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Abstract
Characterizing the future risks of climate change is a key goal of climate impacts analysis.
Temperature binning provides a framework for analyzing sector-specific impacts by degree
of warming as an alternative or complement to traditional scenario-based approaches in
order to improve communication of results, comparability between studies, and flexibility to
facilitate scenario analysis. In this study, we estimate damages for nine climate impact
sectors within the contiguous United States (US) using downscaled climate projections from
six global climate models, at integer degrees of US national warming. Each sector is
analyzed based on socioeconomic conditions for both the beginning and the end of the
century. The potential for adaptive measures to decrease damages is also demonstrated for
select sectors; differences in damages across adaptation response scenarios within some
sectors can be as much as an order of magnitude. Estimated national damages from these
sectors based on a reactive adaptation assumption and 2010 socioeconomic conditions range
from $600 million annually per degree of national warming for winter recreation to $8
billion annually per degree of national warming for labor impacts. Results are also estimated
per degree of global temperature change and for 2090 socioeconomic conditions.
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1 Introduction

The modeling of climate change impacts typically begins with running a set of emissions or
concentration scenarios (IPCC 2000; Meinshausen et al. 2011b; Taylor et al. 2012, IPCC
2013, Hayhoe et al. 2017) through complex earth system models, followed by using the
temperature and precipitation outputs of those climate models as inputs to impacts models.
Scenario-based analysis has been the default approach to projecting future climate impacts for
several decades and has successfully served as the backbone of international and federal
climate assessments and special reports (e.g., IPCC 2018; USGCRP 2018), modeling inter-
comparison efforts (e.g., Knutti and Sedláček 2013), and individual modeling studies. The
RCP scenarios provided projections over the twenty-first century of possible futures ranging
from low to high concentrations and radiative forcing, which allowed for economic modeling
to proceed concurrent with, rather than sequential to, physical scientific modeling (Moss et al.
2010; van Vuuren et al. 2014). However, we argue that there are some important limitations
and challenges to relying primarily on the traditional scenario-based approach for driving
climate impacts analysis.

One challenge is that it is impossible for there to be a comprehensive set of scenarios that
explore all potential futures. Emissions or concentrations from these scenarios are used as
inputs to climate models with the goal of producing comparable results. However, when using
climate model output to drive impacts analyses, the differences in climate sensitivity between
different models can have a dominant effect, obscuring the role of other structural differences
between the models (e.g., different responses of precipitation, cloudiness, stagnation events, or
other climatic outcomes) (Schleussner et al. 2016). An additional challenge is one of commu-
nication: scenario names can be enigmatic for the public, whether it is “A1B” from the SRES
scenarios, “RCP8.5” from the Coupled Model Intercomparison Project (CMIP5) RCP scenar-
ios, or “SSP4-6.0” from the CMIP6 RCP scenarios (Eyring et al. 2016). Characterizing
changes and damages that track with temperature is more intuitive than hypothetical scenarios
for non-technical audiences and more easily associated with the global temperature targets
discussed in international negotiations (IPCC 2018) or reported in media stories (World Bank
2013; Plumer and Popovich 2018). Moreover, the scenarios developed and used change from
assessment to assessment and from research group to research group, whereas temperature
changes are a stable metric.

To address these challenges, the most common alternative methodology is to discuss
climatic impacts by degree rather than by scenario. The National Research Council (NRC)
“Climate Stabilization Targets” assessment (NRC 2011) presented most of its finding by
degree, noting that “using warming as the frame of reference provides a picture of impacts
and their associated uncertainties in a warming world – uncertainties that are distinct from the
uncertainties in the relationship of CO2-equivalent concentrations to warming.” In the case of
Arctic sea ice, the NRC assessment showed that in some cases, there is value to presenting
hazards and impacts on an absolute temperature scale, rather than a degree-change scale. The
IPCC 1.5 degrees assessment presented a comparison of impacts at 2° and 1.5° in order to
inform global temperature targets (IPCC 2018). The IPCC has a long history of presenting
risks by degree in the “burning embers” or “reasons for concern” diagram (Smith et al. 2009;
O'Neill et al. 2017; Yohe 2010; IPCC 2019). Patterns of climate change are often presented
normalized by temperature, as those patterns are robust when considering the magnitude of
change or the scenario (Tebaldi et al. 2020). Wobus et al. (2018) and Sanderson et al. (2019)
presented future risks in the United States (US) by degree of warming for the impacts of
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extreme temperatures and extreme precipitation events, respectively. Roson and Sartori (2016)
developed damage functions for six sectors for 140 world regions, relying on a heterogeneous
set of studies whose results could be interpreted in a degree-based framework. Neumann et al.
(2020) calculated reduced form functions for a number of impact sectors considered in the
Climate change Impacts and Risk Analysis (CIRA) project (Martinich and Crimmins 2019).
Hsiang et al. (2017) used end-of-century impacts from 4 RCPs, applied to 2012 economic and
population values, to calculate percent GDP damages to the US across 8 sectors. Finally,
Schleussner et al. (2016) applied a “time-slice” approach to estimate the effects of climate on a
half-dozen global sectors at 1.5 and 2°.

