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Abstract
Extreme precipitation events are a major cause of economic damage and disruption, and
need to be addressed for increasing resilience to a changing climate, particularly at the
local scale. Practitioners typically want to understand local changes at spatial scales much
smaller than the native resolution of most Global Climate Models, for which downscal-
ing techniques are used to translate planetary-to-regional scale change information to local
scales. However, users of statistically downscaled outputs should be aware that how the
observational data used to train the statistical models is constructed determines key prop-
erties of the downscaled solutions. Specifically for one such downscaling approach, when
considering seasonal return values of extreme daily precipitation, we find that the Localized
Constructed Analogs (LOCA) method produces a significant low bias in return values due
to choices made in building the observational data set used to train LOCA. The LOCA low
biases in daily extremes are consistent across event extremity, but do not degrade the over-
all performance of LOCA-derived changes in extreme daily precipitation. We show that the
low (negative) bias in daily extremes is a function of a time-of-day adjustment applied to
the training data and the manner of gridding daily precipitation data. The effects of these
choices are likely to affect other downscaling methods trained with observations made in
the same way. The results developed here show that efforts to improve resilience at the local
level using extreme precipitation projections can benefit from using products specifically
created to properly capture the statistics of extreme daily precipitation events.
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1 Introduction

Large infrastructure decisions have in the past been based on average temperature and pre-
cipitation, their variability, and various measures of extreme events. Such decisions can
require many years of lead time, often using compilations of temperature and precipitation
statistics from long-duration observations and assuming stationarity in the distributions of
environmental variables like temperature and precipitation (Klemes et al. 1982). Recogni-
tion of the effects of climate change has introduced new approaches using descriptions of the
nonstationarity of those distributions, which are among the most important state variables
for understanding climate change threats and impacts (Milly et al. 2008; Hallegatte 2009;
Engle 2011). The climate science community has engaged in major international efforts
through the Coupled Model Intercomparison Project (CMIP) exercises (e.g., Taylor et al.
2012; Eyring et al. 2016) to assess and understand changes in the planetary-to-regional-scale
distributions of temperature and precipitation, and the associated analyses from that work
are a key part of most applications of global-scale climate information for understanding
and preparing for local impacts. These Global Climate and Earth System Models (GCMs
and ESMs) use numerical representations of physical processes in Earth’s climate system to
project, among other effects, a range of responses of Earth’s hydrological cycle as it adjusts
to the warming resulting from specified concentration or emissions pathways.

However, GCMs and ESMs and the experiments they run for CMIP are not designed
to depict local change. Computational limitations still require that most of the production-
class GCMs and ESMs used in the CMIP experiments use 100 km (or larger) geospatial
grids, which can be much larger than the scale of the decisions that practitioners must make
concerning local impacts. One widely used approach to make native-scale GCM output
more useful at finer spatial scales is to downscale the GCM outputs. Downscaling methods
range across a continuum from empirical-statistical (e.g., Wood et al. 2004; Abatzoglou and
Brown 2012; Stoner et al. 2013; Pierce et al. 2014), to fully dynamical depending on the
extent to which physical processes are represented in the downscaling approach (e.g., Giorgi
and Gutowski 2015; ), with hybrid methods between those two (e.g., Gutmann et al. 2016).
However, the wide range of downscaling methods often produces a range of model results
for historical and projected future conditions, which can be difficult to adapt to some long-
term planning workflows (Brown et al. 2012; Ntegeka et al. 2014; Moss 2017; Feldman
et al. 2021).

Practitioners using downscaled projections to describe and understand atmospheric and
land-surface impacts at finer scales than those produced by the parent model (e.g., GCM)
should consider multiple questions in tandem (e.g., Barsugli et al. 2013; Vano et al. 2018),
including their tolerance for parent model spread across variables of interest, the level of
confidence in, and fidelity of, the parent model to known and relevant processes at the
parent model scale, and whether the downscaling solution introduces additional process
information to fine-scale projections that is absent from the parent model but which mate-
rially improves the downscaled projection (e.g., Walton et al. 2020; Hall et al. 2020, which
highlights that errors in under-resolved precipitation and snow albedo processes in par-
ent model projections for California can be addressed, at least in part, through dynamical
downscaling). These questions arise irrespective of whether practitioners directly apply
downscaled fields to specific locations or indirectly apply downscaled outputs through
approaches such as decision-scaling, in which a stochastic assessment of risk is combined
with insights derived from climate projections at some scale to determine the likelihood
of changes in events of particular interest at a given location (e.g., Brown et al. 2012).
When the environmental variable involves daily precipitation extremes, directly using native
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GCM or ESM outputs with ≥100 km spatial resolution can often be excluded at the start
of many practitioners’ studies since the scales of their decisions are so much finer. How-
ever, downscaling extremes in daily precipitation is one of the key challenges for statistical
downscaling methods (Chen and Zhang 2021), particularly since the gridded daily pre-
cipitation data products used for training are well-known to diminish variability and mute
extremes (King et al. 2013; Risser et al. 2019c). The important point is that any data set or
technique used should be able to capture extremes, which in principle can be accomplished
by a variety of methods. One such example that can be tailored to reproduce and analyze
extremal behavior is stochastic weather generators (SWGs; Vrac et al. 2007; Ayar et al.
2020), although coherency across space and variables is still a challenge for SWGs. Unfor-
tunately, many of these approaches (including SWGs) require domain-specific scientific and
statistical expertise that can be infeasible for practitioners to implement. It is far more prac-
tical for practitioners to analyze existing downscaled products than to, e.g., implement and
run stochastic weather generators, and they can benefit from understanding when and where
such products are appropriate for a particular problem of interest. To that end, we explore
here how known biases in gridded daily precipitation products translate into corresponding
biases in downscaling solutions.

