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Abstract
The frequency and intensity of natural disasters such as hurricanes, wildfires, and floods 
are predicted to change as greenhouse gas concentrations increase. These disasters may 
represent sources of information for individuals as they update their beliefs related to cli-
mate change. Using a dataset that includes climate beliefs of respondents, we examine the 
effect of natural disasters on climate change beliefs and find that hurricanes significantly 
increase the probability that survey respondents from a given county believe that climate 
change is occurring and that it is human caused. We find that past experience with cer-
tain types of natural disasters (e.g., hurricanes) impacts beliefs regarding whether climate 
change is occurring and if it is human caused. The research contributes to the literature 
evaluating climate change attitudes by using spatially disaggregate information on climate 
change beliefs and exposure to a set of natural disasters over time. Characterizing beliefs 
and attitudes toward climate change and related policies is important since these beliefs are 
a determinant of individual adaptation and support for policies related to reducing carbon 
emissions.

Keywords  Climate change · Public beliefs · Natural disasters

JEL codes  Q54 · D83 · C33

1  Introduction

Despite the scientific consensus that climate change is occurring and is attributable to 
anthropogenic causes (Allen et al. 2014; Pachauri et al. 2014), the population of the USA 
is far from unanimous in their opinions regarding climate change (Leiserowitz et al. 2015). 
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Failing to recognize predicted changes in climate can have economically important con-
sequences if it delays individual adaptation or limits support for public policies to correct 
market failures that lead to excess emissions. Despite overwhelming scientific evidence, 
the effects of climate change rarely impact the lives of individuals in a salient way and are 
only observable over long time horizons (Spence et al. 2012; Pahl et al. 2014). One excep-
tion to this is with natural disasters, many of which (e.g., hurricanes (Bender et al. 2010), 
wildfires (Turco et al. 2014), and floods (Bronstert 2003)) are predicted to increase in fre-
quency as a result of climate change. This provides a path through which experience with 
weather-related events and their frequency may alter individual beliefs about the existence 
and causes of climate change.

This paper examines how natural disasters affect the percentage of people in a county 
that believe in, and are concerned about, climate change, as well as attitudes toward spe-
cific climate change-related policies. We estimate both the average effect of an additional 
natural disaster on county-level beliefs, as well as heterogeneous effects based on the his-
toric frequency of the disasters. Importantly, we control for changes in county composition, 
economic conditions, and political factors that may change with a disaster and over time. 
To do this, we use results from a set of Yale Climate Communications Project (YCCP) 
surveys that ask questions related to climate change. We first consider if natural disasters 
affect opinions about whether climate change is happening. Then, we investigate whether 
natural disasters affect beliefs about whether climate change is human caused. Finally, we 
examine if natural disasters affect support for public policies related to climate change, 
including public research on renewable energy, renewable portfolio standards, and limiting 
CO2 emissions from coal-fired power plants. Our study focuses on three types of natural 
disasters—hurricanes, wildfires, and floods—that are predicted to increase in frequency as 
a result of climate change (Westerling and Bryant 2008; Bender et al. 2010; Hirabayashi 
et al. 2013; Mann and Gleick 2015).

This research builds on previous studies that have examined how natural disasters 
impact public opinions or beliefs related to climate change. Owen et al. (2012) focus on 
heat waves and droughts, finding that these events increase public support for environmen-
tal regulations. Similarly, Spence et  al. (2011) find that direct experience with flooding 
increases concern related to climate change amongst a sample of individuals in England. 
Our study builds on this work by covering a broad range of disasters and a comprehensive 
set of survey questions that allow us to examine effects on policy attitudes and climate 
change beliefs. A recent study by Maas et al. (2020) finds no evidence that gradual changes 
in precipitation and temperature influence farmer’s perceptions about climate change. In 
contrast to the impacts of gradual changes, our results suggest that hurricanes have statisti-
cally significant impacts on climate beliefs and policy attitudes.

Our study contributes to the literature in several important ways. First, whereas most 
previous work addresses changes in climate opinions at an aggregated state or national 
level (e.g., Kahn and Kotchen 2011), only a few studies measure changes at a more spa-
tially disaggregated level (e.g., Howe et al. 2015). We model climate change beliefs at the 
county level across the USA. The more spatially disaggregated unit of observation that 
we employ allows us to better capture the heterogeneity in changes in climate beliefs due 
to extreme weather events using panel-data methods. Although it would be ideal to map 
exposure to specific natural disasters to individual respondents, using county-level disaster 
impacts enables us to more accurately attribute natural disasters to the people who expe-
rience them compared to a state-level analysis. Studies with aggregated national-level or 
state-level data can confound the impact of weather events with other spatial- and time-
varying characteristics that could drive climate beliefs. We also isolate an experience effect 
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from other channels through which effects could occur, such as news coverage. For exam-
ple, coastal counties may be less rural than those in the Midwest. Even within a state, urban 
and rural communities have significant differences in terms of education levels, income, 
political ideologies, etc. Furthermore, the climate change literature has demonstrated that 
local adaptation will influence the economic impacts of climate change (Manning et  al. 
2017), likely influencing beliefs about climate change as well.

Finally, our study is relevant to research in behavioral economics that addresses how 
information is internalized by individuals. We provide evidence that some natural disasters 
are internalized as information by the individuals that experience them. Past studies have 
modeled the response of individuals to exogenous information shocks (e.g., Sims 2003, 
2006). Recently, Gibson and Mullins (2020) and Hennighausen and Suter (2020) show that 
additional information on flood risk, communicated by additional floods, is internalized 
into property values. Our study builds on this by using survey results that directly measure 
beliefs and opinions.

The rest of the paper progresses as follows. In the next section, we provide background 
related to climate change, extreme events, and opinions and beliefs about environmental 
change. In Sect. 3, we describe our dataset. Section 4 discusses our empirical specification 
and identification strategy. Finally, Sect. 5 presents and discusses our results and Sect. 6 
concludes.

2 � Background

The formation of individual beliefs regarding climate change can directly influence pub-
lic policy. Substantial research has evaluated potential positive and negative feedbacks in 
the physical environment associated with a changing climate. For example, recent stud-
ies (Hurteau et al. 2019) investigate the extent to which wildfires increase or decrease the 
severity of future fires through an environmental feedback. Kettridge et al. (2010) examine 
how climate change will affect future cyclone frequency. Previous research also evaluates 
feedbacks between climate change and human behavior. For example, Davis and Gertler 
(2015) evaluate how a warming climate impacts adoption of air conditioning systems and 
leads to further carbon emissions and future climate impacts.

