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Abstract
Following the failure of climate governance regimes that sought to impose legally bind-
ing treaty-based obligations, the Paris Agreement relies on voluntary actions by individual
countries. Yet, there is no guarantee that unilateral policies will lead to a decrease in carbon
emissions. Critics worry that voluntary climate measures will be weak and ineffective, and
insights from political economy imply that regulatory loopholes are likely to benefit carbon-
intensive sectors. Here, we empirically evaluate whether unilateral action can still reduce
carbon pollution by estimating the causal effect of the UK’s 2001 Climate Change Pro-
gramme (CCP) on the country’s carbon emissions. Existing efforts to evaluate the overall
impact of climate policies on national carbon emissions rely on Business-As-Usual (BAU)
scenarios to project what carbon emissions would have been without a climate policy. We
instead use synthetic control methods to undertake an ex post national-level assessment of
the UK’s CCP without relying on parametric BAU assumptions and demonstrate the poten-
tial of synthetic control methods for climate policy impact evaluation. Despite setting lax
carbon targets and making substantial concessions to producers, we show that, in 2005, the
UK’s CO2 emissions per capita were 9.8% lower relative to what they would have been
if the CCP had not been passed. Our findings offer empirical confirmation that unilateral
climate policies can still reduce carbon emissions, even in the absence of a binding global
climate agreement and in the presence of regulatory capture by industry.

Keywords Climate policy · Carbon pricing · Carbon emissions · Causal inference ·
Synthetic control · Non-parametric

1 Introduction

In recent years, policies to reduce greenhouse gas emissions (GHG) have been deployed
at a rapid pace across the world. While scholars have extensively debated the theoretical
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merits of different types of policy instruments, we still do not know enough about the extent
to which these policies work in the context of real-world, practical implementations. Identi-
fying the specific impacts of climate policies on environmental outcomes is a difficult task.
GHG emissions pervade industrial economies as the by-product of transportation, energy,
and manufacturing processes. As a result, nearly every significant economic trend shifts
carbon pollution patterns (Schleich et al. 2001; Peters et al. 2012). Moreover, the adoption
of carbon pricing policy is endogenous: countries might introduce climate mitigation poli-
cies as their emissions are already falling (Downs et al. 2007). Consequently, most efforts
to identify the effect of specific climate reforms on carbon pollution levels are either ex ante
economic simulations or ex post sectoral impact analyses. These models excel at simulating
how policy instruments will affect different sectors of the economy, identifying economic
trade-offs, and exploring sector-specific policy effects. However, existing approaches strug-
gle to evaluate the net causal effect of national policies because they compare realized
outcomes to business as usual scenarios rather than counterfactual outcomes in the absence
of the specific policy.

In this article, our contribution is to offer a national-level estimate of climate policy
effectiveness without requiring assumptions about the pattern and shape of emissions trajec-
tories, using the synthetic control method (SCM) (see also parallel SCM analysis by Bayer
and Aklin (2020) on the European Union’s Emissions Trading Scheme). SCM was devel-
oped to provide an empirically calibrated way of selecting comparison groups for policy
impact analyses. It has since become a staple technique in policy impact analysis in fields
such as comparative politics, economics, and criminology (Billmeier and Nannicini 2013;
Costalli et al. 2017; Heersink and Peterson 2016; Robbins et al. 2017; Sills et al. 2015). The
method offers a transparent and principled means of choosing comparison units that is blind
to post-intervention outcomes; this means that researchers develop counterfactual scenarios
without knowing how comparison group choice will shape their results.

Here, we evaluate the 2001 UK Climate Change Programme, a complex reform that
included a carbon tax on large-scale energy users, industry-negotiated exemptions from the
tax for meeting reduction targets, and a voluntary emissions trading scheme. The CCP was
established in November 2000 to meet the Kyoto Protocol’s EU-wide target of reducing
emissions 8% by 2008–2012 compared to 1990 levels, including the country’s more ambi-
tious unilateral target of a 20% reduction by 2010, again compared to a 1990 baseline. The
UK’s CCP was one of the first comprehensive climate reform packages passed globally, in
advance of action by most other OECD countries.

We leverage the synthetic control method to compare British emissions post-CCP to what
would have happened if the policy had not been passed, rather than a stylized Business-
As-Usual (BAU) or other benchmark scenario. We find evidence of substantial emissions
reductions as a result of the policy: the UK’s CO2 emissions per capita were 9.8% lower
relative to what they would have been if the CCP had not been passed.

SCM’s ability to measure the causal effect of a complex, national climate policy con-
tributes to debates over the potential efficacy of the current climate regime. Conventional
accounts of global climate policy-making emphasize countries’ weak incentives to act on
climate change alone. Yet, we find that an early unilateral climate policy in the UK mean-
ingfully reduced carbon pollution. The CCP was also effective despite the policy’s hybrid
nature (a combination of carbon pricing with negotiated industry agreements) and its sub-
stantial concessions to domestic polluters. Our findings thus provide evidence that even
imperfect policy instruments can result in consequential reductions in national emissions.
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1.1 Approaches to climate policy evaluations

Efforts to identify the effect of specific climate reforms on carbon pollution levels are typ-
ically ex ante economic simulations (Böhringer et al. 2005; Burniaux et al. 1992; Bruvoll
and Larsen 2004; Svendsen et al. 2001; Agnolucci 2009; Hu et al. 2015) or ex post sec-
toral impact analyses (Ang et al. 2016; Martin et al. 2011; AEA Technology 2003). Ex ante
approaches use Computable General Equilibrium (CGE) or Integrated Assessment models
(IAM) to simulate the impact of a policy on a country’s economy and environment. These
models contain complex systems of equations that are stylistic representations of the rela-
tionships between different factors of production and agents in an economy, and (in the case
of IAMs) the physical climate system. They are calibrated using historical data to repro-
duce the equilibrium state of an economy for a benchmark year. In general, CGE and IAM
models can then compare a policy intervention against alternative reference scenarios that
are chosen by the modeler, which often include scenarios of the form “climate stalemate”
or total inaction, “Business-As-Usual” (BAU), or “optimal” scenarios where policies are
implemented with welfare maximization (see for example Nordhaus 2013).