In this paper, we demonstrate how the process of constructing observational data sets
for training the empirical-statistical downscaling methods has a direct influence on the
downscaling solutions, particularly for the problem of long-period return values of daily
precipitation extremes. Specifically, we explore in detail the influence of training data on
the Localized Constructed Analogs (LOCA) statistical downscaling method (Pierce et al.
2014), which used the daily gridded precipitation data set (Livneh et al. 2015a; 2015b)
(henceforth L15) as training data, and show how using a product specifically constructed to
accurately capture pointwise extreme precipitation statistics can give a more useful depic-
tion of such extremes than the standard gridded daily precipitation product used to train the
statistical models.

Before proceeding, an important piece of background has to do with the interpretation
of gridded precipitation data sets. Generally speaking, gridded precipitation can either be
interpreted as an areal average over a grid box or as a point estimate (Chen and Knutson
2008). As described in Gervais et al. (2014), precipitation arises from small-scale struc-
tures that are discontinuous in nature, which can lead to large differences between the areal
average and point estimate interpretations. Such interpretational differences can further-
more lead to significant differences in the resulting statistics of precipitation, particularly
for extremes (see, e.g., Gervais et al. 2014; Wehner et al. 2021). GCM-simulated precipita-
tion (and, more generally, precipitation from any dynamical model) is best understood as an
areal average regardless of how small the grid boxes are since a physical model can accu-
mulate fluxes through the boundaries of its grid boxes. Measurements of precipitation from
weather stations, on the other hand, follow the point estimate interpretation since they repre-
sent precipitation collected at an (essentially) infinitesimally small geospatial location. As is
convincingly demonstrated in Gervais et al. (2014), any gridding method based on interpo-
lation of daily weather station measurements (e.g., bilinear interpolation or inverse distance
weighting) will yield a daily gridded precipitation product that should be interpreted as a
point estimate. In Section 2, we describe how and why each of the gridded precipitation data
products considered in this paper should be interpreted as point estimates and explicitly not
areal averages.

The paper proceeds as follows: in Section 2, we describe the data sets (observational
and modeled) and methods for comparing estimates of seasonal return values for daily pre-
cipitation. In Section 3, we present our results for an illustrative set of specific locations,
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investigate two primary reasons for biases in the gridded daily product used for training the
statistical downscaling solutions, derive a new data product of scaling factors that allows
users of LOCA products derived from CMIP5 model outputs to adjust return value esti-
mates, and apply the scaling factor to our illustrative locations. Finally, in Section 4, we
conclude with the implications of these findings and suggestions for practitioners focused
on location-specific analyses.

2 Data andmethods

2.1 Observational data products

Livneh daily gridded product The Livneh et al. (2015a, b) daily gridded product pro-
vides estimates of daily precipitation at 1/16th degree spatial resolution over much of North
America for 1950–2013. L15 is a widely used data product, and is relevant here because
it is used as training data for the LOCA downscaling method. The L15 data product uses
in situ measurements of daily total precipitation (over CONUS, the input data are from the
Global Historical Climatology Network; Menne et al. 2012) to create a daily gridded prod-
uct in two steps. First, for each day, the station measurements are interpolated to a 1/16◦
or ∼ 6 km high-resolution grid using the SYMAP algorithm (Shepard 1968, 1984), which
is an inverse distance weighting approach. Second, the interpolated data are multiplied by
a monthly scaling factor determined by the ratio of its mean monthly baseline climatology
(1981–2010) and the mean monthly climatology from the same period of the topographi-
cally aware PRISM data product (Daly et al. 1994, 2008). The L15 data product is largely
an extension of an earlier version of the data set (Livneh et al. 2013, henceforth L13); all
time-of-day splitting issues (see Section 3.2) were first raised in L13 and then inherited by
L15.

As described in Section 1, the L15 product should be interpreted as a point estimate (as
opposed to a grid box area average) because it is based on an interpolation of the underlying
station data (Gervais et al. 2014) and does not preserve fluxes at the grid box boundaries.
The SYMAP algorithm uses a weighted average of the four stations nearest to the grid cell
(where the weights are based on the inverse distance from the grid cell centroid); hence,
if a cell contains a station, then the interpolated value of that grid cell closely follows the
observed value at that station since the station inside the grid cell is weighted more than
stations outside the grid cell. However, in principle, if there are many observing stations that
fall within a grid cell, the inverse distance weighting approach could be thought of as an area
average when the grid box is sufficiently small (although the arguments in Gervais et al.
2014, would suggest that the point estimate interpretation is still correct even in this case).
How often do two or more stations fall within a single 6 km Livneh grid cell? Taking into
consideration the dynamic nature of stations falling in and out of the data set (due to missing
data measurements and possible changes in station locations over the historical record),
across all grid box-days, there is more than one station within 6 km of the grid cell just
0.32% of the time. All of these arguments verify that L15 is not an area-averaged product
and instead should be considered a gridded representation of point (station) measurements.

Risser climatological gridded product Gridded daily products like L15 have been iden-
tified recently (King et al. 2013; Gervais et al. 2014; Timmermans et al. 2019) as
inappropriate for characterizing extreme local precipitation since daily precipitation is
known to exhibit fractal scaling (see, e.g., Yevjevich 1972; Lovejoy et al. 2008; Maskey et al.
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2016, and numerous references therein). For this reason, any spatial averaging during the
gridding process will diminish variability and extreme values in the original observations.
As an alternative, Risser et al. (2019c) develop a “probabilistic” gridded data product that
is appropriate for climatological analyses and is specifically designed to characterize local
measurements of extreme precipitation. The Risser et al. (2019a) data product (henceforth
R19) preserves the extreme statistics of weather station measurements by first calculating
extreme statistics at each station and then interpolating these statistics using a data-driven
technique to a 1/4◦ or ∼25 km grid. Furthermore, R19 contains uncertainty quantifica-
tion in the form of a bootstrap or resampling-based ensemble of estimates. Note that as an
interpolation-based method the R19 product should be interpreted as a point measurement
(Gervais et al. 2014). The benefits of the R19 data set (as documented in Risser et al. 2019c)
include (1) the spatial aspect of the statistical analysis borrows strength from neighboring
stations when estimating the extreme statistics at each station and (2) this borrowing of
strength reduces the uncertainty such that the signal-to-noise ratio of the underlying spatial
signal is increased.