There is an extensive literature on the linkage between climate change and extreme weather 
events. Early studies on hurricanes (e.g., Emanuel 1987) established a link between the climate 
and hurricane patterns, and despite later disagreement about the precise impacts (Knutson 
et al. 2010), more recent work has concluded that climate change increases the frequency of 
high-intensity hurricanes (Sobel et al. 2016). Climate change has also been linked to changes 
in drought frequency (Trenberth et al. 2014), as well as an increase in fuel loads responsible 
for more intense wildfires (Westerling and Bryant 2008). These disasters have dramatic eco-
nomic and ecological consequences. Pielke et  al. (2008) find that between 1900 and 2005, 
Atlantic hurricanes cost the USA an average of $10 billion annually. As population grows in 
coastal areas, annual costs will likely increase in the future. Kelly and Goulden (2008) find 
that climate change results in observable changes to the spatial distributions of plant species, 
in part due to increased frequency of drought (Le Houérou 1996); however, it is difficult to 
attribute any one drought event to climate change.

Because of their large, noticeable impacts, several studies have examined the role of 
natural disasters in changing public opinions on climate change. Examining changes at 
the national level in the USA, Owen et al. (2012) show that droughts and heatwaves are 
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correlated with an increase in the probability that individuals support policies that pro-
tect the environment. Herrnstadt and Muehlegger (2014) utilize Google Insights data 
along with voting records to show that abnormal weather is not only associated with an 
increase in searches related to climate change, but also shifts in congressional voting. 
By analyzing Google Trends data, Lang and Ryder (2016) show an increase in internet 
searches related to climate change in areas that have recently been impacted by hur-
ricanes. Bloodhart et  al. (2015) examine the role of different information sources in 
driving perceptions of climate change, focusing on the role of local newscasters. An 
early study by Diggs (1991) linked drought experiences to farmer perceptions of cli-
mate change in the Great Plains region of the USA. Several subsequent studies exam-
ine changes in perceptions following flood events in other locations around the world, 
including Ethiopia (Deressa et  al. 2011), England (Dessai and Sims 2010), and Aus-
tralia (Buys et al. 2012).

Theory from behavioral economics provides an explanation for how individual 
events can impact beliefs related to global climatic change through a process known 
as attribute substitution. With attribute substitution, individuals use simple observable 
outcomes to inform judgements as a substitute for a broader understanding of complex 
systems (Kahneman and Frederick 2002). For example, Zaval et  al. (2014) show that 
find that individual responses to beliefs related to climate change are influenced in part 
by their perception of the relative outdoor temperature on the day that they complete the 
survey. Attribute substitution is related to the availability heuristic (Tversky and Kah-
neman 1973), wherein individuals put more weight on recent outcomes that are easy 
to recall for informing their judgements related to the probability of uncertain events. 
A recent article by Botzen et  al. (2021) posits that experiencing climate change risks 
impacts concern for climate change through the availability heuristic in much the same 
way that concerns related to the COVID-19 pandemic are influenced by local COVID 
infection and death rates.

Aside from weather extremes affecting individual perceptions, the literature has 
shown the importance of economic factors and demographic variables. For example, 
Kahn and Kotchen (2011) examine how macroeconomic conditions influence public per-
ception of climate change, finding that states with higher unemployment rates experi-
ence reductions in the probability that individuals think climate change is happening, 
and in support for government action to address climate change. Research by Duijndam 
and van Beukering (2021) finds income per capita and unemployment rates to be impor-
tant determinates of individual climate change beliefs in European countries. Research 
by Meyer (2020) finds a similar result for the USA. Additionally, demographics have 
been shown to have associations with public opinions regarding environmental policies 
(e.g., Liere and Dunlap 1980; Van Der Linden 2015; Howe et  al. 2015). For instance, 
Van Der Linden (2015) demonstrates that gender influences beliefs that climate change 
will put an individual’s livelihood at risk.

3 � Data

To explore the relationship between natural disasters and climate change beliefs, we com-
bine several data sources, including survey data on public opinions regarding climate 
change, information on natural disasters, and data on county-level economic conditions. In 
this section, we describe and discuss these data.
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3.1 � Public opinion data

We employ a dataset of modeled public opinions at the county level that is provided by the 
Yale Project on Climate Change Communication (Yale PCCC) (2019). The modeled data 
are based on a collection of separate surveys that were conducted between 2014 and 2019 
(Yale PCCC, 2019). The results for each wave of the survey were aggregated to the county 
level using multilevel regression techniques with post-stratification by the Yale PCCC 
(Yale PCCC, 2019). The county-level aggregates are validated using several techniques, 
including comparisons with other surveys.1 The result is data on public opinions related to 
climate change for every US county for the years 2014, 2016, 2018, and 2019. One valida-
tion technique used by Yale PCCC involves comparing the results of the multilevel regres-
sion to independent, state-level surveys conducted over the same period, revealing a mean 
absolute difference of 2.9 percentage points (Yale PCCC, 2019).

Our empirical analysis uses results from responses to five survey questions from the 
Yale PCCC—two questions about climate change beliefs and three policy-specific ques-
tions. The two belief questions are whether the respondent believes climate change is hap-
pening and whether they believe that climate change is caused by anthropogenic actions. 
Responses to the former question about whether climate change is occurring are binary, 
and can be answered with either a yes or a no. For the latter, respondents can indicate 
whether or not they believe (yes, no) climate change is being caused by anthropogenic 
actions, with individuals indicating “no” having the option to specify it is not caused by 
humans because they believe it is not happening. We also consider responses to three pol-
icy related questions. A “no” answer to “Is Climate Change Human Caused” includes indi-
viduals who believe climate change is happening, but believe it is not caused by human 
activity. Individuals who do not believe climate change is happening are registered as a 
“no” response for “Is Climate Change Human Caused.” Table 1 provides summary statis-
tics for county-level averages across time for each of the questions used in the analysis. The 
specific language for each question can be found in appendix A.1.

There are many factors that contribute to changes in beliefs about climate change. Our 
study period spans the years 2014 to 2019, and in that time, beliefs regarding whether cli-
mate change is happening have shifted. In Fig. 1, we plot the changes in opinion between 
2014 and 2019 for two survey questions from the Yale PCCC: (1) Is climate change hap-
pening? and (2) Is climate change caused by human activity? Over this time period, the 
proportion of individuals within a county that believe climate change is happening and that 
it is human caused, both increased by 1–2 percentage points. However, significant variation 
in the change occurred with approximately 40.1% of counties reporting a decrease in the 
belief that climate change is happening and 59.9% of counties experiencing an increase in 
the belief that climate change is happening.

