franzke C, Woollings T (2011) On the persistence 367 and predictability properties of North Atlantic climate variability. J Climate 24:466–472. https://doi.org/10.1175/2010jcli3739.1

    Article  Google Scholar 

  • Franzke CLE, Lee S, Feldstein SB (2016) Evaluating Arctic warming mechanisms in CMIP5 models. Clim Dyn 48:3247–3260

    Article  Google Scholar 

  • Gong D, Zhou T, Wang S (2001) Advance in the studies on North Atlantic Oscillation (NAO). Adv Earth Sci 16(3):413–420

    Google Scholar 

  • Gong T, Feldstein S, Lee S (2017) The role of downward infrared radiation in the recent Arctic winter warming trend. J Clim 30:4937–4949

    Article  Google Scholar 

  • Graversen RG, Langen PL, Mauritsen T (2014) Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J Clim 27:4433–4450

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11(24):13421–13449

    Article  Google Scholar 

  • Hemer MA, Wang XL, Weisse R, Swail VR (2012) Advancing Wind-Waves Climate Science: The COWCLIP Project. Bull Am Meteorol Soc 93:791–796. https://doi.org/10.1175/BAMS-D-11-00184.1

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled Models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Ikeda M (2012) Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasibiennial oscillations. Polar Res 31:18690. https://doi.org/10.3402/polar.v31i0.18690

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds Stocker TF et al) (Cambridge University Press, Cambridge)

  • IPCC (2019) Summary for Policymakers. In: Pörtner HO, Roberts DC, Delmotte VM, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N eds, Climate change 2019: special report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge

  • Ishii M, Fukuda Y, Hirahara S, Yasui S, Suzuki T, Sato K (2017) Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13:163–167

    Article  Google Scholar 

  • Kanamitsu M et al (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rego HA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295:441–454. https://doi.org/10.1016/S0378-4371(01)00144-3

    Article  Google Scholar 

  • Law KS, Stohl A (2007) Arctic air pollution: origins and impacts. Science 315:1537. https://doi.org/10.1126/science.1137695

    Article  Google Scholar 

  • Lennartz S, Bunde A (2009) Trend evaluation in records with longterm memory: application to global warming. Geophys Res Lett 36(16). https://doi.org/10.1029/2009GL039516

  • Lennartz S, Bunde A (2011) Distribution of natural trends in long-term correlated records: a scaling approach. Phys Rev E 84(2):021129. https://doi.org/10.1103/PhysRevE.84.021129

    Article  Google Scholar 

  • Lennartz S, Bunde A (2012) On the estimation of natural and anthropogenic trends in climate records. Geophys Monogr 196:177–189. https://doi.org/10.1029/2011GM001079

    Article  Google Scholar 

  • Ludescher J, Bunde A, Franzke CLE, Schellnhuber HJ (2015) Long-term persistence enhances uncertainty about anthropogenic warming of West Antarctica. Clim Dyn 46:263–271. https://doi.org/10.1007/s00382-015-2582-5

    Article  Google Scholar 

  • Lu J, Cai M (2009) Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Clim Dyn 34:669–687

    Article  Google Scholar 

  • Madden RA (1976) Estimates of the natural variability of time-averaged sea-level pressure. Mon Wea Rev 104:942–952. https://doi.org/10.1175/1520-0493(1976)104%3c0942:eotnvo%3e2.0.co;2

    Article  Google Scholar 

  • Madden RA, Shea DJ (1978) Estimates of the natural variability of time-averaged temperatures over the United States. Mon Wea Rev 106:1695–1703. https://doi.org/10.1175/1520-0493(1978)106%3c1695:eotnvo%3e2.0.co;2

    Article  Google Scholar 

  • Park HS, Stewart A, Son JH (2017) Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent. J Clim 31(4):1483–1497

    Article  Google Scholar 

  • Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  Google Scholar 

  • Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–184

    Article  Google Scholar 

  • Polyakov I, Walsh JE, Kwok R (2012) Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull Am Meteorol Soc 93:145–151