Such models are useful to understand how a policy instrument is expected to affect dif-
ferent sectors of the economy, to identify potentially important trade-offs, and to derive
comparative statics. However, theoretical predictions on how a carbon policy is expected
to perform cannot take into account institutional and political barriers that emerge dur-
ing policy enactment and implementation. These models also reflect complex assumptions
on functional forms and parameter values that lead to highly divergent predicted out-
comes between different models (Pindyck 2017). For example, to generate BAU scenarios,
modelers need to make assumptions about the growth rate of GDP, population, energy
consumption elasticities (Böhringer et al. 2003), and (in the case of IAMs) environmental
responses to these factors. Consequently, these models impose (often hidden) parametric
assumptions on the hypothesized future emissions trajectories, leading some to criticize
these approaches as akin to a “black box” (Böhringer et al. 2003; Pindyck 2017) where
model runs are not always grounded in empirical or theoretical realities. Moreover, ex ante
models are calibrated using historical benchmark data (Böhringer et al. 2003) which often
rely on outdated economic snapshots. For example, the model used to generate a BAU sce-
nario to compare the effectiveness of UK climate policy in the early 2000s was calibrated
using input-output tables from 1995 (see Ekins and Etheridge 2006).

While CGE or IAM models offer clear advantages when conducting ex ante simulations
about the general equilibrium effects of an exogenous policy treatment in comparison to a
stylized reference scenario, the Business-As-Usual (BAU) scenarios they produce are not
always appropriate to conduct ex post policy impact evaluations because those benchmarks
are not clear counterfactuals for the policy outcome. In particular, the BAU assumption of
no action whatsoever on climate is rarely the appropriate counterfactual to causally evaluate
the effect of a climate policy. Rather, the counterfactual should be the potential outcome of
carbon emissions in the absence of that specific climate policy.

Recognizing the weakness of these assumption-intensive counterfactuals, other analy-
ses focus on ex post sectoral-level impacts rather than a policy’s net capacity to decrease
overall CO2 emissions. The BAU scenarios in these cases are often rudimentary forward
projections. For example, the consulting firm tasked by the UK government’s Department
for the Environment, Food and Rural Affairs (DEFRA) to estimate the results of the UK’s
climate change policies presents performance results as energy savings compared to what
energy would have been used if sectors had produced the same throughput but at the energy-
efficiency of a reference year (AEA Technology 2003, p. 13). Other studies use micro-level
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data or case studies to estimate the impact of the CCP on businesses (Ang et al. 2016; Martin
et al. 2011). However, the net national impact of a policy is the most important measure-
ment with respect to climate change risk mitigation (Allen et al. 2009), and these methods
don’t allow for ex post assessment of this critical feature.

By contrast, synthetic control methods (SCM) allow for causal identification of the net
national impact of a policy, offering a different form of ex post policy impact evaluation that
supplements existing approaches. In general, the SCM has been referred to as “arguably the
most important innovation in the policy evaluation literature in the last 15 years” (Athey and
Imbens 2017, p. 10). While it is not possible to enumerate all of the possible drivers of CO2
emissions in a given country and to specify how they interact, the synthetic counterfactual
approach uses a diverse sample of countries to capture all of these latent trends in a way that
does not require out-of-sample extrapolation (Abadie and Gardeazabal 2003, 2010, 2011,
2015).

This approach to causal identification of policy impacts is grounded within the potential
outcomes framework (Holland 1986; Rubin 1974). Synthetic control methods borrow some
elements from matching and difference-in-difference strategies. Matching is often used as
part of selection-on-observables strategies, and aims to identify causal treatment effects by
making the distributions of covariates that may impact an outcome as similar as possible
between the treated and the control units. If the goal is to estimate the causal impact of some
treatment T on some outcome Y , matching on some covariates X that also impact Y may
help attenuate bias. However, in the presence of unobserved confounders Z, matching will
not identify the causal effect of treatment. Difference-in-difference strategies exploit panel
data to identify causal effects, and control for time-invariant confounders across treatment
and control groups. In addition, they assume that time-varying confounders do not vary
across treatment and control groups, often referred to as the “parallel trends” assumption.
By contrast, SCM does not require us to make this assumption, and can accommodate time-
varying unobserved confounders. The problem can also be restated as one of estimating a
latent factor model, where a linear combination of time-varying trends (e.g., demand for
energy) and time-fixed confounders drive a country’s per capita emissions. The goal then
becomes to capture the same combination of those confounders in the donor pool, in order
to replicate the same factors driving the treated country’s emissions. These confounders are
then “differenced out” when we compare the emissions trajectories of the treated country
and its synthetic control (Hazlett and Xu 2018; Xu 2017). We further explicate the synthetic
control method in the Methods section.

1.2 The 2001 UK Climate Change Programme

Our empirical focus is an evaluation of the UK’s 2001 Climate Change Programme (CCP),
one of the first major reform packages passed by any OECD country. The CCP was
established in November 2000 to meet the Kyoto Protocol’s EU-wide target of reduc-
ing emissions 8% by 2008–2012 compared to 1990 levels, including the country’s more
ambitious unilateral target of a 20% reduction by 2010, again compared to a 1990 baseline.

The CCP included three interlocking policy instruments: first, a Climate Change Levy
(CCL) on large-scale energy users (including the public sector); second, sector-wide
Climate Change Agreements (CCA) negotiated between industry and government that dis-
counted CCL rates if sectors hit pre-negotiated emissions reduction targets; and third, a
voluntary unilateral emissions trading scheme (ETS).

The first of these components was the Climate Change Levy (CCL) which came into
effect in April 2001. The CCL taxed the energy intensity of different fuel sources. It was
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passed alongside a 0.3% reduction in employer National Insurance Contributions (NICs)
and new renewable energy-oriented R&D funds. The CCL was not a pure carbon tax. While
it did exempt most forms of renewable energy, it still included carbon-free nuclear energy.
The CCL was levied on non-domestic consumers only, including the business and the public
sectors.