Temperature binning aids comparability of independent analyses by producing an
estimate of damages for a given amount of warming, without consideration of when that
warming occurred or which scenario or climate model was used to develop the estimate.
This approach generally reduces the spread of results when showing uncertainty ranges
by eliminating the contributions of global climate sensitivities or transient climate
responses to variations in estimates of sectoral impact (Schleussner et al. 2016). In a
way, this can be considered an extension of the RCP approach: where the RCPs provided
identical concentration pathways for climate models to run, thereby controlling for the
transformation of emissions to concentrations, the binning approach also controls for the
transformation of concentrations to radiative forcing and temperature. Associated dam-
ages with levels of warming is also of interest to audiences outside the modeling
community, including policymakers, urban planners, and the public. Temperature bin-
ning also produces results that can be easily adapted for use in simplified computational
frameworks. By calculating damages for multiple temperature bins for each of multiple
socioeconomic conditions (in this study, conditions in 2010 and 2090), the temperature
bins can be disassociated from any specific time period. This makes it possible to create
an algebraic fit to the impact estimates applicable to any time period. These fits can be
used within reduced form tools to allow for benefit analysis of incremental mitigation
policies (Neumann et al. 2020) or within integrated assessment models (IAMs) to explore
how sectoral damages interact in a broader economic setting. The fits themselves also
allow for the characterization of non-linearities.

In this study, we apply a temperature binning approach to nine US sectors. This
approach combines several key features of previous studies: providing quantified, mon-
etized damages in a consistent fashion for a number of different impact sectors as in
Hsiang et al. (2017) or Neumann et al. (2020), but rather than the ensemble of oppor-
tunity used in those studies, we use a “time-slice” approach as in Schleussner et al.
(2016) or Wobus et al. (2018). We further extend these approaches by considering
multiple socioeconomic scenarios as in IPCC (2019) but with sector-specific details for
socioeconomic scenario influences on results as well as different assumptions about
adaptation. We based the results on national temperature changes rather than the global
temperature approach from previous similar studies in order to reduce spread between
models. We show here that designing analyses with relational temperature-impact func-
tions for a given sector can improve comparability between analyses, yield results in a
framework that is more intuitive for communications purposes and can better character-
ize risks, and be used to inform simple computational models that can rapidly and
flexibly estimate impacts by sector for any desired scenario.
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2 Results

Monetized damages resulting from warming in the US at integer national temperatures
from 0 to 6 °C relative to 1986–2005 were calculated for nine sectors (labor, roads,
extreme temperature mortality, electricity demand and supply, rail, coastal properties,
electricity infrastructure, Southwest dust health effects, and winter recreation) and six
downscaled GCMs (CanESM2, CCSM4, GISS-E2-R, HadGEM2-ES, MIROC5, and
GFDL-CM3)—see the “Methods” section for details. All the sectoral impact models
considered in this analysis show a net positive relationship at the national scale between
increasing temperature and damages. These sectors cover a wide range of impacts in the
US, though some key impacts from the EPA (2017) report are not yet represented: one
important example would be the impacts of future warming on air quality, including
ozone and fine particulates (Fann et al. 2015; Fann et al. 2016; Fann et al. 2021; Garcia-
Menendez et al. 2015). The results presented here can be used to discuss impacts of
climate on diverse sectors at different temperature thresholds or to inform damage
functions for reduced form models.