3.2 � Data on natural disasters and demographics

Our analysis includes occurrence data on three different climate change-related natural 
disasters: hurricanes, wildfires, and floods. We use measures of the annual occurrence of 

1  Additional details about the methodology used to aggregate the survey results to the county level can 
be found here: http://​clima​tecom​munic​ation.​yale.​edu/​visua​lizat​ions-​data/​ycom-​us-​2018/?​est=​happe​ning&​
type=​value​&​geo=​county

http://climatecommunication.yale.edu/visualizations-data/ycom-us-2018/?est=happening&type=value&geo=county
http://climatecommunication.yale.edu/visualizations-data/ycom-us-2018/?est=happening&type=value&geo=county
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Table 1   The average percentage of people within a county that answer affirmatively for each of the five 
questions considered in the study

Note: aWe report the standard deviation of the report data.

2014 2016 2018 2019

Question
Is climate change happening? 59.10% 64.69% 64.00% 60.20%
St. Dev.a (4.91) (5.45) (5.86) (6.23)
Is climate change human caused? 44.78% 48.05% 51.22 46.92%
St. Dev (4.38) (4.80) (5.03) (5.24)
Do you support funding renewable? 74.92% 79.86% 82.54% 82.54%
St. Dev (3.15) (2.67) (2.43) (2.43)
Do you support renewable portfolio standards? 57.42% 61.18% 58.51% 57.39%
St. Dev (4.28) (4.38) (4.29) (4.51)
Do you support CO2 limits on coal plants? 59.32% 62.61% 62.91% 60.47%
St. Dev (6.9)6 (7.13) (6.85) (6.89)

Fig. 1   Distribution of county-level changes between 2014 and 2019 in the proportion of individuals 
answering affirmatively to two separate survey questions related to climate change beliefs. The dashed line 
indicates the mean change
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these disasters between 2012 and 2019 as well as the historical period preceding 2012, 
beginning in 1953. A county is considered treated by a given natural disaster if it occurs in 
the interval prior to a given wave of the survey. Any disasters that occur before 2012 are 
counted in the historic frequency. The number of disasters that occur within a county in a 
treatment period is converted to an annual rate.2 This is done because the treatment periods 
are not evenly spaced. Disasters that occur within survey periods are counted in the follow-
ing treatment period (e.g., hurricanes in 2016 are included in the 2018 treatment period). 
This is done to avoid a situation in which a natural disaster is counted in a treatment period 
despite occurring after the survey. The historic frequency is calculated in a similar man-
ner, where the number of natural disasters (e.g., hurricanes, floods, or fires) are summed 
from 1953 through 2012, and then divided by 60, which is the number of years within the 
historical period. This produces an annual rate of hurricanes, floods, or wildfires within the 
historical period.

We obtain data on hurricane, wildfires, and flood occurrence through the Federal Emer-
gency Management Administration’s (FEMA’s) disaster and emergency database, which 
is in the public domain.3 The dataset compiles emergency and disaster declarations from 
1953 to the present day at the county level (FEMA 2019). The resolution of the data is 
particularly useful for our analysis because its spatial scale matches that of our survey 
variables.

Summary statistics for the natural disaster events can be found in Table 2. The statistics 
reveal that a county in the USA experiences approximately 0.08 hurricanes per year. Flood-
ing events occur within a county on average about 0.1 times per year, and large fire events 
occur on average 0.03 times per year. Note that in Table 2, all the historic natural disaster 
rates are lower than the more recently reported numbers. This suggests that, on average, the 
frequency of these events has increased.

Natural disasters may cause demographic changes that drive county-level changes in 
opinions about climate change. Hurricanes and wildfires have specifically been found to 
cause demographic changes (Schultz and Elliott 2013). To isolate the impact of disasters 
on changes in beliefs and not on the composition of a county, we include county-level 
annual population from the National Institute of Health’s Surveillance, Epidemiology, and 
End Results (SEER) (NIH, 2019). Severe natural disasters may result in people leaving the 
affected area, and so including percent changes in population in our analysis helps control 
for changes in beliefs driven by changes in which people are present. Population and eco-
nomic variables are averaged across a treatment period.

One way in which a natural disaster may impact beliefs is by first affecting eco-
nomic factors that then indirectly change beliefs. Previous work (e.g., Kahn and 
Kotchen 2011) has shown that economic factors such as the unemployment rate influ-
ence beliefs in climate change. In order to isolate the direct effects of natural disas-
ters on beliefs, we control for several major economic factors (Kahn and Kotchen 
2011). Specifically, we obtain data on per capita income and unemployment at the 
county level. The median household income data are from the Census Bureau (Census 

3  Data from FEMA can be accessed using the following link:
  https://​www.​fema.​gov/​data-​feeds

2  The treatment period for 2019 is 2018, the treatment period for 2018 is 2017 and 2016, the treatment 
period for 2016 is 2015 and 2014, and the treatment period for 2014 is 2013 and 2012. As an additional 
control for the fact our observations are not evenly spaced, our empirical specification features time controls 
in the form of year fixed effects.

https://www.fema.gov/data-feeds
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Bureau, 2019a) and the unemployment rate data come from the Bureau of Labor Sta-
tistics (BLS) (Bureau of Labor Statistics 2019). Table 2 also reports summary statis-
tics for the population and economic variables and shows that counties had an aver-
age unemployment rate of 5.49% and an average median household income of $48,000 
(2016 USD) over the study period. In addition to economic and demographic vari-
ables, political ideology may also influence opinions related to climate change (Dunlap 
et  al. 2016). We incorporate the 2016 county level vote share for democratic candi-
date Hillary Clinton from the MIT Election Dataset (MIT Election Data and Sciences 
2020).

4 � Empirical model

To test the impact of natural disasters on climate change beliefs and policy attitudes, we 
estimate a linear econometric model that includes both county and state-year fixed effects 
(Woolridge 2010). We include all three natural disasters in a single regression, as opposed 
to running separate regressions for each disaster. Our linear model specification is similar 
to other studies (e.g., Kahn and Kotchen 2011).