    Article  Google Scholar 

  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, Krishfield R, Kwok R, Sundfjord A, Morison J, Rember R, Yulin A (2017) Greater role for Atlantic inflows on seaice loss in the Eurasian Basin of the Arctic Ocean. Science 356(6335):285–291

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  Google Scholar 

  • Sand M, Berntsen TK, von Salzen K, Flanner MG, Langner J, Victor DG (2016) Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nat Clim Chang 6:286. https://doi.org/10.1038/nclimate2880

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010a) The central role of diminishing sea-ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010b) Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys Res Lett 37:L16707

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DM, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264

    Article  Google Scholar 

  • Serreze MC et al (2007) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122

    Article  Google Scholar 

  • Shindell DT, Chin M, Dentener F, Doherty RM, Faluvegi G, Fiore AM, Hess P, Koch DM, MacKenzie IA, Sanderson MG, Schultz MG, Schulz M, Stevenson DS, Teich H, Textor C, Wild O, Bergmann DJ, Bey I, Bian H, Cuvelier C, Duncan BN, Folberth G, Horowitz LW, Jonson J, Kaminski JW, Marmer E, Park R, Pringle KJ, Schroeder S, Szopa S, Takemura T, Zeng G, Keating TJ, Zuber A (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8:5353–5372

    Article  Google Scholar 

  • Spielhagen RF, Werner K, Sorensen SA et al (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331(6016):450–453

    Article  Google Scholar 

  • Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res Atmos 111:D11306. https://doi.org/10.1029/2005jd006888

    Article  Google Scholar 

  • Stroeve JC et al (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502

    Article  Google Scholar 

  • Tamazian A, Ludescher J, Bunde A (2015) Significance of trends in long-term correlated records. Phys Rev: E 91. https://doi.org/10.1103/PhysRevE.91.032806

  • Taylor PC et al (2013) A decomposition of feedback contributions to polar warming amplification. J Clim 26:7023–7043

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300

    Article  Google Scholar 

  • Wang M, Overland JE (2012) A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys Res Lett 39:L18501

    Google Scholar 

  • Wang Y, Yan P, Ji F et al (2020) Unnatural trend of global land long-term surface air temperature change. Int J Climatol: 1–12. https://doi.org/10.1002/joc.6961

  • Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter arctic atmosphere and its association with sea ice motion. J Clim 19(2):210–225

    Article  Google Scholar 

  • Yang Q, Bitz CM, Doherty SJ (2014) Offsetting effects of aerosols on Arctic and global climate in the late 20th century. Atmos Chem Phys 14:3969–3975. https://doi.org/10.5194/acp-14-3969-2014

    Article  Google Scholar 

  • Yim BY, Min HS, Kim BM et al (2016) Sensitivity of Arctic warming to sea ice concentration. J Geophys Res 121:6927–6942

    Article  Google Scholar 

  • Young I, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440):548–552

    Article  Google Scholar 

  • Yuan N, Ding M, Huang Y, Fu Z, Xoplaki E, Luterbacher J (2015) On the long-term climate memory in the surface air temperature records over antarctica: a nonnegligible factor for trend evaluation. J Clim 28(15):5922–5934. https://doi.org/10.1175/JCLI-D-14-00733.1

    Article  Google Scholar 

  • Zhang R (2015) Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc Natl Acad Sci U S A 112(15):4570–4575

    Article  Google Scholar 

  • Zhao J, Barber D, Zhang S et al (2017) Record low sea-ice concentration in the central Arctic during summer 2010. Adv Atmos Sci 35(1):106–115

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the supports of the National Natural Science Foundation of China (41875096), the National Key Research and Development Program of China (2017YFC1502303), and the National Natural Science Foundation of China (42130610, 41875083, 41975091, 41905060).

Funding

This work was supported by the National Natural Science Foundation of China (41875096), the National Key Research and Development Program of China (2017YFC1502303), and the National Natural Science Foundation of China ( 42130610, 41875083, 41975091, 41905060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yan, P., Feng, T. et al. Detection of anthropogenically driven trends in Arctic amplification. Climatic Change 169, 41 (2021). https://doi.org/10.1007/s10584-021-03296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-021-03296-6

Keywords

Navigation