There are several reasons why the R19 product is used in this paper as the “ground truth”
for point estimates of the statistics of extreme precipitation over the CONUS. First, com-
pared to a single-station analysis that estimates extreme statistics of daily precipitation at
each station independently of all others, the R19 product has small root mean squared error
in 20-year return values (ranging from 5.5mm in DJF to 11.2mm in JJA as a CONUS aver-
age; much of this “error” is smoothing over observational uncertainty) and significantly
smaller bootstrap standard errors (ranging from a reduction of 40% in DJF to more than
50% in JJA). More importantly, Molter et al. (2021) determine that the statistics of sea-
sonal extreme rainfall across CONUS vary only minimally on spatial scales smaller than
100 km (especially east of the Rocky Mountains), verifying that the R19 product can effec-
tively describe the spatial variability of extreme precipitation since the average spacing of
the underlying GHCN station data is ∼ 27 km. Furthermore, Molter et al. (2021) find that
R19 accurately represents corresponding statistics of extreme precipitation estimated from
the NEXRAD Stage IV radar-based daily precipitation product, which has a horizontal res-
olution of 4 km. As a result, the R19 product can safely be considered the “ground truth” for
point estimates of the statistics of extreme precipitation, particularly in the eastern United
States.

Finally, it is important to emphasize that R19 does not attempt to grid daily precipitation,
and hence only provides climatological summaries (i.e., return values) with measures of
uncertainty and so cannot be used to train traditional statistical downscaling methods in
place of gridded products. The implication, however, is that daily extremes in precipitation
as represented in R19 are not “smeared” over space, which is a fundamental property of any
data product that attempts to interpolate daily precipitation without explicitly accounting for
fractal scaling in precipitation (including L15). This includes other ensemble data products
(e.g., Newman et al. 2015), which provide measures for estimating uncertainty but still
diminish extreme values and variability by gridding daily precipitation data.

Statistically downscaled data products As previously mentioned, the L13 and L15 data
sets have many applications, including as a training data set for the Localized Constructed
Analogs (LOCA) statistical downscaling method (Pierce et al. 2014). LOCA has been used
to downscale climate model outputs including those from the CMIP5 archive, and LOCA-
downscaled CMIP5 model products for historical and future emissions scenarios have been
widely used, including as the basis for projections of change in temperature and precip-
itation across the Conterminous United States in the 4th National Climate Assessment
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(Wuebbles et al. 2017). Those LOCA outputs were downscaled from 32 GCMs and have a
daily timestep for the period 1950–2100. Here we use GCM outputs downscaled from the
CMIP5 historical period (1950–2005), for the 31 CMIP5 models shown in Supplemental
Table 1.

LOCA is a constructed analog method for downscaling. In the constructed analog
approach, fine-scale observations are first coarsened to the GCM grid, then the 30 coars-
ened observed days that best match the specific GCM day being downscaled are identified.
These are termed the analog days. Traditional constructed analog downscaling then calcu-
lates the weighted average of the 30 analog days that best reproduces the specific GCM
day being downscaled. The 30 weights are then applied to the 30 original high-resolution
observational days, and the resulting weighted average is the high-resolution downscaled
solution. However this averaging has the drawback that extremes are muted and (for pre-
cipitation) drizzle is generated in the downscaled field. LOCA avoids this by starting with
the 30 analog days, but then using only the single best-matching analog day of the 30 in a
1◦ × 1◦ latitude-longitude box around the point being downscaled to. With less averaging,
extreme values as represented in the training data are better preserved in the downscaled
field and extraneous drizzle is not generated. Details are given in Pierce et al. (2014). Note
that, since the LOCA solutions are a statistical method trained on L15, the interpretation of
LOCA is the same as the interpretation of L15: its gridded precipitation values should be
interpreted as a point estimate.

2.2 Return value assessment

Our key objective with this paper is to compare estimates of daily precipitation return val-
ues at specific locations from LOCA and R19 in order to demonstrate how confidence in
estimates of extreme daily precipitation return values can be enhanced by consulting a prod-
uct that is specifically constructed on the basis of extreme value analysis. Return values
(sometimes referred to as a return level) for daily precipitation define a threshold for what
is considered an extreme or severe daily precipitation total at a given location. As such,
return values are an important quantity for assessing local risk and designing infrastructure
through quantifying the probability of rare events, including estimates for events that have
not occurred in a particular observational period. Return values are defined for a particular
“return period” r , where often r = 10, 20, 50, or 100 years, which specifies the event rar-
ity: for example, in any given year, the probability of exceeding the threshold defined by the
20-year return value is 1/20 = 0.05. In order to compare return value estimates between
R19 and LOCA, we select the nearest R19 grid cell (25 km resolution) and LOCA grid cell
(6 km resolution) for each of a set of locations across CONUS, focusing on US Department
of Defense facilities where practitioners are planning for hydroclimatological extremes by
considering downscaling solutions (Moss 2017). We evaluate the influence of the different
spatial scales of these data products in the Supplemental Materials.