The policy offered substantial producer flexibility through its second interlocking policy
instrument, industry-level Climate Change Agreements (CCAs). CCAs exempted busi-
nesses from up to 80% of the levy if they agreed on voluntary carbon pollution reduction
benchmarks.1 By 2002, 44 sectoral associations had signed CCAs, including aluminum
and steel (Bailey and Rupp 2005). Performance under these agreements was assessed at
the sector level, but it was possible for individuals to continue under the program even if
their broader sector failed to meets its target. Under the CCAs, industry could choose their
own base years, which ranged from 1990 through 1999, and could set targets in different
accounting “currencies” (i.e., relative energy: GJ primary energy per unit ton of production;
relative carbon: tons of carbon per unit ton of production; absolute energy: GJ; absolute
carbon: tons of carbon).

Additional producer-oriented flexibility was introduced with the April 2002 UK Emis-
sions Trading Scheme (ETS), a voluntary program that allowed participants to trade
emissions reduction permits relative to an absolute target baseline (the average of a partici-
pant’s 1998–2000 emissions); CCA signatories could then buy and trade these permit as
insurance against failure to meet CCL carbon pollution reduction benchmarks. Conversely,
sectors who over-complied with their CCA targets were able to sell their excess permits on
the UK’s Emissions Trading Scheme.

In our online Supplementary Information (SI), we describe each of these policy com-
ponents in more detail as part of a narrative history of UK climate policy-making from
the 1980s through to 2015. We also detail the political controversy that accompanied the
introduction of the CCP.

The CCP is particularly well-suited to synthetic control analysis. The UK was one of the
first European countries to implement a comprehensive national climate reform package,
and was the first country to unilaterally enact a domestic emissions trading scheme. With
the exception of Northern European countries that enacted modest carbon tax systems in
the early 1990s, most OECD countries had only implemented voluntary climate reforms
up until 2005, when the EU emissions trading scheme began. This creates a window from
2001 through 2005 where domestic UK action largely stands alone against its peers. This
allows us to construct of a credible counterfactual for the UK while avoiding possible policy
diffusion effects from other countries.

2 Materials andmethods

2.1 Causal identification using synthetic control methods

We use the Synthetic Control Method to generate a “synthetic UK” as a weighted average
of other OECD, upper middle-, and high-income countries in our sample, or “donor pool.”
Countries in the donor pool are selected through an algorithm so that the pre-CCP emissions

1If private sector actors failed to meet these negotiated benchmarks, they would be forced back into the CCL
system for at least 2 years.
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trajectories of the UK and of the synthetic UK match each other as closely as possible. We
then evaluate the causal effect of the UK’s Climate Change Programme by comparing the
trajectory of emissions in the “synthetic UK” with the observed post-treatment emissions in
the UK.

More formally, assume a sample of J + 1 countries where j = 1 corresponds to the
treated UK, and J = {2, . . . , J + 1} is our donor pool. The intervention (i.e., the passage
of the CCP) occurs at T0 + 1 and so the pre-invervention time periods are indexed by t =
1, 2, . . . , T0 and the post-intervention time periods are indexed by t = T0+1, T0+2, . . . , T .
Let YC

1t represent the potential outcome under control for the UK, where j = 1 indexes the
UK. These are the potential CO2 emissions in the UK if the CCP had not been passed. Let
YT

1t represent the potential outcome under treatment; which are the potential CO2 emissions
in the UK if the CCP had been passed. The causal impact of the CCP is the difference
between the two, and so our estimand of interest is α1t = YT

1t − YC
1t . However, YC

1t is
unobserved.

Consider the following J × 1 vector W = (w2, . . . , wJ+1)
T which contains the weights

that reflect how much the j th candidate in the donor pool contributes to the synthetic coun-
terfactual for the UK’s emissions trajectory. These weights are restricted to be non-negative
and sum to 1, that is, wj ≥ 0 for j = 2, . . . , J + 1 and

∑J+1
j=2 wj = 1. This restriction

on the weights is imposed in order to avoid extrapolating when constructing the synthetic
counterfactual (Abadie et al. 2010, 2015).

Let X1 be a K × 1 vector of the pre-treatment values of the K predictor variables of
CO2 emissions in the UK. The K × J matrix X0 contains the corresponding values of the
pre-treatment values of explanatory variables for the J control countries. In our case, the
K = 11 attributes correspond to pre-treatment values of the outcome variable chopped up
into discrete segments corresponding to CO2 per capita emissions in each pre-treatment
time period, respectively. Using a specification which includes all pre-treatment lags of the
outcome variable has been recommended as the benchmark specification, unless researchers
have strong theoretical priors on how other covariates affect the outcome (Ferman et al.
2020).

The pre-intervention characteristics of the synthetic UK will be given by X∗
1 = X0W∗.

The optimal W∗ should thus be chosen so as to minimize the distance ||X1 − X0W||, in
order to construct a synthetic counterfactual that best approximates the treated unit with
respect to pre-treatment outcome values. In practice, the SCM implementation seeks a W∗

that solves arg
W∗

min
√

(X1 − X0W)TV(X1 − X0W). V is a K × K positive semi-definite,

diagonal matrix of weights applied to the K variables that predict CO2 emissions. There-
fore, the loss function is a scalar. The implementation of the SCM by its authors (Abadie
and Gardeazabal 2003) allows for the choosing of a custom V weight matrix. This can be
a fruitful approach if we possess a priori knowledge on the relative predictive power of dif-
ferent explanatory variables. However, in the absence of strong priors, we follow Abadie
and Gardeazabal (2003) and Abadie et al. (2011) and adopt a data-driven approach whereby
the matrix V is the one that minimizes the mean square prediction error (MSPE) of the pre-
treatment outcome variable, i.e., such that the average squared discrepancies between the
pre-treatment CO2 emissions of the UK and of the synthetic UK are minimized. A numerical
optimization algorithm is used to solve for these optimal weights.2

2We use the Synth package in R with the default optimization methods of Nelder-Mead and BFGS.
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Finally, the observed emissions (pre- and post-treatment) of the UK are collected in a
T × 1 matrix Y1. The CO2 emissions of the countries in the donor pool are recorded in a
T × J matrix Y0. The emissions of the synthetic UK are simulated as Y1

∗ = Y0W∗. The
estimated treatment effect is thus given by α̂1t = Y1t − ∑J+1

j=2 w∗
j tYjt .