Fig. 1 Damages by degree and GCM. National damage estimates in 2010 for the nine sectors currently
considered in the temperature binning method, shown by degree of national temperature change from the
1986–2005 baseline. The equivalent global temperature changes are also shown. For sectors with adaptation
scenarios, the reactive adaptation scenario is shown here. Eight of the nine sectors rely on the six GCMs listed in
the legend; coastal properties rely on the six sea level rise (SLR) scenarios listed in the legend
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Figure 1 shows results for all nine sectors, using 2010 populations and socioeconomic
conditions. This study used national temperatures in order to create the temperature bins, but
the equivalent global temperatures are also shown for comparative purposes. The baseline
global temperature is 0.61° above the 1850–1900 preindustrial level. Of the nine sectors
displayed, the largest damages as a function of temperature (based on linear regression) are
found to be impacts on labor and then roads (see Table 1). However, it is important to note that
future infrastructure damages are expected to increase due to a growing GDP, labor damages
will scale with population growth and wage rates, and health damages with population growth
and changes in the value of mortality risk reduction, resulting in a larger increase in damages
per degree of warming as seen when using 2090 socioeconomic conditions (see also Fig. SM-
1). Interpolation between the 2010 and 2090 values can provide insight into the impacts of
climate change at any time period. For some sectors, socioeconomic changes of drivers like
population or GDP are directly proportional to the magnitude of climate impacts, and for these
sectors, it is straightforward to extrapolate to novel scenarios. For other sectors, the relationship
between socioeconomic conditions and damages is more complicated, as described in the last
column of Table 2. The approach is designed to flexibly translate standard drivers such as
population and GDP into the most relevant socioeconomic drivers, for example, trajectories of
willingness to pay to avoid mortality risk or of future coastal property value. Additionally,
changes in assumptions about adaptation, applying the temperature-related mortality function
to the whole population rather than 49 cities, and other choices and updates could also change
which sectoral damages have the largest linearly estimated relationship with temperature.
Figure SM-2 shows the results over all adaptation options for applicable sectors, using 2010

Table 1 Linear estimation of damages by degree

Sector Linear slope1

$million/degree US
national change
[Std. Error]

Evidence of
non-linearity and
sign of second
derivative2

Notes

2010
socioeconomics

2090
socioeconomics

Labor 8300 [180] 31,000 [660] No
Roads 6400 [320] 6800 [340] No Reactive adaptation
Extreme temperature 2800 [220] 7000 [540] Yes (positive) Includes adaptation,

only covers 49 US cities
Electricity demand

and supply
3400 [110] 4265 [150] Yes (positive)

Rail 2200 [330] 9000 [1380] No Reactive adaptation
Coastal properties 1900 [160] 3100 [280] No Reactive adaptation
Electricity infrastructure 1900 [84] 3300 [150] Yes (negative) Reactive adaptation
Southwest dust 950 [45] 2600 [120] No Only Southwest

Region
Winter recreation 620 [10] 825 [14] No

Sectors ordered by average damage at 5° national warming using 2010 socioeconomics (Fig. SM-3)
1 Linear regressions were calculated using the lm function in R for data from 5 GCMs (minus GISS-E2-R) at each
temperature point from 0 to 5° to avoid any missing data points (for coastal properties, the 30-cm and 50-cm
cases were excluded): inclusion of all data (including GISS-E2-R and 6°) would lead to an increase, on average,
of about 9% in the linear slopes. The constant term was omitted
2 Linearity determined by comparing to a quadratic fit, using Akaike’s information criteria test. P values for a
sum of squares test were less than 0.01 in all cases where the quadratic fit was superior
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values: this provides estimates of the value of adaptation in reducing future climate damages
and enables analyses using different assumptions about how effectively society will adapt.

Those climate impact sectors where damages are most closely related to national annual
average temperatures will generally have the least dispersion between GCMs, as the bins are
defined based on that metric (such as winter recreation and electricity demand and supply).
GCMs can vary in terms of temporal and regional variability of temperature even for the same
national annual average temperature. While precipitation patterns can differ more between
models, these changes are often still proportional to large-scale temperature changes. This
variation among GCMs can drive differences between the resulting relationship between
temperature and damages. The agreement across GCMs in climate damages for a given
temperature varies by sector—for winter recreation, there is little difference from one GCM
to the next (the standard error is less than 2% of the slope of the temperature/damage
relationship) (Fig. 1 and Table 1). With the exception of the rail sector, variation with respect
to GCMs (as measured by the standard error divided by the slope) was less than 9%. For rail,
where the risk of track buckling is particularly sensitive to changes in extreme temperature, the
GFDL-CM3 climate projection results in more than three times as much damage as the
damages estimated resulting from the next most damaging GCM (HadGEM2), with a standard
error 15% as large as the slope of the temperature/damage relationship.

The results presented focus on the final, monetized outputs for each sector: however, for a
number of these sectors, impacts can also be reported in their native physical impact units,
such as deaths for the health-related sectors, percent change in hours worked for labor, or
number of skiing visits for winter recreation. For some purposes, these native units may
facilitate better communication of the results.

To illustrate some of the differences between temperature binning and the traditional
scenario-based representations of damages, Fig. SM-4 shows the results for winter recreation.
The lower figure shows the temperature binning results, and the upper figure displays the exact
same data except arranged by year. Greater dispersion is evident for the scenario-based display
of data, particularly at the end of the century. If additional scenarios were to be added to this
figure (e.g., for RCP4.5), the temperature binning figure would likely remain almost identical,
with the additional data points mainly overlaying the existing data at lower temperatures,
whereas the dispersion of results would increase even more for the year-based figure.