Table 2   Summary statistics

Note: The rate variables correspond to the average proportion of coun-
ties that experience a natural disaster (e.g. flood, fire) per year. Stand-
ard deviations for each variable are reported in parentheses below

Variable Mean

Natural disasters
  Hurricane rate 0.08

(0.29)
  Fire rate 0.03

(0.27)
  Flood rate 0.10

(0.36)
  Historic hurricane rate 0.06

(0.08)
  Historic fire rate 0.02

0.06
  Historic flood rate 0.04

(0.05)
Demographic variables

  Population (percent change) 0.46%
(2.49)

  Median household income ($1,000 s) 48.89
(12.85)

  Unemployment rate 5.49%
(2.62)

  2016 Clinton vote share 32%
(0.16)
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To test our hypotheses, we implement two empirical specifications. First, we estimate 
the average effect of natural disasters on climate opinions. To accomplish this, we specify 
the model as

where pit is the percentage of county i that responded in the affirmative in year t to one 
of the five survey questions we consider in this study. The term Xit{d} measures the annual 
number of disaster type d experienced in county i per year during the 2-year period preced-
ing year t (with the exception of the period preceding 2019, which includes only one year). 
The coefficients of �

1{d} contain the average effects of natural disaster d on the response to 
the survey question of interest. Percent change in population and economic changes within 
a county are controlled for with a vector of population and economic variables for each 
county and time period, Cit , where � is the vector of coefficients for Cit . In addition, Cit 
contains a Clinton vote share trend. Because our political variable does not vary through 
time, we interact it with a linear time trend. This controls for the fact that conservative and 
liberal counties may have different trends in climate beliefs. It is important to note that the 
un-interacted trend, as well as the urban–rural classification of a county, is included within 
the fixed effect. Therefore, the interpretation of the interaction is the differential trend as a 
function of the Clinton vote share.

Our models are identified if the occurrence of a natural disaster is not correlated with the 
error term. This includes any county-level unobservables, such as static political factors, geo-
graphic features, and other characteristics, which are difficult to capture in a national-scale 
study such as this. Since these unobservables may be trending over time, just as natural disas-
ters are, we must control for them. To control for these unobserved factors, we include county 
( �i) and state-year fixed effects ( �st) . The latter control for regional political shifts as well as 
historical adaptation to natural disasters at the state level. The error term is �it . We cluster our 
standard errors at the county level. As an exploration of the mechanisms behind our analysis 
and as a robustness check, we also report a model without time-varying controls in Appendix 
section A.1. The results from this model reveal qualitatively similar marginal effects of natural 
disasters compared to the primary specification that includes the control variables.

Our second model tests whether the effect of natural disasters is moderated by a coun-
ty’s historical experience with the natural disasters. To test for this heterogeneity, we spec-
ify the model as

We interact the rate that county i experienced a natural disaster with the historical 
annual rate of natural disasters, Hid for each county and disaster type. The marginal effect 
of a natural disaster on county-level public opinion in Eq. 2 is given by �

1
+ �

2
Hid where 

Hid is the historic rate of a given natural disaster for a given county. Our hypothesis is that 
�
1
 is positive, while �

2
 is negative, leading to a smaller marginal effect when a disaster 

historically has been common in a county. This hypothesis is based on whether individuals 
who experience more natural disasters in their county may not think an additional natural 
disaster is unusual; however, an individual who experiences a natural disaster in a county 
with historically few may interpret it as an information that the climate is changing.

(1)pit =

3
∑

d=1

�
1{d}Xit{d} + �Cit + �i + �st + �it

(2)pit =

3
∑

d=1

�
1{d}Xit{d} + �

2{d}Xit{d}
× Hid + �Cit + �i + �st + �it.
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Because the county-level data are modeled from survey responses, there is potential for 
measurement error biasing our model results. Sparsely populated counties may not have 
any survey responses to use, and in the data that we use for empirical modeling their levels 
are estimated entirely by out-of-county survey responses by the Yale PCCC. As more sur-
vey responses are added to the database, the quality of the model improves. However, this 
still represents a potential source of bias if there are more survey responses in urban coun-
ties compared to rural counties. Our inclusion of county-fixed effects controls for factors 
such as rural classification that might impact the probability of being sampled. The state-
year fixed effects control for the fact that counties without sufficient responses are modeled 
using in-state survey responses from that year (Yale PCCC, 2019). Coefficient values from 
this model can be found in Appendix section A.3.

5 � Results

In this section, we report the results of each specification with respect to the five climate 
change-related questions described above. Overall, we find evidence that hurricanes impact 
public opinions on climate change. We find no evidence that, conditional on hurricanes, 
floods have an impact, and evidence that fires have impacts in very limited cases. Further-
more, we find that heterogeneity in the rate of natural disasters in the historic period mat-
ters for hurricanes and for fires. In what follows, we present the results of both specifica-
tions (Eqs. 1 and 2) in their own subsection.

5.1 � Average effects model

We begin by addressing the average effects model (Eq.  1) which reveals the effect that 
hurricanes, fires, and floods have on beliefs and policy attitudes regarding climate change. 
Table 3 demonstrates that of the three natural disasters, only hurricanes have statistically 
significant average effects. We find no evidence that either fires or floods change the pro-
portion of a county that believes in climate change on average.

Hurricanes have a statistically significant effect on several survey questions we consider. We 
see that the average effect of a hurricane on the percentage of individuals in a county that believe 
climate change is happening is about 0.252. That means, on average, the occurrence of a hurri-
cane increases the number of people who believe climate change is happening by 0.252 percent-
age points. It has a slightly higher impact on the proportion of people within a county that believe 
climate change is human caused (0.199 percentage points); however, the impact on the propor-
tion that believe climate change is caused by human activity is statistically insignificant.

Hurricanes also have statistically significant impacts on the percent of a county that sup-
ports funding research into renewable energy (0.174 percentage points), supporting renew-
able portfolio standards (0.231 percentage points) and setting limits on CO2 emissions 
(0.300 percentage points).

The results also reveal that percent change in population, median household income, 
and the unemployment rate are associated with climate change beliefs. We find that a 1 
percentage point increase in the unemployment rate is associated with a 0.152 percent-
age point decline in the number of people who believe climate change is happening. 
Interestingly, this is close to the magnitude as the impact of a hurricane. Previous studies 
(e.g., Kahn and Kotchen 2011) found that a 1 percentage point increase in unemployment 
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decreases the likelihood an individual believes climate change is happening by 3.3 percent-
age points, which is an order of magnitude larger than the effect we observe. This differ-
ence could occur because our analysis uses more recent data, and so, opinions may have 
solidified to a greater extent. It may also be due to the higher resolution spatial controls 
(e.g., county-fixed effects as opposed to state fixed effects) that we use.

We do not detect an effect of the percent change in population for all but one of the 
questions we consider. We find that a 1% increase in population increases the proportion 
of individuals that support CO2 limits by 0.008 percentage points. Median household 
incomes have small but positive correlated with climate change beliefs and support for 
limits on CO2 emissions. Interestingly, income has a negative correlation with support 
for funding renewable energy research. This could occur if higher income respondents 
expect to pay a larger share of the funding for renewable energy research. Our results 
also support previous research that finds a strong connection between political ideol-
ogy and beliefs regarding climate change. In counties with a higher Clinton vote share, 
beliefs related to climate change and support for associated policy actions are increasing 
at a faster rate over time.

