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Abstract
In the last decade, instigated by the Paris agreement and United Nations Climate Change
Conferences (COP22 and COP23), the efforts to limit temperature increase to 1.5 °C above
pre-industrial levels are expanding. The required reductions in greenhouse gas emissions
imply a massive decarbonization worldwide with much involvement of regions, cities, busi-
nesses, and individuals in addition to the commitments at the national levels. Improving end-
use efficiency is emphasized in previous IPCC reports (IPCC 2014). Serving as the primary
‘agents of change’ in the transformative process towards green economies, households have a
key role in global emission reduction. Individual actions, especially when amplified through
social dynamics, shape green energy demand and affect investments in new energy technol-
ogies that collectively can curb regional and national emissions. However, most energy-
economics models—usually based on equilibrium and optimization assumptions—have a very
limited representation of household heterogeneity and treat households as purely rational
economic actors. This paper illustrates how computational social science models can comple-
ment traditional models by addressing this limitation. We demonstrate the usefulness of
behaviorally rich agent-based computational models by simulating various behavioral and
climate scenarios for residential electricity demand and compare them with the business as
usual (SSP2) scenario. Our results show that residential energy demand is strongly linked to
personal and social norms. Empirical evidence from surveys reveals that social norms have an
essential role in shaping personal norms. When assessing the cumulative impacts of these
behavioral processes, we quantify individual and combined effects of social dynamics and of
carbon pricing on individual energy efficiency and on the aggregated regional energy demand
and emissions. The intensity of social interactions and learning plays an equally important role
for the uptake of green technologies as economic considerations, and therefore in addition to
carbon-price policies (top-down approach), implementing policies on education, social and
cultural practices can significantly reduce residential carbon emissions.
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1 Introduction

The efforts to limit temperature increase to 1.5 °C above pre-industrial levels are expanding in
line with the ambitions laid down in the UNFCCC process1. In order to limit global warming
to this critical level, they set an aim to achieve a balance between sources of anthropogenic
emission and sinks of greenhouse gases in the second half of this century2. Electricity
generation from fossil fuels contributes the second largest share (28.4%) of global greenhouse
gas emissions3. Decarbonization of the economy will require massive worldwide efforts and
strong involvement of regions, cities, businesses, and individuals in addition to the commit-
ments at the national levels (Grubler et al. 2018). Public climate mitigation efforts should
ideally be aligned with private interests to improve the speed and efficiency of this process.
Individual actions, especially when amplified through social dynamics, shape green energy
demand and affect investments in new energy technologies that collectively can curb regional
and national emissions. The importance of social influence, normative feedback, and infor-
mation diffusion on pro-environmental behavior is rooted in different studies (Bass 1980;
Festinger 1954; Rogers 1995; Schnelle et al. 1980; Schultz 1998). Individuals are not making
decisions in isolation: they are prone to being influenced by peers in their social networks
(Abrahamse and Steg 2013; Cialdini 2003; Festinger et al. 1952; Rogers 1975). In fact,
individuals conform to social norms to gain social approval or to avoid social sanctions
(Cialdini and Goldstein 2004; Keizer et al. 2008; Nolan et al. 2008). Therefore, personal
and social norms together may stimulate individual energy-related actions. Serving as primary
‘agents of change’ in the transformative process towards green economies, households play a
key role in global emission reduction. Hence, there is a demand for tools that, next to economic
considerations, can assess their cumulative emissions given the diversity of behavior and a
variety of psychological and social factors influencing it.

The International Energy Agency (IEA) reported that the global energy-related carbon
dioxide emissions stagnated for a third straight year in 20164. This is a result of growing
renewable power generation, a switch from coal to natural gas, as well as improvements in
energy efficiency and end-user awareness. Subsidies, an emissions trading system, renewable
energy standards, and other instruments have been developed to reduce emissions on the
supply side of the energy market. Although economic incentives are effective mechanisms to
influence energy producers, mechanisms to affect the demand side are less straightforward
(Creutzig et al. 2018; Zhang et al. 2017). Given the scale of the impact that households’
choices have on energy consumptions and emissions, it puts them at the epicenter of the
international policy and research agenda5.