The R19 data product directly provides return value estimates for daily precipitation at
each grid cell in each of the four three-month seasons (DJF, MAM, JJA, and SON), and
hence contains the extreme statistics of interest. To calculate the corresponding seasonal
quantities for the LOCA solutions, we apply an extreme value analysis to the time series of
daily precipitation at each matched grid cell. First, for each grid cell in each season/year we
calculate the maximum daily precipitation total (mm), commonly referred to as Rx1Day.
Next, we characterize the extreme climatology for each grid cell using the Generalized
Extreme Value (GEV) family of distributions, which is a statistical modeling framework for
the maxima of a process over a specified time interval or “block”; here, the three-month
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seasons. Coles (2001) (Theorem 3.1.1, page 48) shows that when the number of measure-
ments per block is large enough, the cumulative distribution function (CDF) of the seasonal
Rx1Day in year t and grid cell g, denoted Yt (g), can be approximated by a member of the
GEV family

Gg,t (y) ≡ P(Yt (g) ≤ y) = exp

{
−

[
1 + ξt (g)

(
y − μt(g)

σt (g)

)]−1/ξt (g)
}

, (1)

defined for {y : 1 + ξt (g)(y − μt(g))/σt (g) > 0}. The GEV family of distributions (1)
is characterized by three statistical parameters: the location parameter μt(g) ∈ R, which
describes the center of the distribution; the scale parameter σt (g) > 0, which describes the
spread of the distribution; and the shape parameter ξt (g) ∈ R. The shape parameter ξt (g)
is the most important for determining the qualitative behavior of the distribution of daily
rainfall at a given location. If ξt (g) < 0, the distribution has a finite upper bound; if ξt (g) >

0, the distribution has no upper limit; and if ξt (g) = 0, the distribution is again unbounded
and the CDF (1) is interpreted as the limit as the shape parameter ξt (g) approaches zero
(Coles 2001).

To account for changes over time in the distribution of extreme precipitation and temper-
ature we use a simple trend model wherein the location parameter varies linearly in time,
i.e., μt(g) = μ0(g) + μ1(g)t , while the shape and scale parameters are constant over time,
i.e., σt (g) ≡ σ(g) and ξt (g) ≡ ξ(g). Using just four parameters to model changes over time
in Eq. 1 at each grid cell is a simplistic representation of the temporal evolution of extreme
precipitation, since in reality the distribution may be shifting nonlinearly (e.g., due to non-
linear changes in external forcing) with possibly nonconstant variability. However, Risser
et al. (2019b) explored both (a) including nonlinear trends in the location parameter and (b)
allowing the shape and scale parameters to change over time, and found that the simpler
model described by a linear trend in location with constant scale and shape performed as
well (in a statistical sense) as either of these alternative characterizations. Hence, we argue
that this statistical model is an appropriate way to characterize changes in extreme precip-
itation over CONUS. We use the climextRemes package for R (Paciorek 2016) to obtain
maximum likelihood estimates (MLEs) of the GEV parameters {μ̂0(g), μ̂1(g), σ̂ (g), ξ̂ (g)},
independently for each grid cell of interest and quantify uncertainty via the block bootstrap
(see, e.g., Risser et al. 2019c). The MLEs and the bootstrap estimates can be used to derive
estimates of the seasonal climatological r-year return value in year t , denoted φ̂t,r (g), which
can be calculated as:

φ̂t,r (g) =
{

μ̂0(g) + μ̂1(g)t − σ̂ (g)
ξ̂ (g)

[
1 − {− log(1 − 1/r)}−ξ̂ (g)

]
, ξ̂ (g) �= 0

μ̂0(g) + μ̂1(g)t − σ̂ (g) log{− log(1 − 1/r)}, ξ̂ (g) = 0
(2)

Coles (2001). In summary, after conducting the above analysis, we can calculate MLEs of
the climatological Rx1Day r-year return value in year t φ̂t,r (g) and block bootstrap esti-
mates {φ̂t,r,b(g) : b = 1, . . . , 250} in each season, and for each of the LOCA-downscaled
models. Again, the R19 data product yields these return value MLEs and bootstrap estimates
directly. The bootstrap estimates are used to calculate a 95% confidence interval using the
“basic bootstrap” method (see, e.g., Paciorek et al. 2018).

In order to compare the LOCA solutions versus R19, in addition to the return values we
consider three quantities for each geospatial location: (1) the relative difference in return
value (LOCA minus R19, divided by R19); (2) the 65-year trend (1951–2005) in return
values, as determined by μ̂1(g); and (3) the linear trend in the relative difference between
LOCA and R19 as a function of the return period r . For each of these quantities, at a specific
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location we first tally the number of LOCA solutions that differ from R19 (as determined
by whether the 95% confidence intervals overlap) and, if there appear to be meaningful
differences between the LOCA solutions and R19, we state differences between the LOCA
average and R19.

3 Results

3.1 Return value comparison

To assess the performance of statistical downscaling solutions for location-specific analysis
of extreme precipitation, we use, as a case study, the subset of United States Department of
Defense (DoD) installations within the CONUS that serve as foci for environmental research
supported by the Strategic Environmental Research and Development Program (SERDP)
and Environmental Security Technology Certification Program (ESTCP). We specifically
focus on a total of 163 installations that are affiliated with the Air Force, Army, Coast Guard,
Marine Corps, National Guard, or the Navy, and have a unique ZIP code; the geographic dis-
tribution of these sites is shown in Fig. 1. These specific locations are chosen for our analysis
because practitioners who are assessing the risks at each site from climate-changed temper-
ature and precipitation patterns would benefit from high-confidence, localized projections
of statistical distributions of these quantities (Moss 2017).