As a robustness check, we also estimate the average effects model for each natural dis-
aster separately. We do not find that excluding all but one natural disaster from our models 
makes a substantial difference with respect to the magnitudes of our coefficients, or with 
respect to our qualitative results. These results can be found in Appendix section A.4. In 

Table 3   Average effects of extreme events on climate beliefs and policy support

*p < 0.1; **p < 0.05; ***p < 0.01

Dependent variables

Happening? Human caused? Fund renewables? Support RPS? CO2limits?

(1) (2) (3) (4) (5)
Hurricane 0.252 0.199 0.174*** 0.231* 0.300

(0.138) (0.145) (0.085) (0.135) (0.185)
Fire –0.047 –0.045 –0.045 –0.033 0.001

(0.065) (0.070) (0.041) (0.061) (0.090)
Flood –0.088 –0.028 –0.005 –0.051 –0.067

(0.067) (0.060) (0.033) (0.055) (0.079)
Population %∆ 0.003 0.006 0.002 0.003 0.008***

(0.003) (0.004) (0.002) (0.002) (0.002)
Median household income 

($1,000)
0.026** 0.007 –0.032*** –0.005 0.014
(0.012) (0.013) (0.009) (0.012) (0.018)

Unemployment –0.152*** –0.055 –0.160*** –0.232*** –0.134*
(0.049) (0.053) (0.030) (0.049) (0.070)

Clinton vote share trend –1.862*** –1.615*** 0.789*** 1.715*** 2.169***
(0.108) (0.108) (0.049) (0.063) (0.103)

County-fixed effects? Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 11,732 11,732 11,732 11,732 11,732
R2 0.938 0.914 0.950 0.904 0.907
Adjusted R2 0.915 0.881 0.931 0.867 0.872
Residual std. error (df = 8512) 1.764 1.832 1.037 1.692 2.542
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addition, we recognize that the results may be influenced by the selection of a 2-year treat-
ment window for the 2014, 2016, and 2018 surveys. To investigate whether this is the case, 
we run the average effects model with a 1-year treatment window instead. We find that the 
magnitudes of the effects of hurricanes diminish slightly, but that our qualitative results 
remain the same. These results can be found in Appendix section A.5.

5.2 � Heterogeneous effects model

We are also interested in the heterogeneity in impacts as a function of the historic frequency of 
each event. The full table of regression results is presented in Appendix Table 5 of the appen-
dix, and we use the regression results to generate Fig. 2. The x-axis of Fig. 2 is scaled so that 
it includes both the mean and 3rd quartile of historic frequencies for each disaster. The effect 
of a hurricane is estimated to increase with the historic rate of hurricanes (see Fig. 2 Panel A). 
This implies that counties that have a history of hurricanes experience a larger impact than 
those that do not, although it does not appear that the marginal effects in the lowest and highest 
frequency counties are significantly different. This could be because counties with a history 
of hurricanes have more to lose from an increase in their frequency. A relationship between 
the beliefs and economic damages may therefore be driving this result. Alternatively, coastal 
counties with a history of hurricanes may have experienced recent storms with higher degrees 
of storm severity or are impacted more by the accumulation of hurricane events over time. 
Investigating the role of economic damages and storm severity would be an interesting area for 
future research (Davenport et al. 2021).

Conditional on our controls and fixed effects, we find that fire does not have a statisti-
cally significant effect. However, at high levels of historic frequency, flooding may actually 
have a negative effect on the proportion of individuals within a county that believe that 
climate change is happening, as demonstrated in Fig. 2, Panel C.

The effect may also be different for storms of different magnitudes. However, includ-
ing magnitudes in the model may result in endogeneity concerns. We test whether there is 
an effect of magnitudes—measured both in terms of lives lost and property damages—in 

Fig. 2   The effect of hurricanes (Panel A), fire, (Panel B), and floods (Panel C) on the proportion of a 
county that believes climate change is happening as a function of historic fire frequency. Intervals around 
the point estimate represent a 90% confidence interval
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Appendix section A.6. These results suggest that the magnitudes of specific natural disas-
ters may influence the extent to which the disasters change climate change beliefs.

6 � Conclusion

This paper addresses the impacts of natural disasters on public beliefs regarding several 
climate change-related issues and policies. Using a panel dataset of county-level public 
opinions on climate change, we identify the impact of hurricanes, floods, and wildfires on 
climate change beliefs and policy attitudes. Our results show that hurricanes have a statisti-
cally significant average effect on beliefs. When considering heterogeneity, the impact of 
hurricanes becomes larger when the historic hurricane frequency is higher.

We also revisit observations in the literature with respect to how macroeconomic variables 
influence opinions. A previous study (Kahn and Kotchen 2011) reports that the percent of a 
state’s population that believes climate change is happening changes by 3.3% for every 1% 
drop in unemployment. Our analysis finds this effect to be smaller by an order of magnitude. 
While Kahn and Kotchen (2011) use state-level unemployment rates (as well as state-level fixed 
effects), we employ county-level unemployment rates, county-level fixed effects, and state-year 
fixed effects. Therefore, we account for additional spatial heterogeneity that may be correlated 
with the state-level unemployment rate. We also reinforce results in the literature that political 
beliefs have strong effects on opinions regarding climate change and associated policy policies.

The findings of our analysis have important implications for policy regarding climate 
change. We detect statistically significant impacts of hurricanes on the proportion of a 
county that believes climate change is happening and that it is human caused. We also esti-
mate an increase in support for government regulation of CO2. This provides evidence of 
a process in which climate beliefs and policies can respond as the consequences of climate 
change become apparent.

The fact that we find statistically significant impacts of natural disasters on public opin-
ions reveals that these events are a source of information that can change prior beliefs at 
the county level. Furthermore, the effects of natural disasters on opinions regarding CO2 
regulation indicate that as these events become more frequent, the number of individuals 
who are willing to use government as a tool to effect long-term change is likely to increase. 
The pace at which this feedback occurs, however, appears to be slow. For example, our 
results indicate that it would take multiple hurricanes hitting a county to increase the pro-
portion of individuals supporting policies that greenhouse gas emissions by one percentage 
point. As such, it seems unlikely that natural disasters alone will cause sufficient changes in 
public opinions to bring about widespread acceptance of climate change regulations.

There are several reasons why changes in climate change beliefs following a natural 
disaster could be a slow process. For instance, individuals may have access to a wide 
range of information sources that could make the signal noisy (Feldman et  al. 2012). 
The top priority following a natural disaster for those affected is safety, followed by other 
necessities. The most immediate actions required to combat the disaster take precedent, 
both for individuals and governments, over long-term concerns such as climate change.

