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Abstract
Soil temperature (ST) is an important property of soils and driver of below ground bio-
geochemical processes. Global change is responsible that besides variable meteorological 
conditions, climate-driven shifts in ST are observed throughout the world. In this study, 
we examined long-term records in ST by a trend decomposition procedure from eleven 
stations in western Germany starting from earliest in 1951 until 2018. Concomitantly to 
ST data from multiple depths (5, 10, 20, 50, and 100  cm), various meteorological vari-
ables were measured and included in the multivariate statistical analysis to explain spati-
otemporal trends in soil warming. A significant positive increase in temperature was more 
pronounced for ST (1.76 ± 0.59 °C) compared with air temperature (AT; 1.35 ± 0.35 °C) 
among all study sites. Air temperature was the best explanatory variable to explain trends 
in soil warming by an average 0.29 ± 0.21 °C per decade and the trend peaked during the 
period from 1991–2000. Especially, the summer months (June to August) contributed most 
to the soil warming effect, whereby the increase in maximum ST  (STmax) was nearby five-
fold with 4.89  °C compared with an increase of minimum ST  (STmin) of 1.02  °C. This 
widening between  STmax and  STmin fostered enhanced diurnal ST fluctuations at ten out of 
eleven stations. Subsoil warming up to + 2.3 °C in 100-cm depth is critical in many ways 
for ecosystem behavior, e.g., by enhanced mineral weathering or organic carbon decompo-
sition rates. Thus, spatiotemporal patterns of soil warming need to be evaluated by trend 
decomposition procedures under a changing climate.
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1 Introduction

The spatiotemporal distribution of soil temperature (ST) is inevitable affected by increased air 
temperature (AT) but in contrast, its trend due to climate change has been less widely propa-
gated. Obviously, one reason is that unlike AT, humans do not feel the direct consequence 
of a warming soil. However, virtually all biogeochemical processes are directly dependent 
on the ST and therefore trends are of utmost importance to delineate. For instance, increased 
ST will enhance (i) metabolic activity of microorganisms, (ii) decomposition of soil organic 
matter and the supply of released nutrients for plant growth, and (iii) mineral weathering by 
enhanced feldspar dissolution, among other minerals (Schlesinger and Emily 2013; Williams 
et al. 2010). All these processes are embedded within a changing climate with either a positive 
or negative feedback. Air temperatures constantly increased since 1850 and the “period from 
1983 to 2012 was likely the warmest 30-year period of the last 1400 years in the Northern 
Hemisphere” (IPCC 2014). Not surprisingly, a recent study highlighted a substantial increase 
in surface ST (0.47 °C/decade; 0-cm depth) and deep ST (0.36 °C/decade; 40 to 320 cm) in 
the Tibetan plateau (Fang et al. 2019). In addition to the Tibetan high-altitude region, climate 
change has also been linked to soil warming in other parts of the world, such as Canada (Qian 
et al. 2011), the USA (Bradford et al. 2019), and Sweden (Mellander et al. 2007). In order to 
assess the vulnerability of soil warming under the aspect of climate change, it is desirable to 
address three important aspects: (i) an altitude gradient should incorporate settings in lower 
terrain compared with mountainous terrain, (ii) long-term records (≥ 30 years) of ST must 
integrate a high vertical spatial distribution to differentiate between topsoil and subsoil layers, 
and (iii) the meteorological data set should include as many as possible parameters.

In most studies, AT is the master variable to explain the variability in ST, although other 
climate parameters regulate soil temperature as well. For instance, the sunshine duration (SD) 
shows a general upward trend within the last 40 years in Europe, which agrees well with rising 
AT in this period (European State of the Climate 2020). Cloudiness degree (CD) acts as an 
antagonist because the presence of clouds can cut out 70 to 80% of the incident radiation and 
has a profound impact too (Saha 2008), whilst being present during the night, the long-wave 
radiation is reflected and potentially warm up the temperatures on Earth. Soil temperature is 
influenced by new snow cover (NSC) and seasonal duration of snow cover as well (Sokratov 
and Barry 2002) and since dry soils heat more easily than wet ones, climate change related 
impact on precipitation (PP) and evapotranspiration modifies soil moisture and thereupon ST 
(Weil and Brady 2017).