Causal identification is achieved using SCM under less restrictive conditions than
difference-in-difference strategies. First, there can be no treatment spillover to other coun-
tries in the donor pool. Although the authors of the SCM approach do not explicitly refer to
this assumption as such, this assumption is the stable unit treatment values assumption, or
SUTVA, which states that “[t]he potential outcomes for any unit do not vary with the treat-
ments assigned to other units, and, for each unit, there are no different forms or versions of
each treatment level, which lead to different potential outcomes” (Imbens and Rubin 2015,
p. 10). Second, to avoid interpolation bias, variables used to form the weights must be within
the same support of the data for the treated unit and countries in the donor pool (Abadie
et al. 2010, 2015). In other words, the variables used to form the weights must have values
for the donor pool countries that are similar to those of the UK. This is because interpola-
tion biases may be severe if the procedure interpolates across different regions with very
different characteristics (Abadie et al. 2010).

In general, the UK during the early CCP era satisfies these conditions. The UK is the
only country to be treated by the CCP in 2001, and is the only country in the sample that
passed major climate legislation until the European Union launched its emissions trading
scheme (EU ETS) in 2005. Our dependent variable is operationalized as CO2 emissions
per capita, which ensures that the outcome variable across regions is broadly on the same
order of magnitude and thus avoids interpolation bias. Moreover, alternative specifications
provided in SI Section G also achieve a restriction of the data to a common support for
all countries in the sample by employing a rescaled dependent variable (e.g., relative to a
1990 and a 2000 baseline, respectively). Running the synthetic control estimator on abso-
lute CO2 emissions levels is not appropriate given the variance in emissions levels across
countries.

2.2 Data sources and sample selection

To implement the synthetic control method, we use data on CO2 emissions and CO2
emissions per capita from the World Bank’s World Development Indicator (WDI)
database, extracting indicators “EN.ATM.CO2E.KT” (CO2 emissions in kilotons) and
“EN.ATM.CO2E.PC” (CO2 emissions per capita in metric tons), respectively. The CO2
emissions measured are those stemming from the burning of fossil fuels and the manufac-
ture of cement. We impute some missing data for Germany, Kuwait, and Liechtenstein using
alternate data sources. This procedure is described in the online SI Section A.

We define our donor pool as the 51 countries which were either OECD members or
classified by the World Bank as upper middle–income or high-income countries at the time
of treatment in 2001, that had a population greater than 250,000, and that did not have a
carbon pricing policy in place. The Work Bank classifies countries into income categories
according to GNI per capita in US$. In fiscal year 2001, the World Bank classified high-
income (HIC) countries as those with GNI per capita above 9265 US$, and upper middle–
income (UMC) countries as those with GNI per capita in the 2996 US$ to 9265 US$ range.
In 2001, there were 47 high-income countries, 38 upper middle–income countries, and 30
OECD countries. Our donor pool is the union of those sets, minus countries for which data
is missing or countries that were deemed “treated” in 2001, and minus countries with a very
small population.
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We determine whether countries in the sample were “treated” by building on the World
Bank’s State and Trends of Carbon Pricing 2019 report (World Bank 2019), albeit with
some modifications. Even though the World Bank report notes that Poland had passed a
carbon tax in 1990, we do not consider it “treated” until 2005 (the start of the EU ETS)
because the Polish tax was so small in scope and incidence that it cannot be considered a
materially important carbon pricing policy. Indeed, the Polish carbon tax of 1990 was less
than 1 US$ per ton CO2e and covered only 4% of the jurisdiction’s emissions (World Bank
2019).

Moreover, we consider the Netherlands to be “treated” in 2001, even though the World
Bank report does not consider the Netherlands as having a carbon tax. However, the Nether-
lands introduced a tax on energy in 1996, which complemented a tax on fuel that came
into force in 1992. Tax rates were set as a function of CO2 per energy content, and were
estimated to be around NLG 30 per metric ton of CO2 (Hoerner and Bosquet 2001, p. 20).

The countries that were “treated” in 2001 were thus the following: Denmark (carbon
pricing policy first passed in 1992), Estonia (2000), Finland (1990), Netherlands (1992),
Norway (1991), Slovenia (1996), and Sweden (1992). These countries are excluded from
the donor pool.

2.3 Specifications

In the main specification we report below, we construct this synthetic UK from a donor pool
of countries that were either OECD, upper middle-, or high-income countries in 2001. We
exclude small countries with a population less than 250,000 in 2001 since these may have
different fundamental drivers of CO2 emissions than the UK. Not all countries in this donor
pool contribute equally to this synthetic control. In our main specification, 8 countries make
up the effective sample (see Fig. S1 in the SI) accounting for 88% of the weights, with the
other countries having weights of less than 1%. In the SI’s Fig. S2, we also display the CO2
per capita emissions of the donor countries in the effective sample. In this specification,
which generates the strongest pre-treatment fit and performs best according to diagnostics
reported in the Findings section and in SI Section G, the counterfactual trend is estimated
using a blend of 19% Poland, 19% Libya, 18% Bahamas, 16% Belgium, 6% Trinidad and
Tobago, 5% Uruguay, 4% Luxembourg, and 1% Brunei. Here, the pre-treatment MSPE
achieved with that donor pool was 1.24 × 10−4. Figure S1 in the online SI displays the
weights applied to each country in the donor pool.

The fact that surprising countries, such as the Bahamas and Libya are part of the top
donors, while an intuitively similar country like France is at the bottom should not be cause
for concern. Rather, it suggests that there were latent, unobserved forces driving British
emissions, and that a weighted combination of these forces was found in the top donor
countries. Specifically, the synthetic control approach estimates a latent factor model with
a linear combination of time-varying and time-invariant confounds. Some combination of
the unobserved factors responsible for driving British emissions was also present in donor
countries, which are then re-weighted to create a credible control for the UK.