There are several additional research questions that arise from this study. The incidence 
of the natural disasters that we study often requires government assistance. The effects of 
government programs on public opinions may influence confidence in other policies such 
as CO2 regulation. There is also room to address the importance of a disaster’s economic 
impact in influencing beliefs and attitudes.
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Additional studies could examine how disasters impact communities of different 
political attitudes and economic profiles. For instance, an examination of how heteroge-
nous political attitudes affect a county’s response to natural disasters. There may be sev-
eral mechanisms that influence how political opinions shape individual responses to new 
information, including ideological stances on government intervention as well as climate 
change itself. Another area of future research could utilize data such as the hurricane rating 
system in order to establish whether hurricanes of greater intensity have greater impacts on 
opinions and preferences.

There are many determinants which contribute to the formation of beliefs, especially 
those opinions which inform voting behavior and political support. Focusing on climate 
change, we show that natural disasters, particularly hurricanes, are a determinant of public 
opinions regarding the issue. We show that not only do hurricanes influence the proportion 
of people who believe climate change is happening and is caused by human activity, but 
that they also change the proportion that supports regulating CO2 emissions.

Appendix 1 Survey questions

What follows are reproductions of the text used in the Yale Climate Opinions survey ques-
tion used in this study (Yale PCCC, 2019).

Question 1:

Global warming is happening

Recently, you may have noticed that global warming has been getting some attention in the 
news. Global warming refers to the idea that the world’s average temperature has been increas-
ing over the past 150 years, may be increasing more in the future, and that the world’s climate 
may change as a result. What do you think: Do you think that global warming is happening?

•	 Yes
•	 No
•	 Do not know

Question 2:

Global warming is caused mostly by human activities

Assuming global warming is happening, do you think it is… ?

•	 Caused mostly by human activities
•	 Caused mostly by natural changes in the environment
•	 Other
•	 None of the above because global warming is not happening



Climatic Change (2021) 168: 25	

1 3

Page 15 of 26  25

Question 3:

Fund research into renewable energy sources

How much do you support or oppose the following policies?

Fund more research into renewable energy sources, such as solar and wind power.

•	 Strongly support
•	 Somewhat support
•	 Somewhat oppose
•	 Strongly oppose

Question 4:

Require utilities to produce 20% electricity from renewable sources

How much do you support or oppose the following policies?

Require electric utilities to produce at least 20% of their electricity from wind, solar, or 
other renewable energy sources, even if it costs the average household an extra $100 a year.

•	 Strongly support
•	 Somewhat support
•	 Somewhat oppose
•	 Strongly oppose

Question 5:

Set strict CO2 limits on existing coal‑fired power plants

How much do you support or oppose the following policy?

Set strict carbon dioxide emission limits on existing coal-fired power plants to reduce 
global warming and improve public health. Power plants would have to reduce their emis-
sions and/or invest in renewable energy and energy efficiency. The cost of electricity to 
consumers and companies would likely increase.

•	 Strongly support
•	 Somewhat support
•	 Somewhat oppose
•	 Strongly oppose
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Appendix 2 Excluding controls

As a robustness check, we report a model that excludes time-varying controls, and 
only includes fixed effects. Natural disasters may have secondary impacts on climate 
opinions through population and economic variables. For instance, if a natural disaster 
changes the population level within a county, and the population level itself affects cli-
mate opinions, then the natural disaster will have a secondary impact through changes 
in the population level. If this effect is substantial, then a model that includes these 
population variables will underreport the full effect of natural disasters.

In order to investigate whether these secondary effects are substantial, we estimate 
the average effects model while excluding total population, median income, and the 
unemployment rate. The results are reported in Table 4.

We observe a small difference between the results in Table  4 and those found in 
Table 3 of the main text. For each survey question, we find that the effect of hurricanes 
is larger with the exclusion of the population, economic, and political control variables. 
This indicates that the indirect effects from one or more of these three variables may 
partially reinforce the direct effect of hurricanes on opinions. We also find that hurri-
canes now have a statistically significant effect on whether individuals believe climate 
change is caused by human activity.

Appendix 3 Regression results for heterogeneity model

Below we present the regression results for Eq. 2. These are used to create Fig. 2 in the 
main text (Table 5).

Table 4   Average effects model, excluding time-varying controls

*p < 0.1;**p < 0.05; ***p < 0.01

Dependent variables

Happening? Human caused? Fund renewables? Support RPS? CO2limits?

(1) (2) (3) (4) (5)
Hurricane 0.366** 0.297* 0.232** 0.344** 0.433*

(0.158) (0.161) (0.091) (0.151) (0.223)
Fire –0.045 –0.042 –0.045 –0.032 0.004

(0.092) (0.094) (0.053) (0.088) (0.130)
Flood –0.088 –0.033 –0.008 –0.040 –0.068

(0.072) (0.073) (0.041) (0.069) (0.101)
County-fixed effects Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 11,732 11,732 11,732 11,732 11,732
R2 0.931 0.907 0.946 0.894 0.901
Adjusted R2 0.905 0.872 0.926 0.853 0.863
Residual std. error 

(df = 8516)
1.863 1.901 1.071 1.783 2.635
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Hurricanes also have statistically significant impacts on the percent of a county that sup-
ports funding research into renewable energy (0.174 percentage points), supporting renew-
able portfolio standards (0.231 percentage points) and setting limits on CO2 emissions 
(0.300 percentage points).

Appendix 4 Single disaster models

In this section, we report three tables in which we examine one natural disaster at a time. 
First, we examine hurricanes without including fires or floods (Table 6).

Table 5   The heterogeneous impact of climate-related natural disasters on benefits and policy attitudes as a 
function of historic disaster frequency

*p < 0.1; **p < 0.05; ***p < 0.01

Dependent variables

Happening? Human caused? Fund renewables? Support RPS? CO2limits?

(1) (2) (3) (4) (5)
Hurricane 0.009 –0.097 0.071 0.009* –0.043

(0.244) (0.269) (0.148) (0.253) (0.342)
Hurricane *historic freq 1.023 1.245 0.434 1.001 1.445

(0.706) (0.770) (0.415) (0.721) (0.999)
Fire 0.028 –0.025 –0.075 –0.043 0.035

(0.087) (0.099) (0.058) (0.090) (0.132)
Fire *historic freq –0.385*** –0.096 0.159 0.056 –01.69

(0.187) (0.221) (0.158) (0.281) (0.318)
Flood –0.003 0.062 0.045 –0.022 –0.046

(0.080) (0.086) (0.046) (0.078) (0.109)
Flood *historic freq –1.295 –1.383 –0.776* –0.447 –1.722

(0.890) (0.922) (0.465) (0.883) (1.193)
Population %∆ 0.003 0.006 0.002 0.003 0.008***

(0.003) (0.004) (0.002) (0.002) (0.002)
Median household income 

($1,000)
0.026** 0.007 –0.032*** –0.005 0.014
(0.012) (0.013) (0.009) (0.012) (0.018)

Unemployment –0.152*** –0.056 –0.160*** –0.233*** –0.135*
(0.049) (0.053) (0.031) (0.049) (0.070)

Clinton vote share trend –1.863*** –1.615*** 0.789*** 1.715*** 2.170***
(0.108) (0.108) (0.049) (0.063) (0.103)

County-fixed effects Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 11,732 11,732 11,732 11,732 11,732
R2 0.938 0.914 0.950 0.904 0.907
Adjusted R2 0.915 0.881 0.931 0.867 0.872
Residual std. error 

(df = 8512)
1.764 1.832 1.037 1.693 2.542
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Next, we examine a model where we consider only fires, without considering hurricanes 
or floods (Table 7).