Another option for producing damage functions for climate impact sectors is to use an
ensemble of opportunity (e.g., Neumann et al. 2020). However, for many of the sectors examined
by Neumann et al. (2020), the damages were only estimated for 2050 and 2090, with some others
adding 2030 and 2070 (Martinich and Crimmins 2019). This led to two key challenges. The first
was the necessity of adding the era of the calculation to the regression as a dummy variable in
order to account for possible changes in socioeconomic variables, on top of adding some key
metrics such as population and road miles as additional scalars. The second is that even with the
inclusion of 2030 as a time period, there were no data points between the baseline and 2° except
for the GISS_E2_R model. This makes it challenging to estimate damages that occur in response
to small temperature changes. Given the interest by some in a global 1.5° since preindustrial
scenario (which is equivalent to 0.85° from the CIRAbaseline for the contiguousUS), and the fact
that any future scenario starts with small temperature changes for the first decade or two, damages
from such small temperature changes are of substantial interest. As an example of the difference
between the two approaches, Fig. SM-5 shows a comparison between the regressions for a single
sector (extreme temperature-related mortality) estimated from the ensemble of opportunity
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(Neumann et al. 2020) compared to that estimated from the temperature binning approach, using
an otherwise identical damage estimation approach.

3 Discussion

The results shown in the previous section can serve as the backbone for several objectives. The
first is communication. The graphs can stand alone in order to communicate the relationship
between US national temperatures and climate damages expected in various sectors. Alterna-
tively, collating results at each degree point can inform a “risk by degrees” communication
effort: for example, looking at the difference between 2 and 3° of warming (either national or
global) in terms of damages on the US, which can also be related to temperature targets. The
second objective is to develop damage functions for generating reduced form models. The
linear fits from Table 1 would be an easy approach to providing damage functions, but some
non-linearity can be captured using extrapolations between the solutions at each degree point
or using other functions for the regression analysis. In either case, the damage functions can be
brought into larger IAMs or used on their own to analyze damages at different temperatures. A
third use is to inform larger assessments. The IPCC burning embers diagrams (IPCC 2019)

Table 2 Adaptation and impacts analysis capabilities by sector

Sector Adaptation scenarios Impact types Key socioeconomic driver

Labor • No adaptation • Lost wages • Population (high-risk workers)
• GDP/capita (wages)

Roads • No adaptation
• Reactive adaptation
• Proactive

adaptation

• Road repair, user cost
(vehicle damage), and
delay costs

• Population (traffic)

Extreme
temperature

• No adaptation
• Adaptation

• Heat-related mortality (VSL)
• Cold-related mortality (VSL)

• Age-stratified city population
• GDP/capita (VSL)

Electricity demand
and supply

• No adaptation • Infrastructure expansion costs • Electricity demand forecast

Rail • No adaptation
• Reactive adaptation
• Proactive

adaptation

• Repair (including equipment
and labor) and delay costs

• Population (passenger traffic)
• GDP (freight traffic)

Coastal properties • No adaptation
• Reactive adaptation
• Proactive

adaptation

• Costs related to armament,
elevation, nourishment,
and abandonment (including
storm surge impacts)

• GDP/capita (property values)

Electricity
infrastructure

• No adaptation
• Reactive adaptation
• Proactive

adaptation

• Repair or replacement of
transmission and
distribution
lines, poles/towers, and
transformers

• Electricity demand forecast

Southwest dust • No adaptation • All mortality
• All respiratory
• All cardiovascular
• Asthma ER
• Acute myocardial infarction

• Age-stratified population
• GDP/capita (VSL)

Winter recreation • Adaptation (defined
by snowmaking
for alpine skiing)

• Snowmobiling revenues
• Alpine skiing revenues
• Cross country skiing revenues

• Population (potential
recreators)
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were derived by combining a literature review with expert elicitation: more widespread use of
temperature binning approaches could provide information in the right format to inform the
development of such diagrams.

Timing is an important part of climate impacts analysis. The temperature binning approach
develops functions by initially removing the time element. This time element can then be
reintroduced in at least two ways. The first is to provide a mapping function showing the
probability of temperature exceedance for key time periods for each scenario of interest (see,
e.g., Figure 6 in Wobus et al. 2018). Such a mapping can be generated without needing to re-
run all the impact sector analysis. The second is to apply the damage functions to user-defined
scenarios. As discussed in the “Methods” section, user scenarios can be paired with reduced
complexity climate models to estimate global temperatures and then US national temperatures.
Damages can then be estimated using constant socioeconomic assumptions or by using time-
varying damages that involve using the 2090 versions of the damage functions and/or
socioeconomic or population-based scalars. While this study uses only two time points from
a single socioeconomic time path, a more robust sensitivity analysis could vary GDP,
population, and other socioeconomic parameters separately to develop a response surface that
could enable emulation of a wider range of socioeconomic futures. The last column of Table 2
provides a summary of some of the sector-specific richness in which this approach translates