Instead, an advantage of this effective donor pool is that it rules out spatial spillover
effects.3 One of the assumptions required for causal identification is that the treatment
affected the treated unit only and did not spillover to other control units (the SUTVA
assumption). Since the UK’s untreated neighbors such as France and Germany are not part

3We thank an anonymous reviewer for making this point to us.
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of the effective sample of countries used to generate the synthetic control, our results are not
at risk of over-estimating the treatment effect of the CCP due to a violation of the SUTVA
assumption.

As a robustness check, we also evaluate specifications generated by progressively smaller
donor pools, again applying population filters: (1) on countries that were either OECD mem-
bers or high income countries in 2001; and (2) on countries that were OECD members in
2001. The pre-treatment MSPE increases (indicating a poorer fit between the UK and the
synthetic UK) as the donor pool decreases: from 5.24×10−4 (donor pool consisting of 2001
OECD and HIC countries) to 2.13×10−3 (donor pool consisting of 2001 OECD members).
However, despite these specifications being slightly weaker from a SCM perspective, they
still generate similar estimates of the effect of the UK policy (see section G in the SI). In
this way, while we choose our specification in a principled way based on synthetic control
method best practices, our results hold even for a range of donor pools that rely only on
countries with substantively similar political and economic systems.

Generally, there are a multitude of observed and unobserved factors, both dynamic and
constant in time, that drive British emissions in ways that are hard to specify a priori.
Attempting to specify a functional form that would accurately reproduce the emissions tra-
jectory of the UK is a difficult task. The advantage of the SCM is that it enables us to
sidestep the need to enumerate all of the structural drivers of CO2 emissions. By contrast,
we employ a non-parametric approach where we find the combination of (latent) drivers in
donor countries that serve as an appropriate control by numerically minimizing the distance
between the pre-treatment trends of the UK and the control.

The predictor variables used to construct a synthetic UK are the pre-treatment values of
per capita CO2 emissions from 1990 to 2000, with no other covariates. Other covariates
might be useful to improve the match between the UK’s pre-CPP emissions and its synthetic
counterpart. In Section G.2 of the SI, we show this was not the case, and therefore we report
our estimates using pre-intervention values of the dependent variable only. Kaul et al. (2018)
show theoretically that using all pre-treatment values of the outcome variable as separate
predictors in the SCM algorithm leads to an optimization procedure that renders all other
covariates irrelevant. We verify empirically that this is the case: specification 2 in our SI
uses 4 covariates as predictors (GDP per capita, renewable energy consumption, fossil fuel
energy consumption, and energy use per capita), in addition to the pre-treatment values of
per capita CO2 emissions. The weights on the 4 covariates when constructing the synthetic
UK are all 0.

We construct our synthetic UK on the basis of the lagged values of CO2 emissions per
capita alone for three reasons. First, doing so leads to an optimal pre-treatment fit between
the UK and its synthetic control. Since the goal of SCM is to create a credible counter-
factual for the treated unit in the absence of treatment, a guiding heuristic is to choose
the specification that minimizes the distance in potential outcomes pre-treatment. Second,
this research design choice minimizes the risk of specification searching on the part of
researchers. Ferman et al. (2018, 2020) suggest that despite the advantage of the trans-
parency of the SCM, researchers have some latitude to engage in specification-searching.
By restricting our choice set to specifications that only include pre-treatment values of the
outcome variable, we tie our hands at the outset. Third, we do not have strong theoreti-
cal priors on the types of covariates that would capture most of the drivers of British CO2
emissions. While we may account for observable characteristics that correlate with the out-
come, such as income per capita, this is by no means a guarantee that we would account
for the unobservable characteristics that determine the pattern of emissions. Ferman et al.
(2020) address this problem and recommend that in the case where researchers do not have
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Fig. 1 Observed and synthetic counterfactual per capita emissions for the UK. The solid line represents actual
emissions trajectory. The dashed line represents the emissions trajectory of a synthetic UK, in the absence of
the country’s Climate Change Programme. Treatment occurred in 2001

strong theoretical priors on the covariates to use, a specification which uses all pre-treatment
lags of the outcome variable should be used and reported as the benchmark specification.
Nevertheless, as a robustness check, we also estimate the treatment effect using alternative
specifications, which we report below and in further detail in online SI Section G.

3 Findings

3.1 Treatment effect of the CCP

We first construct a synthetic UK as a weighted average of the pre-treatment characteristics
of countries in the donor pool, where weights are chosen so as to minimize the distance
between the UK and its synthetic counterpart. The solid line in Fig. 1 displays the observed
CO2 emissions per capita path of the UK: the emissions trajectory remained relatively flat
post-treatment. The dashed line represents the UK’s emissions trajectory had the country
not passed its 2001 reform, as estimated by SCM.

From 1990 to 2001, the difference in means between the pre-treatment CO2 emissions
of the UK and of the synthetic UK is statistically indistinguishable from 0 (p = 0.981).4

Figure 2 displays the difference between these pre-treatment CO2 emissions in the UK
and the weighted means and unweighted means, respectively. It indicates that the synthetic
control achieves pre-treatment balance with the treated unit.

4During the pre-treatment period, average emissions per capita in the entire sample were 6.3% lower than
those of the UK’s until 1992, and from 1993 onward they were 7.8% higher than those of the UK’s. An
unweighted sample is thus not an appropriate counterfactual for the UK.
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Fig. 2 Difference in means in pre-treatment values observed in the UK and those estimated by the synthetic
control (in orange) which is a weighted sample of the donor pool comprised of OECD, high-, and upper
middle–income countries. Blue points represent the difference in means in pre-treatment values observed in
the UK and those observed in the same donor pool sample, but unweighted

However, after the 2001 passage of the Climate Change Programme, synthetic counter-
factual emissions and observed CO2 emissions start to diverge. The causal impact of the
CCP can then be estimated as the difference in per capita emissions between the UK and the
synthetic UK in the post-treatment period. By 2005, four years after the policy’s passage,
we estimate a treatment effect of -9.8% emissions per person in 2005. This is equivalent to
a reduction of 148 Mt CO2 during the period 2002–2005, an average annual reduction of
0.6 tons of CO2 per capita. We do not estimate the causal impact of the CCP after 2005,
since this corresponds to the launch of the EU-wide emissions trading scheme. After 2005,
many countries in the donor sample are “treated” with comprehensive climate reform, and
no longer act as appropriate donor countries.