Bin and Dowlatabadi (2005) report that more than 40% of total CO2 emissions in USA is
directly influenced by households’ activities; Baiocchi et al. (2010) show around 52% or 358
million tons CO2 emissions come through indirect household consumption in United

1 United Nations Climate Change Conferences: COP21-23
2 The Paris agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

3 U.S. Energy Information Administration (2016). Electricity Explained – Basics https://www.eia.
gov/energyexplained/index.php?page=electricity_in_the_united_states
4 https://www.iea.org/newsroom/news/2017/march/iea-finds-co2-emissions-flat-for-third-straight-year-even-as-
global-economy-grew.html
5 Cities and Climate Change Science Conference, Edmonton-Canada, March 5-7, 2018
https://www.ipcc.ch/meetings/cities/
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Kingdom. As households get greater awareness of the value and the need for sustainable
energy practices, the public concerns on climate change and energy-related behaviors are
slowly growing. Some first rough assessments indicate that behavioral change alone can
contribute to 4–8% (Faber et al. 2012; McKinsey 2009) of overall CO2 emission reduction.
Gadenne et al. (2011) study the influence of consumers’ environmental beliefs and attitudes on
energy-related behaviors and find that people have been paying more attention to environ-
mental issues nowadays, while many efforts have been made to promote a green consumer
lifestyle.

Only limited tools are available to assess their cumulative emissions given the diversity of
behavior and a variety of psychological and social factors influencing it beyond pure economic
considerations (Niamir et al. 2018a). Many macro models, e.g., general equilibrium models,
are predominately used to support climate change policy debates, particularly in the economics
of climate change mitigation (Babatunde et al. 2017). These models usually assume that
economic agents form a representative group(s), have perfect access to information, and adapt
instantly and rationality to new situations, maximizing their long-run personal advantage.
However, in reality, people make decisions driven by their diverse preferences, shaped by
socio-economic conditions, behavioral biases, and social peer influence (Farmer and Foley
2009). Therefore, policymakers require supporting decision tools, which may explore the
interplay of economic decision-making and behavioral heterogeneity in households’ energy
choices when testing common climate mitigation policies (e.g., carbon pricing) and socio-
economic pathways in a world with changing climate (e.g., SSPs).

The aim of this article is to provide such tools through a combination of a new bottom-up
simulation method grounded in an empirical survey to extract heuristic rules on energy
consumption behavior for individual agents. For this purpose, we use an agent-based model
in which the agents—individual households with detailed socio-economic characteristics—are
taking decisions about a range of realistic actions related to their household electricity supply
while being exposed to economic (e.g., carbon price) as well as psychological and social
pressures (e.g., promotion of green electricity).

After introducing the methodology in Sect. 2, we present in Sect. 3 results from an analysis
of different micro-scenarios of households in a European region (Overijssel, Netherlands) up
to the year 2030. We quantify the changes in household electricity demand from conventional
and green suppliers when varying psychological as well as economic incentive parameters.
While we focus on one region as a proof of concept here, there are several ways to upscale and
cover larger areas (Niamir et al. 2018b).

2 Methodology

The quantitative tools to support energy policy decisions range from assessment of macro-
economic and cross-sectoral impacts (Kancs 2001; Siagian et al. 2017), to detailed micro-
simulation models for a specific technology (Bhattacharyya 2011; Hunt and Evans 2009).
Agent-based modeling (ABM) is a powerful tool for representing the complexities of energy
demand, such as social interactions and spatial constraints and processes (Farmer and Foley
2009; Filatova et al. 2013). Unlike other approaches, ABM is not limited to perfectly rational
agents or to abstract micro details in aggregate system-level equations. Instead, ABM can
represent the behavior of energy consumers—such as individual households—using a range of
behavioral theories. In addition, ABM has the ability to examine how interactions of
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heterogeneous agents at micro-level give rise to the emergence of macro outcomes, including
those relevant for climate mitigation such as an adoption of low-carbon behavioral strategies
and technologies over space and time (Rai and Henry 2016). The ABM approach simulates
complex and nonlinear behavior that is intractable in equilibrium models.