Fig. 2 Climate changes at 2° of warming. The upper six maps show the difference between a homogeneous 2°
national temperature change and the actual mean temperature change projected by the six models in the 11-year
temperature bin. The lower six maps show the percentage change in precipitation during the 11-year binning
window relative to the historical period (1986–2005) for the six models. Seasonal patterns may differ from the
11-year mean
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traditional socioeconomic drivers such as GDP and population into meaningful changes in
indicators of physical and economic impacts. As a result, the approach can flexibly tune the
sectoral impact results for sectors where the relationship between GDP or population and
impacts can be determined. Future work could use more varied socioeconomic projections
(such as the five shared socioeconomic pathways) to drive the sectoral impacts models to
explore a wider range of socioeconomic responses to the temperature bins. An interesting
parallel here is the development of different “burning embers” diagrams for different SSP
scenarios (IPCC 2019), which show that risk could vary greatly depending on socioeconomic
future.

Temperature binning approaches can also improve some elements of consistency. For
example, each of the four CMIP5 RCPs is based on a different IAM. This means that moving
from one RCP to the next changes the emissions of multiple climate forcers in ways that are
not always straightforward—the most dramatic of which is that RCP4.5, based on a GCAM
emission scenario, has a higher total radiative forcing than RCP6.0 through 2060. However, it
is important to consider that there are limitations to relying on one RCP. The first is that even
for a single climate model, there may be differences in a 2° scenario depending on how it is
reached. Aspects of this question have been addressed by several researchers (Tebaldi and
Knutti 2018; Ruane et al. 2018; Baker et al. 2018; Tebaldi et al. 2020): generally, the
conclusion is that the sensitivity of impacts for a given temperature level to the specific
scenario is low compared to other uncertainties, but that there are important sensitivities in the
CO2 concentration, aerosol concentration, and interannual variability from one scenario to the
next. One physical difference that can arise when a temperature threshold is reached later in
time is that the land-ocean differential would generally be expected to be smaller as a scenario
approaches stabilization: this potential issue is partially addressed by using national rather than
global temperatures for the binning. In general, while use of global temperatures improves the
ability to associate results with the temperature targets discussed in climate policy, the use of
national temperatures reduces scatter, improves fits, and allows better emulation of GCMs that
might not have been used to generate the sector-specific damage functions (see Table SM-6 for
linear estimation of damages by global degree rather than national degree). Note that there are
some sectors where in theory an impact would be better associated with global temperatures
than national temperatures, such as coastal impacts which are driven by ice melt, thermal
expansion, and changes in tropical storms outside the boundaries of the USA. Future work
could drive the climate impact analysis with multiple scenarios in order to better understand
how impacts at a given temperature could be sensitive to the scenario. The use of simpler
scenarios, such as 1%/year CO2 concentration increases, might help control for some factors
like changing aerosol or land-use patterns in the RCP scenarios.

Sectors where the impacts are a function of cumulative exposure will be more challenging
to represent in a temperature binning context. For example, sea level rise is a function of the
integration of heat absorption by the ocean and melting of land ice and so is a more complex
function of temperature over time than impacts such as heat mortality. Similarly, carbon
storage in managed forests would be a difficult sector to model in this fashion, both because
of the integrative nature of storage and the dependence of the rate on CO2 fertilization, rather
than just climatic changes. There are approaches to addressing some of these difficulties: for
example, financial smoothing can be used for one-time adaptation costs or threshold damages
to avoid discontinuities in the relationship between temperature and damages, or alternate
metrics could be used with a translation to temperatures (e.g., estimating a relationship
between centimeters of sea level rise and damages and using a separate function to relate time
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and temperature to calculate sea level rise). These more complex approaches would be useful
for reduced complexity modeling and benefits analysis, but might not be as amenable for
general communication purposes.

This approach does not capture impacts that are a function of rate of change rather than
absolute change (though there is a paucity of studies on that topic in general), nor does it
capture impacts that are a direct function of greenhouse gas concentrations, such as ocean
acidification, CO2 fertilization, or ozone resulting from methane oxidation in the atmosphere.
Impacts that are sensitive to non-GHG factors, such as aerosol emissions or land-use changes,
will also be challenging to emulate. Inter-sectoral interactions (such as the land-water-energy
nexus) and cascading risks would also be difficult to capture in this framework. Some of these
challenges are surmountable—for example, Schleussner et al. (2016) show temperature slices
for coral reefs under assumptions of coral adaptation for both 2050 and 2100 in order to
account for the ability of coral to adapt to slower rates of change, and O'Neill et al. (2017)
created reasons for concern figures for rate-of-change and CO2 concentration as a complement
to the temperature-based reasons for concern—but require more complexity in approach.