We discuss the logic of our donor pool in the Methods section. However, it is important
to (1) verify that our results are not dependent on the inclusion of certain countries in the
donor pool, and (2) to re-run the synthetic control estimator on a donor pool of countries
that have similar political and economic institutions as the UK. First, we run a “leave-one-
out” robustness check that is detailed in the section below. We show that the findings are
not dependent on the inclusion of any single country in the donor pool. Second, we also run
the specification on a donor pool composed of 22 OECD countries that share institutional
similarities with the UK. The top donors in this case are France (0.353), Japan (0.329),
Belgium (0.123), Germany (0.099), Luxembourg (0.066), and Italy (0.018). The treatment
effect attenuates slightly from -9.8% per capita emissions in 2005 to -5.3% per capita emis-
sions, but retains statistical significance (p < 0.05). More details on this robustness check
are provided as SI Section G.5.
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3.2 Statistical inference

After estimating the treatment effect of the CCP on British emissions, we then ask whether
our results are statistically significant, rather than the product of chance. Since SCM does
not assume a data-generating process, nor do we estimate a specific functional form, we
accomplish this through the use of falsification or placebo tests, rather than through para-
metric hypothesis testing. Placebo tests are commonly used in the literature to test whether
an outcome or a unit that we know to be unaffected by treatment responds to a placebo treat-
ment, in which case any positive treatment effect on the treated might be spurious (Bertrand
et al. 2004; Abadie et al. 2010). To conduct our placebo analysis, we iteratively re-assign
treatment to all countries in the donor pool. Since we know these countries were not treated,
we should expect to see null treatment effects, other than by chance. The estimated treat-
ment effect is given by the difference between the placebo unit and its synthetic control in
post-treatment periods. This allows us to create a null distribution of gaps in post-treatment
emissions trajectories for all countries in the sample. If the results in the UK are not driven
by chance, we should expect the gaps in the post-CCP emissions trajectories in the UK to
lie in the tails of that null distribution. This procedure is similar to testing Fisher’s sharp null
hypothesis, which tests a null hypothesis of no effect whatsoever (Imbens and Rubin 2015).

However, it may be the case that the pre-treatment fit between a placebo unit and its
synthetic control is poor. In this case, this particular placebo test is uninformative, since
synthetic control estimators hinge on finding weights that minimize the distance in pre-
treatment emissions trajectories. When the fit is poor, it is unlikely that the resulting
synthetic counterfactual provides a credible control for the treated unit (placebo or oth-
erwise). We thus exclude placebo countries with a pre-treatment MSPE greater than 30
times the pre-treatment MSPE of the UK in Fig. 3. However, the choice of cut-off for the
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Fig. 3 Gaps in emissions per capita between the treated unit and its synthetic counterpart. The thick purple
line represents the gaps for the UK. The grey lines represent the distribution of placebo treatment effects.
Countries with a pre-treatment MSPE greater than 30 times that of the UK have been excluded (see Methods
for details)
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treatment MSPE is rather arbitrary. We also provide figures in SI Section D of the gaps
between the treated unit and its synthetic control with cut-offs for excluding placebo
runs that have a pre-treatment MSPE greater than 50 and 100 times that of the UK’s for
illustration.

Figure 3 displays the results of iteratively re-assigning treatment to countries in the donor
pool (minus the UK). The purple line displays the gaps between the emissions in the UK and
in the synthetic UK. The grey lines represent the gaps in emissions between each placebo
unit and its synthetic counterpart. Only placebos with high-quality pre-treatment counter-
factuals are informative to evaluate whether the treatment effect of the CCP is robust to
a falsification test. Thus, Fig. 3 only includes placebos whose pre-treatment MSPE is not
more than 30 times greater that of the UK’s. The causal effect of the CCP in the UK lies at
the edge of this null distribution. In other words, we would be unlikely to see a treatment
effect as large as we see for the UK by chance alone.

Since we know that none of the placebo countries had a climate policy, we should expect
null treatment effects on each of these placebo treatments, as only the UK was treated with
the Climate Change Programme in 2001. The donor pool includes countries that were Annex
I parties to the United Nations Framework Convention on Climate Change (UNFCCC) in
1992. To the extent that Annex I membership might constitute a shadow treatment on these
countries, this will bias against finding an effect; and our estimates can thus be seen as
a lower-bound on the treatment effect of the CCP. After iteratively assigning a placebo
treatment to countries in the donor pool, we then calculate the gaps in emissions between
the placebo units and their synthetic controls. We should expect to see little to no variation
in these post-2001, other than by chance.

It may be the case that the synthetic control algorithm on a placebo unit failed to achieve
a good pre-treatment fit, in which case this placebo run would be uninformative. We account
for this by calculating the mean squared prediction error (MSPE), which is the average of
the squared gaps between the per capita CO2 emissions in the treated unit and its synthetic
control. If the fit achieved by the synthetic control algorithm was good, then we should
expect a low pre-treatment MSPE; and conversely, if the fit was poor, the pre-treatment
MSPE for any given country would be larger. If a country (placebo or the UK) has a large
MSPE post-treatment, this is suggestive of a large treatment effect. We compute the ratio
of the post- to pre-treatment MSPE for the UK and each placebo country in the sample,
as recommended by Abadie et al. (2010, 2011, 2015). By dividing the post-treatment gaps
with the pre-treatment gaps, the statistic downweights the ill-fitting synthetic controls. This
effectively penalizes the treatment effect when the fit achieved by the synthetic control
algorithm was poor. The ratio of post- to pre-treatment MSPE for all countries in the donor
pool is the statistic that we use to create a non-parametric null distribution.

