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Abstract
Price volatility, an indicative measure of price uncertainty, is an important factor
influencing fisheries cost, income, food security, and pressure on fish stocks. An increase
in price volatility means that prices are varying more, making it more difficult to adjust
the activities accordingly. This paper explores price volatility changes for the small
pelagic fish—a key group for food security—related to the potential outcomes of climate
change, such as tropical widening. With the tropicalization of temperate and polar marine
ecosystems due to species composition changes, one would expect that overall price
volatility for the small pelagics may be reduced over time because volatility in the tropical
region is on average the lowest. However, we find an empirical evidence that price
volatility for small pelagic species has increased relatively in the tropical and sub-polar
regions beyond what can be explained by changes in landing levels and the variation in
the landings.
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1 Introduction

Climate change affects marine fisheries directly and indirectly. Direct outcomes include
changes in marine species range, timing of reproduction, eggs and larvae dispersion, abun-
dance, and individual maximum size (Hollowed et al. 2013; Laffoley and Baxter 2016).
Indirect consequences include uncertainty in the landings (Brander 2015) as well as in the
price received for the landed fish (Dahl and Oglend 2014), and income impacts on fishers’
livelihoods and coastal communities (Asche et al. 2018; Selig et al. 2019). Price volatility, as a
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measure of price uncertainty, is a key factor informing about fisheries income, food security,
and pressure on pelagic fish stocks. Furthermore, prices can be informative measures of
changes in ecological conditions even in settings where it is difficult to tease out these
relationships from quantity data due to contaminated control variables (Smith et al. 2017).
The importance of fisheries production for livelihoods has led to a number of studies
investigating the economic consequences of climate change (Allison et al. 2009; Sumaila
et al. 2011; Porter et al. 2014; Lam et al. 2016; Blasiak et al. 2017), but so far, little attention
has been given to information that can be obtained from price volatility. Here, we investigate
whether price volatility has increased in three regions for catches of small pelagic fish—an
important resource for food and feed. Comparing volatility between two periods (before and
after 1979), an increase in price volatility is found for the tropical region as well as the sub-
polar region (Fig. 1). Moreover, the variation in landings influences price volatility more than
average landing levels. Consequently, a higher degree of economic uncertainty for small
pelagic fisheries may be expected in the future with larger stock and catch variation given
the projected increase in the intensity and frequency of extreme events influencing fish stocks
due to climate change.

Small pelagics, such as sardines, herrings, and anchovies, are short-lived fish highly
dependent on oceanographic conditions (Lehodey et al. 2006; Cochrane et al. 2009; Merino
et al. 2010). As such, they are vulnerable to impacts of potential changes in fisheries pattern
due to climate change. The group is important to both fisheries and aquaculture activities—
small pelagics comprise 30% of global landings, and a significant share is reduced to fish oil
and meal used in aquafeeds (Deutsch et al. 2007; Tacon and Metian 2008, 2015; FAO 2019).
Moreover, in recent years, fish oil has also become popular as a human nutritional supplement
(Misund et al. 2017). Therefore, they are a key seafood group for food security (Allison et al.
2009; Smith et al. 2010).

Among the several possible outcomes from climate change, expansion or contraction of the
marine species spatial distribution is of particular interest (Allison et al. 2009; Sumaila et al.
2011; Fossheim et al. 2015; Rutterford et al. 2015; Fenichel et al. 2016; Pecl et al. 2017). In
fact, Staten et al. (2018) suggest a poleward expansion of the tropics in recent decades, i.e., a
tropical widening. Moreover, predictions that the temperature increase in the polar and sub-
polar regions will exceed the global average increase (Barange et al. 2006) suggest not only an
intensive local species reduction, in worst cases extinction in the sub-polar regions, tropics,
and semi-enclosed seas, but also high species invasion intensity in the polar region (Cheung
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Fig. 1 Small pelagics’ price volatility before and after 1979 by climate region. Price volatility is the standard
deviation of price log-returns
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et al. 2009). This may be seen as a tropicalization of temperate marine ecosystems due to
species composition changes (Laffoley and Baxter 2016). If this occurs, one would expect that
overall price volatility may be reduced over time, because volatility in the tropical region is on
average the lowest (Fig. 1).