Six GCMs are used in this study (Fig. 2). For those sectors where there is little variation in
impacts resulting from the different GCMs, such as winter recreation, there can be reasonable
confidence when extrapolating to other untested GCMs. For other sectors with more GCM-to-
GCM variability, such as for climate impacts on the rail sector, confidence in such extrapolation
will be lower. More work understanding the causes of that variability, such as whether it is
related to GCM-specific changes in precipitation or temperature changes in specific regions,
could enable more sophisticated extrapolations. Ongoing research can improve upon the results
shown in this study in several ways. Sectoral coverage is still very incomplete—examples of
key missing sectors include the impacts of climate change on air quality, agriculture, migration,
and political instability. Sectors that have already been modeled can be improved to capture
more of the physical and/or economic effects, such as by expanding the population coverage
and characterization of adaptation for extreme temperature-related mortality. Using more than
one sectoral model to estimate impacts for a given sector would also lead to increased
understanding of the results (and increased confidence, if the models are in agreement).
Expanding the number of GCMs used, or using additional downscaling approaches, would
also provide more clarity about the sensitivity of the results to different climate simulation
techniques.

4 Conclusions

The framework described in this manuscript builds on approaches demonstrated in numerous
previous studies in order to produce quantified, monetized damage estimates for nine different
impact sectors across a range of temperatures for two different socioeconomic conditions. The
temperature binning approach has several advantages over scenario-driven approaches: im-
proved comparability due to standardizing results by temperature; more accessible communi-
cation by moving away from the ever-changing alphabet soup of climate models and scenarios;
and increased flexibility of scenario analysis through the development of reduced-form tools.
The strong relationship between increased temperatures in the US and monetized damages is
also demonstrated by the analyses of the nine sectors analyzed here. While the authors of this
manuscript will continue to add new sectors and improve the analysis of existing sectors, this
approach would be greatly strengthened by more consistent adoption of similar approaches by

22 Page 10 of 18 Climatic Change (2021) 165: 22



the wider impacts modeling community. If future impacts papers were to consider presenting
their damage estimates as a function of temperature, whether as the central thrust of the paper or
in the supplementary information, it would aid aggregation and comparisons and enable
incorporation of results into reduced form models from a diversity of modeling teams.

5 Methods

At its core, temperature binning relies on calculating sectoral impacts for multiple future
temperatures while using constant socioeconomic parameters. In this manuscript, we maxi-
mize consistency by using a standard set of six climate models (CanESM2, CCSM4,
GISS_E2_R, HadGEM2_ES, MIROC5, and GFDL_CM3), one downscaling approach ap-
plied to the contiguous US (Localized Constructed Analog or LOCA, Pierce et al. 2014) and
integer temperature change intervals for damage calculations. Integer temperature bins can
facilitate the display of results as well as providing even spacing in order to best capture any
potential non-linear relationships between temperature and damages. However, while the use
of consistent models and well-spaced temperature bins can be useful, they are not inherently
necessary; having fewer requirements may facilitate applying this methodology more broadly
to other studies.

The temperature binning approach builds on a foundational methodology for sectoral
analysis described in detail in USEPA (2017) and summarized in Martinich and Crimmins
(2019), as part of the second phase of the Climate change Impacts and Risk Analysis (CIRA)
project. CIRA2.0 was originally designed to use consistent climate and socioeconomic
projections in driving multiple, independent sectoral models for seven regions of the US
(see Fig. SM-7 for region boundaries). The key modifications to the CIRA2.0 approach used in
this temperature binning approach are the use of an additional GCM, the use of a single forcing
scenario, the use of temperature-bin time slices selected for each GCM rather than set time
periods, the use of an illustrative subset of the sectoral impact models, and the use of constant
socioeconomic conditions for the baseline analysis. The criteria used and decisions made
regarding these parameters are described below.