However, this method is actively used in energy applications to study national climate
mitigation strategies (Gerst et al. 2013; Gotts and Polhill 2017), energy producer
behavior (Aliabadi et al. 2017), renewable energy auctions (Anatolitis and Welisch
2017), consumer adoption of energy-efficient technology (Chappin and Afman 2013;
Jackson 2010; Palmer et al. 2015; Rai and Robinson 2015), shifts in consumption
patterns (Bravo et al. 2013), changes in energy policy processes (Iychettira et al.
2017), and diffusion of energy-related actions and technology (Ernst and Briegel 2017;
Kangur et al. 2017). Many cases of ABM still either lack a theoretical framework
(Groeneveld et al. 2017) or relevance to empirical data, especially when studying energy
behavior of households (Amouroux et al. 2013).

To assess the impact of individual behavior on carbon emissions, we went beyond classical
economic models and the stylized representation of a perfectly informed optimizer. Therefore,
we further developed the BENCH6 agent-based model (Niamir et al. 2018a) by strengthening
the alignment of behavioral and economic factors under different climate policy scenarios. We
calibrated the BENCH-v.2 model using data on households’ energy-related choices from a
survey specially designed for this purpose (Sect. 2.3) and administered in a European region of
Overijssel, The Netherlands (1383 households). The BENCH-v.2 calculates changes in elec-
tricity consumption annually and implied carbon emission—based on the primary source of
energy—by simulating individuals’ behaviors (Sect. 3).

2.1 Overview: individual energy behavior

There is a number of energy-related actions in which individuals may pursue to influence their
electricity consumption and, consequently, their carbon footprint. We categorize them into
three main types of behavioral changes. An individual can make an investment (action A1),
either large (such as installing solar panels) or small (such as buying energy-efficient appli-
ances, e.g., A++ washing machine). Alternatively, individuals can save energy by changing
their daily routines and habits (action A2)—e.g. by switching off the extra lights and adjusting
a thermostat/air conditioner. Finally, households can switch to a supplier that provides green
electricity (action A3) (Niamir and Filatova 2017).

A decision is a process through which the selection of one among numerous possible
behavior alternatives is performed (Barros 2010; Simon et al. 1997). Individuals are often
bounded by their own previous experiences and their cognitive abilities—personal aspect—the
influence of others—social aspect—and information availability. Empirical studies in psychol-
ogy and behavioral economics show that individual choices and behaviors often deviate from
the assumptions of rationality: there are persistent biases in human decision-making (Frederiks
et al. 2015; Kahneman 2003; Niamir and Filatova 2016; Pollitt and Shaorshadze 2013; Stern
2013; Wilson and Dowlatabadi 2007). Driven by the empirical evidence from environmental
behavioral studies (Abrahamse and Steg 2011; Bamberg et al. 2007; Bamberg et al. 2015;
Mills and Schleich 2012; Onwezen et al. 2013; Steg and Vlek 2009), the BENCH-v.2 model
assumes that a decision regarding any of the three actions (A1–A3) is driven by psychological

6 The Behavioral change in ENergy Consumption of Households (BENCH) agent-based model
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and social factors in addition to the standard economic drivers such as prices relative to
incomes (Niamir et al. 2018a). Behavioral factors including personal norms and awareness
may either amplify the economic logic behind a decision-making or impede it, serving either
as a trigger or a barrier. It is a scientific challenge to combine the behavioral and the economic
parts of the decision-making process in a formal model. Here, we present the simplest option
assigning weights to the behavioral part by calculating households’ intentions toward a
specific energy-related action derived from our household survey dataset.