Overall, ST is a sensitive indicator of climate change and to delineate its trend is of high-
est importance. The goals of this study were to (i) assess spatiotemporal trends in ST for the 
federal state North Rhine-Westphalia, (ii) discuss the impact by intrinsic, external, and mete-
orological variables on soil warming, and (iii) outline the possible consequences of soil warm-
ing on biogeochemical processes. To achieve our goals, we employed long-term records of 
ST ranging from 1951 up to 2018 at high vertical resolution in 5, 10, 20, 50, and 100-cm 
soil depth and further employed NSC, SD, and CD, besides AT and PP as meteorological 
parameters.
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2  Material and methods

2.1  Study sites

The study sites belong to the federal state North Rhine-Westphalia located in western 
Germany. It encompasses low-altitude plains of the Lower Rhine region up to moun-
tainous terrain of the Central Uplands. A temperate climate prevails and the average 
AT depends on the altitude between 5 and 11 °C and a mean precipitation of 920 mm 
for the climate period from 1979 to 2008 (LANUV 2010). Criteria to investigate long 
term trend in ST were (i) a consecutive operation record for ~ 30  years, (ii) no long 
operational failures with < 5% missing data, (iii) stations which simultaneously meas-
ured meteorological parameters, and finally (iv) comprised a low- to high-altitude gra-
dient (Table  1). From 39 observation stations in the federal district of North Rhine-
Westphalia, eleven of these met the prescribed features. Altitudes ranged from 37 up to 
839 m asl, with spans from 25 up to 60 years of ST data. The monitoring for the study 
sites Herford and Aachen ended in 2007 and 2010, respectively. The stations are with 
the exception of Aachen and Münster-Osnabrück in rural areas; thus, a heat-island effect 
is of minor importance. Maintenance of the stations was done by the German Weather 
Service.

2.2  Data collection

The data was downloaded from a public-available portal hosted by the German Weather 
Service (DWD Climate Data Center (CDC) 2020). Only the data that has been version-
controlled and audited by end of the investigation period (December 2018) from the fed-
eral agency, e.g., due to changes of the measurement principle, was employed for the trend 
analysis. Meteorological data included the AT (°C), SD (h), CD (okta), and PP (mm). Soil 
temperatures were measured in 5, 10, 20, 50, and 100-cm soil depth. Whereas the tempera-
ture was conventional measured in the 1950s, platinum resistance thermometer (PT100) 
enabled hourly measurements from 1990 onwards, which is true for most of the stations. 
The raw data comprised 22 ∙  106 observations that were aggregated, when needed, to 
monthly or yearly averages or sums. All analyses including data manipulation, calculation, 
and visualization were carried out in Rstudio (version 1.4.1103) (RStudio Team 2021).

2.3  Trend analysis

Long-term trends were evaluated by applying the “Seasonal-Trend decomposition pro-
cedure based on Loess (STL)” (Cleveland et  al. 1990). The STL algorithm enables to 
decompose a time series into a trend, seasonal and residual component, by using a locally 
weighted regression (LOESS) technique. The method is robust to outliers so occasional 
unusual observations have no effect on the trend component. Since the trend in ST was 
the focus of our study, we utilized a high t.window value, a “periodic” s.window and sub-
sequent default arguments in order to delineate and smoothen the trend. Subsequent to 
the trend extraction, a linear fit (f(x) = mx + b) was applied on the trend to assess whether 
the parameter increased or decreased during the course of the investigation period. To 
determine if the trend is statistically significant, we employed the seasonal adjusted 
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Mann–Kendall trend test, which is a non-parametric test (Hirsch and Slack 1984). Our 
assumption is that a p value < 0.05 is statistically significant for the evidence of a trend in 
the data.

2.4  Statistical analysis

RStudio was used to compile the statistical results of the trend analysis (RStudio Team 
2021). To reduce the dimensionality of the data set with interrelated variables, we 
employed a principle component analysis (PCA) using the FactoMineR package. The data 
was scaled to unit variance prior to the analysis. In addition, testing for differences between 
ST increase and soil depth, we employed a one-way ANOVA following Tukey’s test to 
compute pairwise differences of the mean. Spearman rank correlation coefficients were 
calculated and we considered variables being significantly correlated with a p value < 0.05.