Our third model considers only floods without considering hurricanes or fires (Table 8).
The differences we detect are not significantly different from the results found in the 

main specifications of the paper.

Appendix 5 Change in treatment period

The effects of natural disasters may diminish with time. To test whether our use of a 
2-year treatment period is diminishing the impact of natural disasters, we run a ver-
sion of our average effects model where we use a treatment period of a single year. We 
change the treatment period to within a year before the survey, excluding disasters that 
occur between surveys more than a year prior to a given survey. Though we find that 
the coefficients are different, we do not find evidence that the difference in magnitude 
is substantial. In fact, we find that the effect diminishes rather than increases (Table 9).

Table 6   Average effects model, only considering hurricane

*p < 0.1; **p < 0.05; ***p < 0.01

Dependent variables

Happening Human caused Fund renewables Support RPS CO2limits

(1) (2) (3) (4) (5)
Hurricane 0.244 0.197 0.174** 0.227* 0.294

(0.138) (0.145) (0.085) (0.135) (0.185)
Population %∆ 0.003 0.006 0.003 0.003 0.008***

(0.003) (0.004) (0.002) (0.002) (0.002)
Median household income 

($1,000)
0.026** 0.007 –0.032*** –0.005 0.014
(0.012) (0.013) (0.009) (0.012) (0.018)

Unemployment rate (%) –0.150*** –0.055 –0.160*** –0.231*** –0.133***
(0.049) (0.053) (0.030) (0.049) (0.070)

Clinton vote share trend –1.862*** –1.615*** 0.789*** 1.716*** 2.170***
(0.108) (0.108) (0.063) (0.103) (0.147)

County-fixed effects Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 11,732 11,732 11,732 11,732 11,732
R2 0.938 0.914 0.950 0.904 0.907
Adjusted R2 0.915 0.881 0.931 0.867 0.872
Residual std. error (df = 8514) 1.764 1.832 1.036 1.692 2.542
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Table 7   Average effects model only considering fires

*p < 0.1; **p < 0.05; ***p < 0.01

Dependent variables

Happening Human caused Fund renewables Support RPS CO2limits

(1) (2) (3) (4) (5)
Fire –0.048 –0.046 –0.045 –0.034 –0.0001

(0.064) (0.070) (0.041) (0.061) (0.090)
Population %∆ 0.003 0.006 0.002 0.003 0.008***

(0.003) (0.004) (0.002) (0.002) (0.002)
Median household income 

($1,000)
0.026** 0.007 –0.032*** –0.005 0.014
(0.012) (0.013) (0.009) (0.012) (0.018)

Unemployment rate (%) –0.150*** –0.055 –0.161*** –0.231*** –0.133*
(0.049) (0.053) (0.030) (0.049) (0.070)

Clinton vote share trend –1.865*** –1.617*** 0.791*** 1.718*** 2.173***
(0.108) (0.108) (0.063) (0.103) (0.147)

County-fixed effects Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 11,732 11,732 11,732 11,732 11,732
R2 0.938 0.914 0.950 0.904 0.907
Adjusted R2 0.915 0.881 0.931 0.867 0.872
Residual std. error (df = 8514) 1.764 1.832 1.037 1.693 2.542

Table 8   Average effects model only considering floods

*p < 0.1;**p < 0.05;***p < 0.01

Dependent variables

Happening Human caused Fund renewables Support RPS CO2limits

(1) (2) (3) (4) (5)
Flood –0.084 –0.025 –0.002 –0.047 –0.062

(0.057) (0.060) (0.033) (0.055) (0.079)
Population %∆ 0.003 0.006 0.003 0.003 0.008***

(0.003) (0.004) (0.002) (0.002) (0.002)
Median household income 

($1,000)
0.025** 0.007 –0.032*** –0.005 0.014
(0.012) (0.013) (0.009) (0.012) (0.018)

Unemployment (%) –0.152*** –0.056 –0.161*** –0.232*** –0.135*
(0.049) (0.053) (0.030) (0.049) (0.070)

Vote share trend –1.864*** –1.617*** 0.791*** 1.718*** 2.172***
(0.108) (0.108) (0.063) (0.103) (0.147)

County-fixed effects Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 11,732 11,732 11,732 11,732 11,732
R2 0.938 0.914 0.950 0.904 0.907
Adjusted R2 0.915 0.881 0.931 0.867 0.872
Residual std. error (df = 8514) 1.764 1.832 1.037 1.692 2.542
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Appendix 6 The effects of disaster magnitudes on climate opinions

In our manuscript, we include variables indicating whether a particular kind of natural 
disaster occurred in a county in each treatment period. One concern with this approach 
is that it does not consider the magnitude of the natural disasters in question. We choose 
to not include magnitudes in our main specification because of issues of endogeneity. 
We are concerned that preferences for policies and the magnitude of damages from a 
given disaster may be influenced by county level unobservables related to the popula-
tion density, as well as the quantity of built structures within a county within a given 
period and previous adaptation expenditures that likely influence the overall impact of 
a natural disaster. Alleviating this endogeneity issue is beyond the scope of this paper; 
however, we provide some results below that investigate the extent to which disaster 
magnitudes impact opinions.

One might hypothesize that there is a difference in the effect of natural disasters depend-
ing on the degree of impact. To test this hypothesis, we use the NOAA storm events data-
base (NOAA 2021), which contains a record of disaster events between 1950 and 2018. 
Included in this record are measures of the financial impact of each event. The measure of 
impact we select is property damage, which is reported in $1,000 s of dollars. This allows 
us to have a measure of damage that is consistent across the three types of natural disasters 
that we evaluate. We report some abbreviated summary stats for the NOAA disaster data 
in Table 10. On average, there are more reports of floods in the dataset than other types of 
disasters, and these also have the largest expected lives lost, followed by hurricanes. Hur-
ricanes, on the other hand, result in more property damage on average.