However, extreme events are predicted to become more frequent and intense, including the
El Niño phenomena (Easterling 2000; Hansen et al. 2012; Cai et al. 2014; Laffoley and Baxter
2016). This will contribute to more variation in fish stocks and landings. This feature indicates
that climate change may cause higher stock, landings, and price volatility over time as the
geographical range shifts. In fact, several studies note the importance of looking at variability
in addition to changes in mean levels to obtain a more complete picture of the effects of
climate change (Katz and Brown 1992; Brander 2007; Wernberg et al. 2013). Evidence of
accelerated global warming in the last two decades with respect to the relatively stable prior
period (Hansen et al. 2012) and evidence of tropical widening from 1979 (Staten et al. 2018)
provide an opportunity to investigate the relative strength of the price volatility hypotheses for
the three climate regions, namely, sub-polar, temperate, and tropical dummies, before and after
1979.

2 Methods

Price volatility describes the degree of variation in prices, which is a result of the underlying
characteristics of its production and market. For fisheries, and in particular small pelagic fish,
production depends in large on the environmental conditions, and price volatility will mainly
be a function of the amount of fish caught and its variation. Moreover, Tveterås et al. (2012)
indicates a highly integrated market for pelagic fisheries (Tveterås et al. 2012). This means that
the market substitution among the pelagic fish and other products (e.g., fishmeal and soybean
meal—see Asche and Tveterås 2004) limits the market effect on price volatility. Thus, the
hypothesis testing in this paper will account for the main variables influencing supply, i.e.,
amount of fish caught and its variation. As there is a global market, no attempt will be made to
distinguish between regional markets.

Data on small pelagic fish (< 30 cm), ex-vessels’ value (US$), and quantity (kg) from large
marine ecosystem (LME) (Pauly and Zeller 2015) was used to estimate yearly prices (value
divided by quantities) from 1950 to 2006. Large marine ecosystems are areas defined by its
ecological and oceanographic characteristics rather than just political or economic criteria
(Sherman and Hempel 2009). Each large marine ecosystem was classified by climate region:
tropical, temperate, and sub-polar regions (Table 1). Table 2 gives the average volatility, the
mean of standard deviations of log-returns for each series in the group. Moreover, Table 2
shows a descriptive analysis of the data set by climate regions, including the number of series
available, the number of full-sample series available, and the mean quantity caught by fisheries
and its coefficient of variation. For six LMEs, the data for small pelagic (< 30 cm) was not
available online or the time series have missing data.1

Thus, the effect of variables that vary across the three groups, such as the harvested quantity
and the coefficient of variation of the harvested quantity (the standard deviation divided by the

1 Gulf of California LME, New Zealand Shelf LME, and Iceland Shelf LME have 8, 3, and 1 missing
observations, respectively. While East Central Australian Shelf LME, Canadian High Arctic - North Greenland
LME, and Laptev to Chukchi Sea LME did not present data on the small pelagic fish.
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Table 1 Large marine ecosystems classified by climate region and its price volatility 1950–2006