As an illustration of our methodology, we first choose seven facilities that represent
a variety of climatological regions in the CONUS; again see Fig. 1. For each facility,
we compare estimates of wintertime (DJF) return values for daily maximum precipitation
(Rx1Day). Return values are shown for a single year (2005); however, note that this repre-
sents an estimated return value based on the linear trend in Eq. 2 and can be considered a
temporally smoothed or “climatological” quantity. Recall that the r-year return value sum-
marizes the event (precipitation threshold) that is expected to be exceeded once every r years
(on average), or, equivalently the event that has a probability of being exceeded in any year
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Fig. 1 Geographic distribution of the 163 DoD facilities considered in this study (geocoded based on their
ZIP code) with the seven facilities used for the case study in Section 3
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of 1/r. Figure 2(a) shows the return values and 95% confidence band for R19 and the average
of the 31 LOCA-downscaled CMIP5 models. For reference, the corresponding return values
from L15 are also shown, as are return values estimated from the GHCN station closest to
each facility (the “nearest-neighbor” GHCN station). Across the board, the LOCA average
is significantly lower than R19; also note that LOCA generally agrees quite well with L15
and the R19 estimates compare favorably with the nearest-neighbor GHCN estimates. To
specifically quantify the differences between LOCA and R19, Fig. 2(b) shows the relative
difference between the LOCA average and R19: these differences are all negative (again
highlighting the negative, or as we will use subsequently, “low” bias) and range between
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Fig. 2 Best estimates and 95% basic bootstrap confidence intervals of the r-year return values of Rx1Day
(panel a) and percent differences (panel b) for each of seven example facilities, comparing the Risser et al.
(2019c) product (R19) and the average of the 31 LOCA-downscaled CMIP5 models. Panel c shows the
number of individual LOCA solutions (31 total) that differ significantly from R19 for each return period.
Panel a also shows return value estimates from L15 and the GHCN station that is closest to each facility (the
nearest-neighbor GHCN station, labeled “GHCN-nn”): note that LOCA generally agrees with L15 and R19
agrees quite well with the GHCN-nn estimates
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−30% and −50%, with the 95% confidence band showing that the differences are signif-
icant. This remains the case when considering the LOCA outputs derived from individual
models: Fig. 2(c) shows the number of individual LOCA solutions that are significantly dif-
ferent from R19. For less rare events (up to the 20-year event), every LOCA solution differs
from R19 except at Fort Hood. For more extreme events, the uncertainty is large enough
that fewer of the LOCA solutions differ from R19, but a majority still show significant dif-
ferences. In spite of the large differences between R19 and the LOCA average, the percent
differences are relatively consistent across return period r . In other words, the relative errors
(percent) in semi-rare events, e.g., the 1-in-5 year event, are approximately the same (after
accounting for uncertainty) as much rarer events, e.g., the 1-in-50 year event. The strip text
in Fig. 2(b) shows the trend in the percent difference as a function of return period r (per-
cent per 10-year increase in return period); only Tyndall Air Force Base has a statistically
significant trend in the difference, although the trend is very small (less than 1% per 10-year
increase in return period).

Having explored how the various data products compare in terms of the climatology
of extreme precipitation (i.e., return values), we next move on to assess how the products
compare in terms of how they quantify changes in extremes over time, specifically with
respect to linear trends over 1951–2005. Recall that our GEV analysis quantifies changes
over time in terms of a linear trend in the location parameter. Focusing on 20-year return
values, we convert this trend into mm/century and again compute a 95% basic bootstrap
confidence interval. Figure 2(d) compares the trend estimates at each facility for the LOCA
average and R19: the uncertainty in the trends themselves are generally quite large, such that
in most cases the trends are non-significant across data source; this agrees with significance
statements regarding observed trends in GHCN return values from Risser et al. (2019b).
Consequently, the differences in 1951–2005 trends across the LOCA average and R19 are
generally non-significant, in that the confidence intervals overlap. This is again true for both
the LOCA average as well as the individual models, where at most eight of the solutions
have significantly different trends from R19 (with Tyndall Air Force Base being the lone
exceptions; see the strip text of Fig. 2(d)).

Taking a step back, we next explore how these considerations play out across the other
facilities shown in Fig. 1 and in all seasons. First, across all locations and seasons, the per-
cent differences in return values between the LOCA average and R19 are approximately
constant across event rarity: over 70% of locations have non-significant trends in the per-
cent difference as a function of return period, and the other 30% (which are technically
significant) only change by ≈ −2% per 10-year increase in return period. As a result, we
again focus on the 20-year return value. Figure 3(a) shows the number of LOCA solutions
with significantly different 20-year return values, where it is clear that across locations and
seasons almost all of the solutions (approximately 25–27) are significantly different than
R19. The magnitude of this difference is summarized in Fig. 3(b), which shows the per-
cent difference between R19 and the LOCA average with black circles to identify locations
for which the difference is significant. As with the case study locations, these differences
are significant nearly everywhere, ranging between − 25% and −50%. Finally, Fig. 3(c)
shows the number of LOCA solutions for which the 65-year (1951–2005) linear trend dif-
fers from R19. Again, as we saw in the case study, very few solutions have trends that differ
significantly from R19, on average four across each season.

In summary, using these facilities as a case study, in all seasons the LOCA solutions
have significant low biases in daily extreme precipitation return value estimates relative to
R19, although the low biases are roughly consistent across return period. Estimates of trends
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DJF (Avg = 27.2 models) MAM (Avg = 26.3 models) JJA (Avg = 27.3 models) SON (Avg = 24.7 models)
> 27
(23,27]
(18,23]
(14,18]
(9,14]
(5,9]
< 5

(a) Number of LOCA solutions (of 31) with significantly different 20−year return values

DJF (Avg = −29.9%) MAM (Avg = −30.3%) JJA (Avg = −35.1%) SON (Avg = −29.7%)

%
> 42
(30,42]
(18,30]
(6,18]
(−6,6]
(−18,−6]
(−30,−18]
(−42,−30]

(b) Percent difference in 20−year return values, LOCA average vs. R19

DJF (Avg = 4.1 models) MAM (Avg = 4 models) JJA (Avg = 4.4 models) SON (Avg = 4.2 models)
> 27
(23,27]
(18,23]
(14,18]
(9,14]
(5,9]
< 5

(c) Number of LOCA solutions (of 31) with significantly different return value trends

Fig. 3 The number of LOCA solutions with significantly different 20-year return value estimates versus R19
(panel a; the average number of models is shown in the strip text), as well as the percent difference between
the LOCA-average 20-year return value and the corresponding quantity from R19 (panel b). Locations with
a significant difference between R19 and the LOCA average are plotted with a black circle. Panel c shows
the number of LOCA solutions for which the 65-year (1951–2005) linear trend in 20-year return value differs
from the R19 trend (with the seasonal average number of solutions shown in the strip text)

in extremes from both R19 and LOCA have very large uncertainties and do not appear to
significantly differ from one another.