3  Results and discussion

3.1  Spatiotemporal trends of soil warming

The study sites were equally well distributed along the federal state North Rhine-West-
phalia (Fig. 1) and the topography has a striking effect on the mean annual ST (Table 1, 
Fig. S1B and S1C). For instance, the station Düsseldorf with the lowest altitude featured 
the highest ST throughout all depths, whereas the site Kahler Asten with the highest alti-
tude featured the lowest ST (Table 1, Fig. 2A). Virtually, among all stations and depths, 
a statistically significant increase in ST was evident with the only exception for the 5 and 
10-cm depth for the study site Herford (Fig. 2A, Fig. S2). Interestingly, the increase was 
strongest in the 20-cm depth with 1.87 °C but this is not significantly different compared 
with the other depths (Fig. 2B). Thus, soil warming affected the complete soil profile and 
should not be isolated and portrayed, e.g., with an emphasis on the topsoil. This is differ-
ent from observations by Subedi and Fullen (2009), who found that soil at 0-cm depth, 
warmed twice the rate of soil at 100-cm depth between 1982 and 2006. While in our study, 
the ST increase was on average 1.77 °C, maximum ST  (STmax) rose faster with 4.89 °C 
increase compared with the minimum ST  (STmin) trend of 1.02 °C (Fig. 2C). Even though 
Wang et al. (2018) explored only surface soil temperatures throughout China, they found 
the opposing trend that  STmin rose at a faster pace than  STmax after 1998. This finding sug-
gests that differences between diurnal ST fluctuations (ΔST;  STmax −  STmin) decreased but 
actually none of this pattern was evident in our data. Whereas the ΔST was 4.11 ± 0.61 °C 
from 1951–1960 it rose towards 7.46 ± 0.88 °C from 2010–2017 for the study site Essen-
Bredeney in the 5-cm depth (Fig. 2D). An increase in ΔST was evident among all stations, 
with the exception of the site Herford (Fig. S3). Obviously, enhanced diurnal fluctuations 
not only control water transport during day–night cycles but also have implications for var-
ious ecological processes. On a seasonal basis, the summer season from June to August 
of each year contributed most to an increase in ST and the last decade from 2010–2018 
deviated most from the long-term average. Enhancement of soil warming during the sum-
mer season was also found for stations in Ireland (García-Suárez and Butler 2006) and 
Iran (Araghi et  al. 2017). However, the setting is important since continental cool sites 
exhibited the largest warming during the spring months and settings featuring a melting 
season e.g., the Icelandic highlands, and warming was found throughout all seasons except 
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the spring season from May to June (Petersen 2021). Among all study sites in the pre-
sent study, the increase accelerated from 1985 onwards experiencing a shift towards higher 
ST, respectively (Fig. 2C). The decadal increase in ST was strongest from 1990–2000 with 
0.56 ± 0.28 °C (Fig. 3A) but the long-term increase with 0.29 ± 0.21 °C per decade is below 
the values reported in literature from other regions of the northern Hemisphere (Fig. 3B).

3.2  Influencing factors on soil warming

Air temperatures significantly increased among all stations (Fig.  4B) and AT was the 
best explanatory variable to decipher trends in soil warming (Fig. 5A and B). However, 
the strongest increase in AT did not necessarily match with the strongest increase in ST 
(Fig.  5C), which highlights the multifactorial complexity of soil warming. Especially, 
snow depth and seasonal duration of snow depth are important factors (Chudinova et al. 
2006). We verified a decrease in new snow depth at two out of eleven stations (Fig. 4D) 
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whereby the months from May to October were virtually snow-free across the federal state 
(Fig. 4C). An early snow melt at the site Kahler Asten rendered the month April snow-free 
at present contrary to the early decades from 1980 to 1990 (Fig. S5I) and, thus, a shorten-
ing of the snow season is certainly a warming agent by increased solar absorption (Law-
rence and Slater 2010). High-altitude sites such as Kahler Asten are particularly vulnerable 
to contribute to an overall trend in soil warming in the future, since snow cover alters the 
energy budget of a soil due to its low thermal conductivity and high albedo (Zhang et al. 
2008). In addition, the relationship between SD and CD is strong (Fig.  5A  and B) and 
generally shows a codependence (Matuszko 2012). This is true on a daily basis but on the 
long-term, only the station Herford showed evidence that an increased trend in SD goes 
along with a concomitant decrease in CD (Fig. 4F and H). Even though only a few stations 
revealed a significant trend in SD and CD for the federal state North Rhine-Westphalia at 
present, anomalies in cloudiness and record high sunshine hours derived by satellite obser-
vations since 1980s were evident for Europe (European State of the Climate 2020) and 
will likely contribute towards accelerated soil warming in conjunction with the rising AT. 
Despite the rising AT, careful consideration must be addressed to soil moisture feedback 
mechanisms (Zhang et al. 2001), which were the main reason that summer ST decreased 
by up to 4 °C due to changes in rainfall at Irkutsk under special circumstances (Zhang et al. 
2001). Our findings that ST showed a stronger increase than AT (Fig. 5C) and that the sum-
mer season contributed most to the increase in soil warming (Fig. 2E) match with findings 
from a study in Ireland (García-Suárez and Butler 2006). They formulated that increased 
ST is not only a result of warming but also of drier conditions in summer. In our study, 
three out of eleven stations revealed a decrease in PP (Fig. 4J) that was most pronounced 
at the site Kahler Asten with a decrease of > 30 mm (Fig. S5E). Drier soils are more easily 
heated than wet soils due to changes in the heating capacity and if the soil is not affected 
by capillary rise from shallow groundwater — which is the case for Düsseldorf, Münster-
Osnabrück, and Herford (Table 1) — these settings receive their soil moisture exclusively 
by PP. If a study site becomes drier, e.g., due to shifts in PP and/or increased evapotranspi-
ration rates, the heat transfer is strongly affected. The soil texture modifies this behavior, 
which is a sandy substrate at Herford up to more fine-textured soils, e.g., at Kahler Asten 
(Table  1). However, we cannot disentangle any trends due to differences in soil texture 
from the given data set. Overall, the influence of meteorological variables on trends in ST 
decreased by AT < PP < NSC < CD < SD as indicated by the PCA, from which about 90% 
of variation in the data could be explained by PC1 and PC2 (Fig. 5A). Even if intrinsic and 
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meteorological factors are incorporated in the evaluation of soil warming, external factors 
such as soil management, e.g., tillage systems, crop rotation, clear cutting, have a direct 
impact on the thermal properties of a soil and consequently on the response of soil warm-
ing in the future (Table 2).