We can then look at the empirical distribution of this statistic to ascertain whether the
ratio of post- to pre-treatment MSPE in the UK falls in the tails of this distribution, which
would indicate that the results in the UK are unlikely to be driven by chance. When we
re-assign treatment to all countries in the sample, we find that the UK has the largest ratio
statistic. If we were to pick a country at random under uniform sampling from the entire
sample, the probability of obtaining a ratio statistic as large as the UK’s is 1/51 ≈ 0.02.
In other word, the probability of obtaining a treatment effect as large as the UK’s would
be 0.02, which is conventionally seen as statistically significant for parametric analyses.
Figure 4 displays the empirical distribution of this ratio statistic: this is our null distribution.
The UK’s ratio statistic is approximately 3687, and it falls in the right tail of that distribution,
which suggests that we can reject the null hypothesis that the CCP had no effect in favor of
the alternative hypothesis that the CCP had an effect on emissions per capita.
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Fig. 4 Null distribution for a two-sided test. The density represents the empirical distribution of the ratio
statistic (computed as the ratio of post- to pre-treatment mean square prediction error) for all countries in the
sample

3.3 Robustness checks

Finally, we conduct additional checks to verify that are results are robust. These include
“leave-one-out” robustness checks where we iteratively drop a single country from the donor
pool to ensure that our results are not an artifact of individual donor countries, placebo
“in time” tests where we re-assign treatment to earlier years, and a series of alternative
specifications for synthetic control construction.

First, we might ask whether the weights in the synthetic UK are driven by certain coun-
tries in particular. To test this, we conduct a “leave-one-out” robustness check where we
iteratively drop a single country at a time from the donor pool used to construct the syn-
thetic UK. This allows us to check that the emissions trajectory of the synthetic UK is not
driven by a single country, and that achieving balance between the pre-CCP emissions tra-
jectories of the UK and its synthetic control does not depend on the inclusion of a single
country. As shown by Fig. 5, our results remain robust to the omission of single countries
from the donor pool.

Second, we run placebo “in time” tests, where we re-assign treatment to previous years.
Since we know that treatment occurred in 2001, and not earlier, we should not expect to find
a large divergence between the UK and its synthetic control in those placebo years, other
than by chance. Figure 6 displays the results of this test for the year immediately preceding
the passage of the CCP. The emissions trajectory of the synthetic control for the placebo
year 2000 do not start diverging from those of the UK until after 2001 and not earlier, which
further reinforces the impression that there indeed was a structural break in emissions after
the treatment. Additional placebo tests for other years prior to treatment can be found in SI
Section E.
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Fig. 5 Gaps in per capita emissions between the UK and the synthetic UK. The thick purple line represents
the gaps when the synthetic UK is constructed using all countries in the donor pool (51 countries). Each thin
purple line represents the gaps when one country is dropped from the donor pool
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Third, we run the synthetic control procedure on a variety of alternative specifications
and samples. We considered two alternative ways to operationalize the outcome variable:
CO2 emissions rescaled to a 1990 baseline, and CO2 emissions rescaled to a 2000 baseline.
Both dependent variables are rescaled to ensure that they are within the common support
of the data. The first outcome variable is rescaled to the baseline used in the formulation of
the Kyoto targets, and can help us visualize at a glance the extent to which the UK met its
targets. The second dependent variable can then help us understand the immediate impact
of the CCP at t + 1.

We also consider three samples for the donor pool: (A) countries that were either OECD,
high-, or upper middle–income countries in 2001; (B) countries that were either OECD or
high income countries in 2001; and (C) countries that were OECD members in 2001. In all
of these samples we exclude Northern European countries that we consider to have been
treated by 2001.

We report the results run on donor pool (A) as our preferred model, but the results run
on donor pools (B) and (C) are also statistically significant. However, the smaller donor
pool sample means that achieving a good pre-treatment fit between the UK and its synthetic
counterpart is dependent on the inclusion of a single country, Luxembourg. This is not a
problem when we use the larger donor pool (A): if we drop Luxembourg, the treatment
effect is comparable (-8.5%) and is statistically significant (p = 0.02).

Finally, we also run the synthetic control method on the main donor pool sample (A)
using a specification that includes covariates (specification 2), and one that increases the
pre-treatment optimization period to 1980 (specification 3). The treatment effect of the CCP
is substantively large and statistically significant in both of those cases too.

Table 1 summarizes all the specifications that have been run as a robustness check
on our results. The detailed results for our alternative specifications can be found in the
online SI Section G. As our main finding, we choose to report a specification where the
outcome variable is CO2 emissions per capita, rather than emissions rescaled to a base-
line, since per capita emissions are a meaningful and readily interpretable measure of
climate abatement. Within the specifications that have per capita CO2 emissions as their
outcome variable (specifications 1–5), we choose the specification that achieves the best
pre-treatment fit (i.e., the lowest pre-treatment MSPE), which occurs when the donor pool
comprises countries that were either OECD, high-, or upper middle–income countries
in 2001.

Best practice in SCM analysis is to report several specifications as a robustness check
(Ferman et al. 2018, 2020). Ferman et al. (2020) discuss how to approach generating a valid
hypothesis test that encompasses all the different specifications. On the one hand, a decision
rule that rejects the null hypothesis of no effect only if all the specifications individually
reject the null would be unduly conservative, though it should be noted that our results
would pass that test (at a 10% significance level). On the other hand, a decision rule that
rejects the null if at least one specification has rejected the null would inflate the rate of false
positives. They thus suggest to generate a new test statistic, inspired by work by Imbens and
Rubin (2015): for each unit j and across all specifications s, compute the ratio of post- to
pre-treatment MSPE, and compute p-values using the same statistical inference procedure
as before.