3.2 Reasons for large discrepancies in LOCA return values

In Section 3.1, we found that daily precipitation return value estimates from the LOCA-
downscaled models at the locations of interest are approximately 25% to 50% too small
relative to R19. As shown in Pierce et al. (2021), similar biases exist for the L15 training
data relative to R19. Moreover, the LOCA solutions match the training data with respect to
return value estimates and trends in extremes (see Section 1 of the Supplemental Materials).
This latter finding is not surprising, since the L15 product was used to train the LOCA
downscaling procedure and that procedure is dominated by values from the observations set.
However, the differences between, specifically, L15 and R19 are concerning since the low
biases in estimates of extreme precipitation from L15 relative to R19 have been propagated
through to the downscaled solutions for return periods if not for space- and time-averaged
distributions of extremes. The natural follow-up question is: why? We now show that there
are two primary reasons for these differences: (1) a time-of-day correction in L13/L15, and
(2) the application of gridding to fields of daily precipitation. We now examine each of these
reasons in turn. In light of the fact that horizontal resolution is not the dominant driver of the
L15 low bias in daily precipitation extremes (see Section 2 of the Supplemental Materials),
in order to compare L15 and R19 in we regrid the L15 return values to the 1/4◦ R19 grid via a
nearest-neighbor scheme that averages the four L15 nearest-neighbors to each R19 centroid.

Time-of-day correction in L15 As described in Pierce et al. (2021), the weather station
data used to create L15 are adjusted in order to “standardize” the daily data to all have the
same measurement time. This adjustment is conducted prior to gridding, and is done as
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follows: define P h(t) to be a measurement of precipitation representing one day t , taken
at hour h = 0, . . . , 23. In L15, these values are time-adjusted such that all stations have a
measurement time of midnight (h = 23) as follows:

P 23(t) = P h(t)� + P h(t + 1)(1 − �),

where � = (h + 1)/24 (for further details, see Pierce et al. 2021). Pierce et al. (2021)
show that the most common gauge observation times are between 6 and 8 AM local time;
applying the time adjustment means that for such measurements, the precipitation for day
t is mostly added to the measurement on day t + 1. More importantly, Pierce et al. (2021)
show that the time adjustment systematically reduces seasonal maxima (except in very rare
situations), while also increasing the fraction of wet days and decreasing the average pre-
cipitation on wet days (these latter two issues are less relevant for the study at hand but are
nonetheless important). Pierce et al. (2021) show that, averaged over CONUS, L15 under-
estimates 20-year return values by approximately 26% in DJF and 32% in JJA (similar to
what we find in this paper). In light of this known feature of the L15 data processing algo-
rithm, Pierce et al. (2021) develop a new version of the L15 data that does not include the
time adjustment, henceforth “L15-unadj”. Applying the same GEV analysis to L15-unadj
significantly reduces the low biases in 20-year return values, to just 4% in DJF and 12% in
JJA.

However, taking a closer look at Figure 5 in Pierce et al. (2021), it appears as though
both of these CONUS-average low biases (for L15 and L15-unadj) are likely larger than
they should be due to the inclusion of areas of complex topography in the western United
States. In these areas, the L15 and L15-unadj return values are actually significantly larger
than R19 (by as much as+30%). This is almost certainly due to the different ways each data
set accounts for elevation: in R19, a simple linear elevation scaling is applied to the GEV
parameter fields, while (as previously mentioned) L15 and L15-unadj use a PRISM-based
adjustment (Daly et al. 1994) that incorporates other topographic variables. In light of these
important differences and the difficulties of modeling precipitation in areas of complex
topography (which are beyond the scope of this paper), we limit our comparison to CONUS
grid cells with an elevation of less than 1500 m above sea level. We note that these problems
may be influenced more by elevation gradients as opposed to absolute elevation, but using
an absolute threshold is a simple way to navigate the challenges of modeling precipitation
in places with complex topography.

Gridding of daily data As was previously mentioned, a number of recent papers have doc-
umented how gridded daily products of precipitation (such as L15) are an inappropriate data
source for characterizing extremes locally since daily precipitation exhibits fractal scaling
and any spatial averaging will reduce extremes (Lovejoy et al. 2008; Maskey et al. 2016).
To explicitly evaluate the magnitude of this reduction in extremes, we take the same input
data as R19 (daily measurements of precipitation from 5,202 GHCN stations over 1950–
2017) and apply bilinear interpolation (like the SYMAP algorithm used by L15) to convert
the spatially irregular measurements to a regular 0.25◦ grid—the same grid as the one used
in R19. Then, at each grid cell, we extract the seasonal maximum daily precipitation in each
year and fit the GEV distribution defined in (1) with a linear trend in the location parameter;
we then calculate the maximum likelihood estimate of the 20-year return value at each grid
cell. While this is an admittedly simple interpolation scheme that does not make adjustments
for complex topography, it allows us to isolate the specific influence of applying a standard
gridding scheme to a fractal field. And, as mentioned in the previous paragraph, the facility
locations under consideration in this paper are not in areas of complex topography.
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Note that this procedure can be seen as reversing the order of operations in R19: in R19,
one first calculates extreme statistics from the station data and then applies gridding, while
here (as with L15) we instead first apply gridding to the daily station data and then calculate
extreme statistics from the gridded result. As such, we denote this approach as “GHCN-
grid-then-fit” since it uses GHCN station data as input but grids the daily data before fitting
an extreme value distribution. And, importantly, this yields an apples-to-apples comparison
since it uses the same input data as R19 and simply reverses the order of operations.