3.3  Subsoil warming and implications for biogeochemical processes

Subsoil harbor an important reservoir of soil organic carbon (SOC) with turnover times of 
centuries to millennia. In this context, it is even more serious that subsoil warming alters 
the stability of SOC and enhances decomposition rates due to associated shifts in the func-
tional gene structure of microbial communities, as recently shown by artificial subsoil 
warming of ~ 2 °C in 25-cm depth over a 10-year period (Cheng et al. 2017). Obviously, 
soil warming not only accelerates the decomposition of old SOC pools in subsoil but also 
highlights the vulnerability of years-to-decades old SOC in topsoil, which accounts for the 
largest fraction of total SOC in terrestrial soils globally (Hopkins et al. 2012). We found 
a strong evidence of subsoil warming > 2 °C in 100-cm soil depth at six out of eleven sta-
tions throughout the study area (Fig. 1). This is also reflected by an increase of phenologi-
cal days > 5 °C by 25 days in 100-cm soil depth on average (Fig. S4E), which would poten-
tially increase biomass production. Soil warming not only influences the persistence of 
SOC as an ecosystem property (Schmidt et al. 2011), it contributes significantly to mineral 
weathering and ecosystem nutrition in general. In 2019, up to 25% of the land use in North 
Rhine-Westphalia constitutes forest and 47% is used agriculturally (LANUV 2021). The 
productivity of forest ecosystems is reliant by efficient reutilization of organic-bound nutri-
ents derived from litterfall, but it was highlighted recently that nutrient uptake from sap-
rolite weathering constitutes an important geogenic nutrient pathway as well (Uhlig et al. 
2020). Links to soil warming can also be established to mineral weathering by an altera-
tion of mineral reactivity and nutrient availability (Doetterl et al. 2018). Soil temperature 
was reported to be the main driver of silicate weathering rates compared with pCO2 levels 
and organic acids (Brady and Carroll 1994; Gwiazda and Broecker 1994). Projected future 
increases in ST up to 5 °C for the period from 2070 to 2099 in forested sites of Quebec can 
be seen as a harbinger of what we have to expect with the associated impacts on biogeo-
chemical cycles (Houle et al. 2012). The linkage between subsoil warming and some of the 
before mentioned biogeochemical processes can certainly be transferred to other regions 
on the world and is not specifically tailored for the study site under investigation.

4  Conclusions

Long-term ST trend data in North Rhine-Westphalia revealed a significant increase with an 
average 0.29 ± 0.21 °C per decade. Thereby, we identified important aspects that cover the 
following: First, soil warming affected the whole soil profile among the study sites. Second, 
soil warming in the summer months contributed most to the overall soil warming effect and 
trends in  STmax values exceeded  STmin values. Third, thereupon ΔST  (STmax −  STmin) rose 
across ten of eleven sites until now and this highlights that shifts in the thermal regime of 
the soils are taking place at rapid pace, e.g., intensification of diurnal temperature cycles. 
Finally, subsoil warming in 100-cm depth up to 2.3  °C is an important observation and 
needs to be included with emphasis on biogeochemical processes that cover soil organic 
carbon dynamics and mineral weathering rates modifying the nutrition supply for plants. A 
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successive extension of phenological days with temperatures > 5 °C by 25 days could have 
a significant impact on forested and agricultural used ecosystems. To decipher trends in 
soil warming temporally and spatially is important as a metric and should be linked to not 
only meteorological-dependent climate change observations.
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