Climate data:

Where CIRA2.0 uses both RCP8.5 and RCP4.5 following the guidance for the
development of the Fourth National Climate Assessment (Sun et al. 2015; USGCRP
2015), this temperature binning analysis leverages only RCP8.5. This selection is not an
endorsement of RCP8.5, and does not indicate any judgment regarding the likelihood of
that scenario but is chosen in order to allow for analysis of the widest potential temper-
ature range in the binning approach while limiting the number of total scenarios necessary
for running through sectoral impact models. RCP8.5 provides projections for the full
range of plausible twenty-first century temperatures, obviating the need to run multiple
scenarios to address low, medium, and high impacts. Using multiple scenarios could
provide insights into how the 2° temperature bin for RCP8.5 might differ from the 2° bin
for RCP4.5, but these differences are likely to be small (see the “Discussion” section).
Because the focus of this temperature binning approach is to develop damage functions
through the estimation of impacts at integer levels of warming, the likelihood of occur-
rence associated with scenario selection is less relevant in this analysis.
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In order to more comprehensively evaluate the full range of possible high-temperature
scenarios that are not reached by all models (note that all model runs pass through small
temperature changes), this analysis used climate projections from the Geophysical Fluid
Dynamics Laboratory coupled General Circulation model (GFDL_CM3) in addition to
the five GCMs used in CIRA2.0 (the Canadian Earth System Model, CanESM2, the
Community Climate System Model, CCSM4, the Goddard Institute for Space Studies
model, GISS_E2_R, the Hadley Centre Global Environmental Model, HadGEM2_ES,
and the Model for Interdisciplinary Research on Climate, MIROC5). The original five
GCMs were chosen based on criteria described in USEPA (2017), including a consider-
ation of independence, skill at matching historical observed US climate, and coverage of a
wide range of future precipitation and temperature outcomes (see Text SM-1 for addi-
tional detail). GFDL_CM3 was added to that set with the most important criterion being
the inclusion of an additional high-temperature model that was different from other
models already included, as evaluated by the Sanderson et al. (2017) estimates of inter-
model distance. Other warm models considered included CESM1_CAM5 which was
excluded based on similarity to CCSM4, ACCESS1_3 which has similarities to
HadGEM2_ES, and CNRM_CM5 which was slightly cooler and slightly less skillful
by the Sanderson et al. (2017) metrics than GFDL_CM3.

All but one of the sectoral impact analyses required downscaled climate data. The
temperature binning approach presented here relies primarily on the LOCA (Localized
Constructed Analog, USBR et al. 2016) approach to produce daily temperature (maxi-
mum and minimum) and precipitation data at a 1/16 degree scale (approximately
6.25 km). The one exception is the sectoral analysis from the coastal property model
which requires sea level rise projections produced by a separate method, described in the
method for that sector below.

Time slices:

For this manuscript, the decision was made to select time slices based on average
warming in the continental US compared to the baseline (1986–2005) by integer degrees,
where the first 11-year period to have an average temperature equal to that of the warming
degree was chosen. Figure 3 shows the year at which the 11-year moving average for each
of the GCMs first reached each degree above the baseline and the 11-year window around
that year. The size of the binning window is a balance between smoothing out interannual
variability and the inclusion of years at the beginning and end of the window that would
not be representative of the window’s average temperature: the smooth behavior of the
damage curves for most sectors and GCMs (Fig. 1) indicates that 11 years is sufficient.
Using global temperature bins may have had benefits for communication purposes, as
they would have matched temperatures used in international negotiations and assess-
ments, but such a choice would have led to more dispersion between models as domestic
impacts are more directly related to local temperatures. Regional temperatures can differ
from the national average (Fig. 4). The 1986–2005 baseline is 0.61° warmer than
preindustrial (1850–1900) temperatures at the global scale (Oppenheimer et al. 2014).
While this approach was chosen due to the rich set of economic impact analyses available
for the contiguous US, this method can be adapted to any region.
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Sectoral models
A subset of nine of the sectoral impact models fromCIRA2.0were used for the temperature

binning analysis. These sectors were chosen based on large magnitudes of the monetized
damages, high visibility or common interest, and/or amenability to the temperature binning
analysis method. The nine sectors chosen were extreme temperature mortality, labor impacts,
road infrastructure, electricity demand and supply, rail infrastructure, coastal property impacts,
electricity infrastructure, Southwest dust health effects, and winter recreation.

Climate projections from each of the temperature bins (see Fig. 2 showing maps at 2° for
each GCM) are used as input to each sectoral impact model in order to estimate damages.
Different sectoral impact models require different climate outputs (such as temperature or
precipitation) and temporal and spatial resolutions. See Table SM-5 for additional detail on the
scope and assumptions of the sectoral impact models. Output of the sectoral impact models is
then averaged over each 11-year period correlating to the degree of warming over baseline. For
models which have non-linear responses to the climate inputs, it is important to do the
averaging in this order, rather than averaging temperatures or precipitation before using them
as sectoral model inputs.