Decomposition of low extreme daily precipitation bias in L15 Considering all 0.25◦ grid
cells in CONUS with an elevation of less than 1500m (to avoid the influence of the PRISM
adjustment in L15 and L15-unadj), we calculate the percent biases for L15, L15-unadj, and
GHCN-grid-then-fit versus the R19 ground truth return values. Using these biases, we can
explicitly quantify the contribution of the time-of-day (TOD) adjustment and the gridding
of daily data to the total bias in L15. First, the contribution of the TOD adjustment can be
calculated by taking the percent bias from L15 minus the percent bias in L15-unadj divided
by the L15 bias, i.e.,

Fraction of bias due to TOD adjustment = Bias(L15) − Bias(L15-unadj)

Bias(L15)
,

where Bias(·) is the average percent difference in 20-year return values of the indicated
data set relative to R19. Next, the contribution of gridding daily data can be calculated by
directly comparing the two biases

Fraction of bias due to gridding daily data = Bias(GHCN-grid-then-fit)

Bias(L15)
,

since the primary difference between the GHCN-grid-then-fit and R19 data sets is the order
of operations. The total percent bias in 20-year return values for L15 relative to R19 aver-
aged over all 0.25◦ CONUS grid cells with an elevation less than 1500m is shown in Table 1.
Now that we have removed grid cells with complex topography (albeit rather crudely), we
can see that the overall bias in L15 is slightly worse than was found in Pierce et al. (2021):
the L15 return values are approximately 30% too small for DJF, MAM, and SON, and
>35% too small in JJA. The largest fraction of this bias is due to the time-of-day adjust-
ment in L15, which accounts for 53% of the bias in JJA and up to 74% of the bias in DJF.
The gridding of daily data has a lesser but nonetheless significant influence on the return
values, accounting for about 35% of the bias in DJF to 50% of the bias in JJA. Clearly, the
two rightmost columns of Table 1 do not add up to 1, which indicates that there are some

Table 1 Total percent bias in 20-year return values for L15 relative to R19 (second column from the left)
averaged over all 0.25◦ CONUS grid cells with an elevation less than 1500 m

Season Total bias (L15) Frac. of bias due to TOD adj. Frac. of bias due to gridding daily data

DJF −29.4% 0.74 0.37

MAM −30.9% 0.63 0.43

JJA −435.7% 0.53 0.51

SON −30.4% 0.63 0.41

The fraction of the bias due to both the time-of-day (TOD) adjustment and the gridding of daily data are also
shown in the two rightmost columns
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overlapping contributions to the bias from the TOD adjustment and gridding of daily data.
Nonetheless, the fact that the sum of these two fractional contributions is close to 1 (actu-
ally 1.04 to 1.11) provides confidence that we are partitioning the bias into these two causes
approximately correctly, especially since the return values from the different data sources
(L15, L15-unadj, and GHCN-grid-then-fit) were calculated independently of one another.

3.3 Scaling factors for adjusting LOCA biases

When a user is interested in using the LOCA solutions for estimating return values, the
results presented in this paper can be used to “bias correct” LOCA return values by way of
a simple scaling factor. Given that 1951–2005 linear trends in return values for LOCA are
generally indistinguishable from corresponding trends in R19 and differences are consistent
across return period (see Section 3.1), a time- and return period-invariant scaling factor can
be derived by calculating the ratio between L15 and R19 return values as

sfg = φ̂R19
2005,20(g)

φ̂L15
2005,20(g)

(3)

(of course, the scaling factors depend on season as well), where g corresponds to the 1/16◦
grid used in L15 and LOCA and we arbitrarily choose the year 2005 and the 20-year return
period. The idea here is that if one estimates grid cell r-year return values for the LOCA
solutions in exactly the same way as described in Section 2.2, one could multiply the return
value by sfg to yield return values that have the same climatology as R19. Furthermore, the
scaling factors are based on L15 since biases present in the predictant of a statistical down-
scaling solution will also be present in the output (Maraun et al. 2010). Such a correction
provides a path forward for users who require the daily data and range of solutions provided
by the LOCA-downscaled CMIP5 GCMs but still wish to estimate pointwise return values.
The seasonal scaling factors based on the percent differences are provided as a publicly
available data product; see Risser et al. (2021).

As a simple example of how this correction works, we apply the scaling factor to the
wintertime LOCA return values at two sample sites, Tyndall Air Force Base and Fort Hood
(see Fig. 1). Recall from Fig. 2 that the return values from LOCA are too small relative to
R19 for both sites, but much more so at Tyndall Air Force Base. The scaling factors for
Tyndall and Fort Hood are 1.67 and 1.33, reflecting the larger (low) bias at Tyndall. The
adjusted return values for these two sites are shown in Fig. 4, where we also show estimates
from R19 and L15 for reference. The plotted lines for LOCA and LOCA-adjusted represent
the multi-model mean and the confidence band shows the multi-model spread. At both sites,
the adjusted return value curves agree much more closely with the R19 estimates, with
the uncertainty bands overlapping in almost all cases. Our main point is that the adjusted
LOCA return values could be used by practitioners. Given the well-documented difficulties
in bias correcting downscaling projections of daily precipitation (Turco et al. 2017), these
scaling factors could furthermore be applied to projected downscaling solutions, allowing
practitioners to assess both relative and absolute changes in extreme precipitation return
values under future emissions scenarios. However, an assessment of future projections is
beyond the scope of this current work.
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Fig. 4 Return values for R19 and the LOCA solutions, before after applying the location-specific scaling
factor to LOCA at the Tyndall Air Force Base (scaling factor = 1.67) and Fort Hood (scaling factor = 1.33)
grid cells. The L15 return values are also shown for reference (recall that the scaling factors are calculated
as R19/L15). For R19 and L15, the 95% basic bootstrap confidence band is shown; for the LOCA and
LOCA-adjusted, the band represents the multi-model spread (also, the plotted line is the multi-model mean)

4 Discussion

Our findings in this paper show how construction of the training data set can influence key
aspects of statistically downscaled solutions, and illustrate the utility of evaluating extreme
statistics by using a product specifically designed for that purpose via extreme value anal-
ysis. These results echo downscaling intercomparison efforts that pointed to the central
importance of training data (Gutmann et al. 2012, 2014). Other training data sets that do not
incorporate the time-of-day correction may have smaller biases, but biases due to the grid-
ding of daily data will persist in the absence of more sophisticated gridding techniques that
do not over-smooth extreme values and variability.