We specify the average effects model to account for heterogeneity across storms 
related to the magnitude of impact.

In Eq. 3, we interact the magnitude of a given disaster with the occurrence of that 
disaster. This accomplishes two things. First, it allows us to scale the effect of the natu-
ral disaster by the magnitude of the impact. Second, it allows us to include disasters for 
which the impact magnitudes are not reported. An issue with the NOAA dataset, as well 
as other datasets such as EM-DAT (CRED 2021), is that the magnitudes of the impacts 
are sometimes reported as zero, where it is impossible to tell whether the actual number 
is zero or whether the number was not reported. The results of estimating Equation A.1. 
are reported in Table 11 for damages measured in terms of lives lost. We also measure 
damages in terms of property damage, the results of which are found in Table 12.

(3)pit =

3
∑

d=1

(

�
1dXitd + �

2dXitd ×Mitd

)

+ �Cit + �i + �st + �it.

Table 10   Description of damage 
data from NOAA

Property dam-
age ($1,000 
USD)

Variable Number of report Mean Max Mean Max

Fire 439 0.02 3 30 1000
Flood 5564 0.09 42 110 7500
hurricane 20 0.05 1 975.8 3252
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Our results suggest that for hurricanes, their impact on climate change beliefs and 
support for policy increases as the number of lives lost increases. We see that for fire 
and floods, this effect is reversed. However, as mentioned above, there may be endoge-
neity concerns related to using the number of lives lost as an explanatory variable. In 
addition, the numbers of lives lost reported in the NOAA data are relatively small and 
do not vary much. We conduct an additional regression where instead of using lives 
lost, we use a measurement of property damage. The results of this estimation can be 
found in Table 12

From Table 12, we see that the effect of hurricanes on all opinions and policy prefer-
ences remains positive and statistically significant at 1% level. Interestingly, for most sur-
vey questions, the more damage a hurricane causes, the smaller the impact it has on opin-
ions. This is likely due to endogeneity issues related to hurricanes occurring in coastal 

Table 11   The effect of natural disaste damanges, measured in terms of lives lost, on the average

*p < 0.1;**p < 0.05; ***p < 0.01

Dependent variables

Happening Human caused Fund renewables Support RPS CO2limits

(1) (2) (3) (4) (5)
Hurricane 0.660*** 0.582** 0.391*** 0.739*** 0.904***

(0.246) (0.262) (0.146) (0.250) (0.340)
Fire –0.024 –0.043 –0.041 –0.068 –0.041

(0.118) (0.128) (0.066) (0.124) (0.179)
Flood –0.166** 0.153 –0.098** –0.133* –0.183*

(0.077) (0.080) (0.044) (0.078) (0.105)
Population %∆ 0.301*** 0.299*** 0.011 0.253*** 0.431***

(0.080) (0.079) (0.020) (0.075) (0.113)
Median household Income 

($1,000)
0.024 –0.003 –0.034*** –0.002 0.017
(0.017) (0.017) (0.010) (0.017) (0.025)

Unemployment rate (%) –0.351*** –0.229*** –0.199*** –0.371*** –0.400***
(0.062) (0.065) (0.037) (0.062) (0.090)

Hurricane *lives 0.476*** 1.350*** –0.033 –0.573*** 0.520***
(0.130) (0.137) (0.068) (0.118) (0.154)

Fire*lives:fire –1.807*** –0.461*** 0.026*** –0.663*** –0.670***
(0.558) (0.151) (0.094) (0.127) (0.295)

Flood *lives –1.030 –0.055** 0.013** –0.035* –0.039
(0.023) (0.022) (0.006) (0.018) (0.028)

County-fixed effects? Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 9,406 9,406 9,406 9,406 9,406
R2 0.938 0.904 0.949 0.884 0.895
Adjusted R2 0.890 0.853 0.922 0.822 0.839
Residual std. error (df = 6156) 1.978 2.077 1.182 1.961 2.916
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zones with lots of structures. Though the effects of fires on opinions are not statistically 
significant, as fires become more damaging, the effect becomes stronger on opinions 
regarding whether climate change is caused by human activity. We detect a mixed impact 
of floods on opinions and policy preferences when including property damage. Though we 
detect that floods have a negative impact, this is offset by the impact of flood damages on 
opinions, so that the effect of floods on the outcome variable on average is not different 
from zero (Table 3 manuscript). As floods become more damaging, the effect on opinions 
becomes more positive. This result holds across all five questions considered in this study.

In general, we detect that the magnitudes of natural disasters, measured in terms of lives 
lost and property damages, impact how natural disasters influence climate change beliefs 
and policy support. However, we caution that the results may be biased due to endogeneity 
concerns, which are not addressed in this analysis but is an exciting area of future study.

Table 12   Incorporating property damage into the average effect regression

*p < 0.1;**p < 0.05; ***p < 0.01

Dependent variables

Happening Human caused Fund renewables Support RPS CO2limits

(1) (2) (3) (4) (5)
Hurricane 0.660*** 0.577** 0.394*** 0.733*** 0.906***

(0.246) (0.263) (0.145) (0.250) (0.339)
Fire –0.039 –0.045 –0.037 –0.071 –0.037

(0.117) (0.126) (0.066) (0.123) (0.178)
Flood –0.248*** –0.247*** –0.134*** –0.187** –0.291**

(0.084) (0.086) (0.047) (0.085) (0.114)
Population %∆ 0.285*** 0.271*** 0.003 0.235*** 0.410***

(0.073) (0.076) (0.021) (0.068) (0.102)
Median household income 

($1,000)
0.024 -0.001 –0.034*** –0.003 0.018
(0.017) (0.017) (0.010) (0.016) (0.025)

Unemployment rate (%) –0.351*** –0.229*** –0.199*** –0.370*** –0.399***
(0.062) (0.065) (0.037) (0.062) (0.090)

Hurricane *damages –0.001*** 0.001 –0.001 –0.001*** 0.0.02**
(0.0003) (0.0004) (0.0003) (0.0003) (0.001)

Fire*damage 0.002 0.003*** –0.001 0.001 –0.001
(0.002) (0.001) (0.001) (0.001) (0.003)

Flood *damage 0.0004*** 0.0005*** 0.002** 0.0003* –0.001***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

County-fixed effects? Yes Yes Yes Yes Yes
State-year fixed effects? Yes Yes Yes Yes Yes
Observation 9,406 9,406 9,406 9,406 9,406
R2 0.928 0.904 0.949 0.884 0.895
Adjusted R2 0.890 0.853 0.922 0.822 0.839
Residual std. error (df = 6156) 1.978 2.077 1.181 1.961 2.915
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