Region LME Price volatility*

Sub-polar Chukchi Sea 0.85
Sub-polar Beaufort Sea 0.14
Sub-polar West Greenland Shelf 0.32
Sub-polar East Greenland Shelf 0.97
Sub-polar Barents Sea 1.09
Temperate East Bering Sea 0.31
Temperate Gulf of Alaska 0.15
Temperate Hudson Bay 0.35
Temperate Newfoundland-Labrador Shelf 0.55
Temperate Scotian Shelf 0.39
Temperate California Current 0.42
Temperate Northeast US continental Shelf 0.45
Temperate Iceland Shelf 1.41
Temperate Norwegean Sea 0.70
Temperate Baltic Sea 0.42
Temperate North Sea 0.32
Temperate Faroe Plateau 0.54
Temperate Celtic-Biscay Shelf 0.36
Temperate Iberian Coastal 0.39
Temperate Mediterranean Sea 0.34
Temperate Black Sea 0.43
Temperate West Bering Sea 0.73
Temperate Sea of Okhotsk 0.16
Temperate Oyashio Current 0.14
Temperate Sea of Japan/East Sea 0.18
Temperate Yellow Sea 0.30
Temperate East China Sea 0.20
Temperate Kuroshio Current 0.18
Temperate Humboldt Current 0.29
Temperate Patagonian Shelf 0.34
Temperate Southwest Australian Shelf 0.24
Temperate Southeast Australian Shelf 0.25
Temperate New Zealand Shelf 0.41
Tropical Pacific Central-American Coastal 0.29
Tropical Gulf of Mexico 0.10
Tropical Caribbean Sea 0.09
Tropical South Brazil 0.29
Tropical East Brazil Shelf 0.44
Tropical South Brazil Shelf 0.26
Tropical Canary Current 0.26
Tropical Guinea Current 0.48
Tropical Benguela Current 0.53
Tropical Agulhas Current 0.12
Tropical Somali Coastal Current 0.26
Tropical Red Sea 0.32
Tropical Arabian Sea 0.31
Tropical Bay of Bengal 0.15
Tropical Gulf of Thailand 0.38
Tropical South China Sea 0.25
Tropical Sulu-Celebes Sea 0.32
Tropical Indonesian Sea 0.28
Tropical West-Central Australian Shelf 0.21
Tropical Northwest Australian Shelf 0.18
Tropical North Australian Shelf 0.23
Tropical Northeast Australian Shelf-Great Barrier Reef 0.26
Tropical Gulf of California 0.53

*Price volatility is the standard deviation of the log-return of prices

594 Climatic Change (2020) 161:591–599



mean of the harvested quantity) was tested using regression analysis. The large marine
ecosystem time series having no more than 8 missing observations were used in this analysis
(see Table 2). The log-linear regression to be estimated is given as:

lnvolatilityi ¼ μ þ ∑p
j¼1β jDi; j þ ∑l

k¼1αk ln X i;k
� �þ εi;

where volatilityi is the standard deviations of log-returns for each LME time series i, and Di,j is
a dummy variable taking a unit value if the LMEi belongs to group j before and after 1979
(models using 1979 and 1980 as the start of the second period were tested and provided similar
results). Considering n is the number of LMEs in each group j, then p = n − 1 and μ is the
volatility of the remaining reference group.

The vector Xi,k contains additional explanatory variables. These are the harvested quantity
in the LMEj and the coefficient of variation of the harvest. The null hypothesis—no differences
in volatility between the LME climate region groups (sub-polar, temperate, and tropical)
before and after 1979—was tested using the Wald test.

3 Results and discussion

Before 1979, price volatility in the tropical region was significantly lower than the other two
regions, while there was no statistical difference between the temperate and the sub-polar
region (Table 3). Price volatility remains at the same level with no statistical difference in the
temperate region in both periods, but it increases in the two other regions. The tropical region’s
price volatility increases so much that it is not statistically different from the temperate region
after 1979. The price volatility in the sub-polar region increases so that it is significantly higher
than the price volatility in the tropical and temperate regions after 1979. Hence, price volatility
has increased in two of the three regions. The fact that the price volatility in the temperate
region does not change also implies that the significant shift in the use of many small pelagics
towards feed for the rapidly growing aquaculture industry for fishmeal (Tacon and Metian
2008, 2015) and also for human nutritional supplements (Misund et al. 2017) has not
fundamentally changed the price volatility for the small pelagics.

Other potential factors influencing price volatility are harvest levels and its coefficient of
variation. Harvest level influences volatility positively although with a very small numerical
effect. This is somewhat surprising, as usually higher volumes in a market is expected to
reduce price volatility, as indicated in Oglend and Sikveland (2008) and Marvasti and
Lamberte (2016). However, the particular production process for small pelagics, which is
largely due to natural variation rather than more producers as in a traditional industry that

Table 2 Descriptive analysis and volatility by climate region

Climate regions Volatility* St. Dev # series # series—full
sample

Mean quantity
(t × 1000)