2.2 Survey and empirical data

Our household survey is designed to elicit factors and stages of a decision-making
process with respect to the three types of actions that households typically make (A1
investment, A2 conservation, and A3 switching). The conceptual framework behind the
survey assumes three main steps that lead to one of these actions: knowledge activation,
motivation, and consideration (Niamir et al. 2018a). Before considering action, house-
holds need to reach a certain level of knowledge and awareness about climate change,
energy, and the environment. If an individual in a household is aware enough, she might
feel guilt7. Here, personal norms (individual attitudes and beliefs) and subjective norms
prevailing in a society add to her motivation. If households get motivated, they feel
responsible to do something. Still, none of these factors are enough to provoke an action
to change the energy use behavior. A household needs to consider its economic status, its
house conditions (e.g. renting of owning), its current habits, and own perception of its
ability to perform an action or change behavior. If a household reaches a certain level of
intention, it is going to decide or act.

To elicit data on an interplay of behavioral and economic factors, we conducted a survey in
a European region (NUTS2 level) in 2016: Overijssel province in The Netherlands (NL21),
see Appendix, Fig. A2. The data on the behavioral and economic factors affecting household
energy choices were collected using an online questionnaire (N = 1383 households in
Overijssel) and serve as empirical micro-foundation of agent rules in the BENCH-v.2 model.
The variations in socio-demographic and psychological factors among the respondents are
further used to initialize a population of heterogeneous agents in the ABM (Sect. 2.3). The
differentiation per income group also allows to potentially connect with other micro and macro
statistical data if needed.

2.3 BENCH agent-based model

Compared to its first version (Niamir et al. 2018a), the BENCH ABM has been further
developed and modified to investigate the macro impact of cumulative individual behavioral
change on carbon emissions. In particular, in this application, we extended BENCH by (a)
introducing three representative electricity producers (gray, brown, and green); (b) further
improving the model engine, which now treats behavioral and economical parts explicitly
(Sect. 2.1). In the behavioral part, the psychological and social aspects of a household’s

7 Feeling of guilt is one of the components of the Norm Activation Theory. Anticipated pride and guilt cause
individuals to behave themselves in a manner that is in line with personal norms (Onwezen et al. 2013). Guilt is
an important pro-social emotion because it results in feeling personal obligations (personal norm) to compensate
for the caused damage (Baumeister, 1998, Bamberg et al. 2007)
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behavior change and decision making are evaluated (Sect. 2.3.1). If there is high intention,
household agents proceed with assessing the typical economic utility (Sect. 2.3.2). We
combine and harmonize the behavioral and the economic parts of the decision-making process
by extending the standard utility function (Eq. 3, Sect. 2.3.2). Here, an individual may
overcome her economic barrier, if the behavioral part outweighs, e.g., the level of knowledge,
motivation, and intention raise high enough to reconsider the economic tradeoffs. It goes in
line with empirical findings revealing that individual willingness to pay for renewable
energies, e.g., green electricity, is beyond the economic concept and monetary pay-off (Lee
and Heo 2016; Sundt and Rehdanz 2015). In the economic part, households’ utilities based on
the three actions (A1–A3) are calculated and compared (Fig. 1).

Further changes compared to the original BENCH include (c) improvements in social
dynamics and learning algorithms by introducing and simulating two ways of households’
interactions (Sect. 2.3.3); (d) running a carbon price scenario as a top-down strategy to
investigate impacts of policies on household behavioral change (Sect. 2.3.4); (e) the results
of simulations in terms of CO2 emissions (tons per capita) to compare between scenarios (Sect.
2.4, 3) to get a better overview on the impacts of individuals’ behavior on carbon emissions
over time and space. The role of each action (A1–A3) in these trajectories is also estimated till
2030 (Sect. 3).