To demonstrate the utility of our findings regarding representations of observed precip-
itation extremes, we provide a data product consisting of scaling factors that effectively
correct the lower biases that we identify in LOCA return value estimates relative to a ded-
icated precipitation extremes data set. In this way we intend to support practitioners and
other end-users of LOCA solutions if and as they use these data sets for location-specific
analysis of extreme daily precipitation (Risser et al. 2021). These correction factors can
also be applied to other downscaled products that are trained on L15, after accounting for
the corresponding grid differences, and the findings can potentially serve as a guide to
develop correction factors for other statistically downscaled products where training data
sets are shown to exhibit biases in extreme behavior. We recognize that many downscaling
approaches employ a range of bias-correction techniques out of necessity (Christensen et al.
2008; Mearns et al. 2012; Sillmann et al. 2013), though not without controversy (Ehret et al.
2012). The results presented indicate that an additional bias-correction for extreme precip-
itation is needed for historically downscaled products. We did not explore whether such a
bias-correction would be needed for extremal values in future projections, but at least where
statistical methods are used for downscaling future projections, such extremal values will
need to be adjusted, and the approach and data set presented here can provide a starting
point to inform such an analysis. We note that even though the difference in trends between
LOCA and R19 is not statistically significant (at the 95% confidence level), the difference
in percent changes in the future may still be different.
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While the focus of this particular analysis is on L15 and LOCA, any statistical down-
scaling method trained with L15 or using a similar time-of-observation correction scheme
without correcting for this bias would be expected to show similar results. How obser-
vational training data sets are constructed can affect particular aspects of a downscaling
solution, and using the alternative method of direct extreme value analysis of the variables
of interest can add valuable information for local resilience planning. We specifically note
that these low biases in daily extremes for L15 do not result in low (or dry) biases at longer
timescales (e.g., multi-day or monthly). As described below, extreme daily precipitation
values are diluted by being distributed across space (via gridding) and time (by a time-of-
observation adjustment). Multi-day, seasonal, and annual precipitation totals are preserved
by this “smearing” even as daily extremes are reduced.

The low bias in precipitation return values in commonly used gridded products of the
historical record may be problematic for decisions regarding facility resource management.
One common approach to using downscaled solutions, which recognizes the challenges
with using the absolute values of those solutions, is to look at the relative change between
the simulated historical record and a future projection in a given quantile (e.g., Cannon et al.
2015). We show that making decisions based on relative change in extreme precipitation at
a given location will be problematic, since the relative change in extreme precipitation will
propagate the low bias in extreme precipitation that we have shown can exist in downscaling
solutions from the historical record.

Whenever multiple techniques can be considered for a common problem (here, an obser-
vational data set for assessing daily precipitation) a trade-off is typically involved. For
example, the special-purpose precipitation extremes product R19 does not provide daily
time series of precipitation and so cannot be used as a substitute for daily precipitation fields
in all applications including ones to train statistical downscaling methods. Conversely, the
standard daily gridded product and others like it cannot capture extremes as well as the ded-
icated product based on extreme value analysis. Depending on the application, using one or
the other product (daily gridded or seasonal extreme measures) may be preferable, but we
show that using aspects of both can produce more useful results than using either singly.
We note that although we do not pursue the question in this study, we consider that grid-
ded daily precipitation data products are appropriate for conducting GCMmodel evaluation
(see, e.g., Chen and Knutson 2008; Gervais et al. 2014; Risser and Wehner 2020; Wehner
et al. 2021); on the other hand, products such as Risser et al. (2019c, a) are the appropriate
for considering pointwise applications, and are therefore used as the standard of comparison
in this paper.

More broadly, this paper explores a thorny issue for downscaling: products that are devel-
oped for grid boxes at 6 km, which are very small relative to the parent model, may not
be the most informative for analyses of extreme precipitation at other spatial scales. To be
clear, this problem is based on the technique used to generate the training data set, and not
due to the size of the downscaled grid box. Fundamentally, daily precipitation is a fractal
field, and the gridding of that field produces artifacts. While the biases we identified here
may decrease with the decreasing size of the grid boxes in the application domain, users of
gridded observational data should exercise caution when using gridded data sets for analyz-
ing point extremes of these environmental variables. Our results show the additional value
that can be gained by considering results from a targeted extreme value analysis in addi-
tion to using statistics calculated from a daily gridded product. With respect to extreme
precipitation, a correction is required to conventionally gridded products in order to incor-
porate unbiased estimates of extreme precipitation into location-specific analyses. While a
correction factor may address gridding biases, the findings here show how attention must
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be paid to the corruption of extrema information from gridding observational data. The bias
induced from gridding in the manner explored here can be especially troublesome where
changes in extreme precipitation need to be estimated. Baseline analyses of models and
observational products over the historical period form a foundation for analyzing extreme
precipitation in future climate. Regardless of whether location-specific analyses use future
projections with statistical, dynamical, or hybrid methods to incorporate nonstationarity into
their downscaled solutions, those analyses need to begin with information from historical
data that is unbiased from gridding methods.
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