Underpinning the temperature binning approach is an implicit assertion that the temperature
stress during the 11-year bin triggers damages that are manifest within that same 11-year
period. For sectors such as extreme temperature mortality or labor productivity, the effects of
temperature are effectively contemporaneous. Furthermore, in other sectors, such as coastal
property, road, and rail infrastructure, damages under a “no adaptation” response assumption
also align reasonably well, in a temporal sense, with the temperature or other climate stressor.
These infrastructure sectors, however, are also characterized by a high level of demonstrated
cost-effectiveness of investments in adaptive capacity—and in some cases, the investment

Fig. 3 Temperature binning windows. This graphic shows the 11-year windows assigned to each integer national
temperature change by GCM. Arrival years, or the year at which the 11-year moving average reaches the given
integer, are listed in each bin

Fig. 4 Temperature change by NCA region and integer degrees of national warming from 1986 to 2005 average
baseline, six GCM average, with corresponding global temperature change
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involves one-time or periodic capital investments, with “payoffs” to the investment (in the form
of avoided damages) realized after a delay. In these cases, it is possible that the trajectory of
estimated adaptation costs may not align temporally with an 11-year temperature bin. To
improve the alignment, we perform a “financial smoothing” of capital costs, essentially
annualizing capital costs over the useful life of the adaptation investment, using a discount
rate of 3%. Details of the financial smoothing are provided in the Text SM-3.

To estimate global mean temperature from the six sea level rise projections (Sweet et al.
2017) used in EPA (2017), we develop a relationship between global temperature and global
mean sea level (GMSL) rise.We use global temperature changes from 1970 to 2100 for the six
GCMs and RCP8.5 and a GMSL rise projection for RCP8.5 derived by applying probabilistic
weights (Sweet et al. 2017) to the six SLR scenarios and fit a quadratic, least-squares
regression. In the temperature binning method, we rely on climate outputs from 6 GCMs that
span a range of temperature and precipitation regimes that are relative to the CMIP5 median.
Thus, for a given point along the weighted GMSL projection, we can identify a range of
potential temperatures from these 6GCMs. From this, we fit a second-order polynomial, which
describes expected pairing of GMSL and temperature under RCP8.5. See Text SM-2 for more
detail.

Five of the sectoralmodels have the capability ofmodelling future impactswith andwithout
adaptation (Table 2). Projected values with adaptation for extreme temperature mortality
(where cities are assumed to have mortality functions equivalent to that of Dallas) and with
reactive adaptation for the infrastructure sectors have been reported in the main text of this
manuscript; see the no-adaptation and proactive adaptation results in Supplemental Materials.
Generally, reactive adaptation would be expected to result in smaller damages compared to the
no-adaptation approach but larger damages than with proactive adaptation measures.

Socioeconomic projections:

Because damages in the temperature binning approach are not time dependent, two
methods are used to isolate damages from socioeconomic drivers. Five sectors were run
with static socioeconomic inputs, relying on 2010 and 2090 population and GDP
projections. The other four sectors were run with a static assumption—that is, constant
socioeconomic inputs for the entire time series—as well as a dynamic assumption, where
socioeconomic inputs change across the century in a continuous fashion. The difference
in damage outputs between the two runs can be used as an indicator of the impact of
socioeconomic drivers. These two methods allow for exploration of the potential effect of
socioeconomic changes for any given temperature. Socioeconomic projections are drawn
from EPA’s Integrated Climate and Land Use (ICLUSv2.0) model for population, and
MIT’s Emissions Prediction and Policy Analysis (EPPAv5) model for GDP, as described
in more detail in EPA (2017).

Application in reduced form models:

As noted above, impact damages are scaled to average national temperatures rather
than average global temperatures. This relationship can be used to build a direct compu-
tational framework. Such a framework might use reduced complexity models, such as
FaIR, MAGICC, or Hector (Meinshausen et al. 2011a, b; Hartin et al. 2015; Millar et al.
2017; Nicholls et al. 2020), to produce global temperature trajectories. Therefore, an
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algorithm to translate global temperatures to US national temperatures is needed. For the
6 models considered in this analysis, the national to global temperature ratios ranged from
1.3 to 1.7 in 2090. These ratios were fairly constant regardless of temperature change. A
relationship derived from a pooled sample of global and national temperature changes for
the six GCMs used in the temperature binning methodology, under RCP8.5, is used to
estimate national temperature change for a given global temperature change.1

Regional application:

For any impact model that resolves the US into smaller sub-national regions
(Table SM-4), the temperature binning approach can be used to estimate damages at this
regional level using the same methodology as for the national estimation. Dispersion is
likely to be higher at the regional level because the climate is noisier for smaller spatial
scales. Also, while there will be almost no variation between models for average national
temperatures because the time slices are defined for national temperatures, regional
temperatures would not be constrained to be equal for different models. The value of
such a regional approach would be to create functions that would improve emulation of
models that were not included in the original analysis. However, the results could be more
challenging to communicate. Such an approach would not be appropriate for all sectors:
e.g., sea level rise is not related to local temperature change.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10584-021-03048-6.
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