We compute such a test statistic across specifications that share the same donor pool.
For all 3 donor pools, these omnibus p-values are highly statistical significant—pool (A):
p = 0.0385; pool (B): p = 0.0303; pool (C): p = 0.0435. This indicates that our findings
are not the result of a single spurious specification; we can thus reasonably conclude that
the CCP had a significant and negative effect on British per capita CO2 emissions.
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Table 1 Summary of alternative specifications

Spec Outcome variable Donor pool Covariates Optimization Pre-treatment MSPE p-value

1 CO2 per capita (A) OECD, high No 1990–2001 1.24 × 10−4 0.020

& upper middle

income

n = 51

2 CO2 per capita (A) OECD, high Yes 1990–2001 2.07 × 10−3 0.053

& upper middle

income

n = 37

3 CO2 per capita (A) OECD, high No 1980–2001 7.86 × 10−3 0.058
& upper middle

income

n = 51

4 CO2 per capita (B) OECD No 1990–2001 5.24 × 10−4 0.030
& high income

n = 32

5 CO2 per capita (C) OECD No 1990–2001 2.13 × 10−3 0.043
n = 22

6 1990 baseline (A) OECD, high No 1990–2001 6.42 × 10−6 0.038
& upper middle

income

n = 51

7 1990 baseline (B) OECD No 1990–2001 1.07 × 10−5 0.030
& high income

n = 32

8 1990 baseline (C) OECD No 1990–2001 3.12 × 10−5 0.043
n = 22

9 2000 baseline (A) OECD, high No 1990–2001 8.69 × 10−6 0.038
& upper middle

income

n = 51

10 2000 baseline (B) OECD No 1990–2001 1.42 × 10−5 0.030
& high income

n = 32

11 2000 baseline (C) OECD No 1990–2001 3.75 × 10−5 0.043
n = 22

Specification 1 is reported as the main finding. Details on alternative specifications including robustness
checks are reported in the SI Section G. The p-values reported here are two-sided

4 Discussion

Collectively, national climate policies remain insufficient to mitigate the catastrophic risks
of climate change (Peters et al. 2015). However, we show that a unilateral climate policy
in the UK meaningfully reduced carbon pollution, even in the absence of a legally binding
global climate treaty. Conventional accounts of global climate policy-making emphasize
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countries’ weak incentives to act on climate change alone. Yet, we show that the UK reduced
its per capita carbon pollution by 9.8% in the face of free-riding disincentives to act.

The CCP included a mix of several policy instruments: a type of carbon tax (the Cli-
mate Change Levy collected from industry and the public sector), negotiated industry
agreements (the so-called Climate Change Agreements), and a domestic emissions trading
scheme (ETS). These policies individually had several shortcomings which cast doubt on
the CCP’s ability to achieve substantial emissions reductions. In particular, empirical evi-
dence suggests that the Climate Change Agreement (CCA) targets negotiated with industry
were too lax at the outset (Ekins and Etheridge 2006), which would have resulted in “hot
air” on the emissions trading scheme (ETS) market. The CCL was not a pure carbon tax and
carbon-free nuclear energy was not exempt from it. The Climate Change Agreements were
negotiated with industrial polluters and made substantial concessions to producers. Sectors
who overcomplied on their CCA targets could sell those surplus emissions as allowances on
the UK’s domestic ETS, and conversely sectors could meet their CCA targets by purchas-
ing permits on the market. These provisions introduced additional flexibility for business
managers who could decide on the least-cost way to meet their CCA targets.

While the CCA targets themselves were lax, the CCA sectors outperformed their 2002
targets. Ekins and Etheridge (2006) argue that this was due to an “awareness effect”: there
were many cost-effective opportunities to improve energy efficiency that had previously
not been recognized by industrial business managers. The excise rates of the CCL were
high enough to be considered a credible threat and succeeded in bringing industrial actors
to the table to negotiate the voluntary CCA targets, and it was this process which allowed
the private sector to realize that there were low-hanging fruit energy efficiency gains to
be made (Ekins and Etheridge 2006). Many of those energy improvements were made on
financial grounds alone, and the fact that the targets were not stringent was counterbalanced
by the process of learning from industrial managers about how energy efficiency could
improve their bottom line. These findings provide suggestive evidence that a combination
of imperfect policy instruments can result in meaningful emissions mitigation.

SI Section H provides an additional narrative of the mobilization against the CCP by
both labor and industry groups which succeeded in watering down the stringency of the
policy and resulted in important concessions to polluters. Still, despite regulatory capture
by industry, and even if it was voluntary and unilateral, the CCP was nevertheless able to
abate 148 Mt of CO2 over 4 years, or around 37 Mt of CO2 per annum. The IPCC estimates
that mitigation pathways that keep warming within 1.5 ◦C would cap emissions in 2030 to
25–30 Gt CO2e per year (Rogelj et al. 2018). Our results suggest that the UK was able to
mitigate emissions on the order of magnitude of 0.5% of the global annual carbon budget
remaining in 2030.

Finally, even though evaluating the overall impact of a given climate policy on national-
level carbon emissions is crucial for the development of climate budgets, existing efforts
are stifled by the reliance on unrealistic BAU scenarios. BAU scenarios used for causal
impact evaluations need to be developed with the explicit aim of being counterfactual. CGE
and IAM models are useful for ex ante simulations of the general equilibrium effects of an
exogenous policy on the economy and on the environment. However, the BAU scenarios
that are used by these models as comparisons are not necessarily appropriate for an ex post
policy impact evaluation. This is because the correct counterfactual to estimate the impact of
a climate policy is a scenario where the policy had not been passed, and not a baseline of no
action or other stylized vignette. However, it is difficult to enumerate all the possible drivers
of that counterfactual emissions trajectory, and furthermore to specify how they interact
with each other. We demonstrate the advantage of using a non-parametric approach which
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obviates the need to specify a functional form for all of the (observed and unobserved)
drivers of emissions. The synthetic control estimator captures the specific combination of
underlying dynamic and static structural drivers of British emissions in the control units and
reweights them accordingly to create a credible synthetic control.

Alongside parallel work by Bayer and Aklin (2020), our findings show the promise
of synthetic control methods as a tool for ex post climate policy impact analysis that can
provide net national estimates of CO2 abatement without relying on simplistic forward
projections of emissions. More accurate climate policy evaluations can in turn inform the
analysis of national and global carbon budgets, which form the basis of actionable goals for
climate stabilization.
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