Mean CV
quantity

All 0.15 0.07 59 53 271,434 0.80
Sub-Polar 0.57 0.24 8 5 91,035 2.13
Temperate 0.39 0.18 28 26 315,493 3.48
Tropical 0.26 0.10 23 22 222,814 1.33

*Volatility is the standard deviation of the log-return of prices
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spreads risks, goes a long way to explain this result. Dahl and Oglend (2014) show that small
pelagics is the seafood species group with the highest price volatility, and its price volatility is
higher than all other foods, underscoring this unpredictability. The strong impact of the
variation in landings as measured by the CV variable further highlights the importance of
looking at variation in itself. Variation in the quantity landed is much more important than how
much is landed for price volatility.

The consequences of higher economic uncertainty for fisheries reflected by higher price
volatility are different from consequences of higher average (Porter et al. 2014). An increase in
price volatility means that prices are varying more, making it more difficult to adjust activities
accordingly. This is critical for activities such as fisheries, where fishers have limited flexibility
due to a given number of vessels. Moreover, higher price volatility means higher risks and
costs associated with the activities, and less stable revenue for fisheries and aquaculture
industries. Given most fishers as risk averse (Eggert and Martinsson 2004; Smith and Wilen
2005), they will have less incentive to invest in the activity.

Other factors that influence price volatility are governance and the degree of market
integration. Efficient fisheries management provides more individual control over catches
and contributes not only to a more predictable revenue (Holland et al. 2017) but also to
healthier fish stocks and improved quality of the fish. Although several small pelagic stocks
are considered overexploited, fisheries management has improved in the last decades. More
fisheries, including the Peruvian anchoveta, have been managed by catch share systems, which
tend to be more efficient than open-access systems (Costello et al. 2008; Jardine and
Sanchirico 2012; Birkenbach et al. 2017). However, our results indicate that while improve-
ments in management may contribute to reduce harvest and price volatility, this has not been
sufficient to counter the effects of stronger natural variability.

In addition, the degree of substitution of the small pelagics, among the different species and
in relation to other alternatives for its different uses, i.e., integration among the markets, sets
the limits of price variation due to changes in their supply (Asche and Tveterås 2004; Barange
et al. 2006; Tveterås and Tveterås 2010; Misund et al. 2017). For instance, fishmeal, made

Table 3 Differences in volatility across the climate regions before and after 1979 with temperate region before
1979 as the base. As the continuous variables are in natural logarithms, the estimated parameters indicate the
percentage increase in price volatility due to a 1% increase in the relevant variable. The price volatility in log was
regressed by the three climate regions, namely, sub-polar, temperate, and tropical dummies, before and after
1979; the log of the average of harvested quantity; and its coefficient of variation (CV)

Independent variables Coef. Robust Std. Err.

Constant − 1.261 0.206***
Log harvest quantity 0.031 0.016*
Log CV quantity 0.278 0.057***
Temperate region after 1979 dummy − 0.013 0.113
Tropical region before 1979 dummy − 0.597 0.142***
Tropical region after 1979 dummy − 0.149 0.117
Sub-polar region before 1979 dummy 0.206 0.141
Sub-polar region after 1979 dummy 0.489 0.236**
R2 0.375
F value (7, 98) 9.02***

*Significant at a 10% level;

**Significant at a 5% level

***Significant at a 1% level
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mostly from small pelagics, has been a substitute in feed by soybean meal. As shown in Asche
and Tveterås (2004) and Asche et al. (2013), both prices are highly integrated, which limits the
market effect on price volatility.

The results in this paper show that price volatility for small pelagic species has increased in
the tropical and sub-polar regions beyond what can be explained by changes in landing levels
and the variation in landings. Hence, natural variation associated with climate change is
impacting pelagic stocks. Given the important role of the small pelagics group in ecosystems
as well as for livelihoods, a higher degree of uncertainty associated with small pelagics prices
compounded by the uncertainty of the stock availability for fisheries is a challenge for
decision-makers when considering the implications of climate change. This is particularly
challenging in many poorer countries that are disproportionally dependent on small pelagic as
a source for nutrients and protein (Allison et al. 2009; Hicks et al. 2019).
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