Household agents in BENCH-v.2 are heterogeneous in socio-economic characteristics,
preferences, and awareness of environment and climate change, so they can pursue various
energy-related choices and actions. Namely, they vary in six economic attributes: (1) annual
income in euro; (2) annual electricity consumption in kWh; (3) household status in terms of
being a gray, brown, or green electricity user; (4) dwelling tenure status—owner or renter; (5)
energy label of their dwelling varying from A to F; and (6) the household energy use routines
and habits measured in the survey in terms of frequency of performing a particular energy-
consuming action. Data for all these variables come from the survey. The annual growth value
of socio-economic variables representing households’ income, electricity consumption, and
consumption of other goods (in 5 quintiles) for the Overijssel province comes from the

Fig. 1 A household’s decision-making algorithm in the BENCH-v.2 agent-based model

Climatic Change (2020) 158:141–160146



EXIOMOD8 computable general equilibrium (CGE) model (Belete et al. 2019). The behav-
ioral and social aspects impacting households energy decisions also vary among agents and
include (1) personal norms9, which are values that people hold (Schwartz 1977), e.g., feeling
good when using energy-efficient equipment; (2) subjective norms10, which are perceived
social pressure on whether to engage in a specific behavior motivated by observing energy-
related actions of neighbors, family, and friends; and (3) perceived behavioral control (Sect.
2.3.1). These behavioral and social variables are updated over time (annually) through social
dynamics and learning procedures (Sect. 2.3.3). Agents’ decision processes closely follow the
conceptual framework (Fig. 1) behind the household survey and apply to all three types of
energy-related behaviors (A1–A3).

2.3.1 Behavior part

Based on different internal and external barriers and drivers, households have different
knowledge and awareness levels about the state of the climate and environment, motivation
levels to change their energy behavior, and consideration levels when they perform costs and
utility assessments. All household attributes are heterogeneous and change over time and
space. All the variables in knowledge activation, motivation, and consideration are measured
in comparable ways using Likert scale, in the range of 1–7 as in the survey. Here, 1 stands for
the lowest, 7 is the highest level (Niamir et al. 2017).

Niamir et al. (2018a) described how households’ knowledge and awareness (K) and
motivation (Mn) are measured and calculated at the model initialization stage based on the
survey data. In summary, K is based on climate-energy-environment knowledge (CEEK),
climate-energy-environment awareness (CEEA), and energy-related decision awareness
(EDA) values. If households are aware enough, that is they have a high level of knowledge
and awareness above the threshold of 5 out of 7, then they are tagged as “feeling guilt” and
proceed to the next step to assess their motivation (Mn) for particular actions. Households’
personal norms (PNn) and subjective norms (SNn) are assessed to calculate their motivation
(Mn). In this paper, motivation may differ for each of the three main actions (n = {1,2,3}). For
example, a household may have a high level of motivation for installing solar panels, and is
therefore tagged as “responsible” for action 1 (investment) and proceeds to the next step
(consideration). At the same time, it may not pass the threshold value in motivation for
changing energy use habits or switching to another energy supplier, and thus does not go into
the consideration step on those two actions. If household agents have a high motivation level
and feel responsible, they consider the psychological (e.g., perceived behavior control11),
structural (housing attributes), and institutional factors (e.g., subsidies) to assess utility and
costs of a specific action (Sect. 2.3.2). Then, households with high level of consideration are
tagged as “high intention”. In the consideration stage, as well as the motivation stage, we
differentiate between actions. In investment (A1) for instance, the dwelling ownership status

8 Within the COMPLEX project funded by the EU FP7 program, the BENCH model was integrated with a CGE
EXIOMOD. The EXIOMOD CGE model is developed at TNO in the Netherlands. https://repository.tudelft.
nl/view/tno/uuid:3c658012-966f-4e7a-8cfe-d92f258e109b/
9 Personal norms are attached to the self-concept and experienced as feelings of a moral obligation to perform a
certain behavior ((Schwartz 1977))
10 Subjective norms are determined by the perceived social pressure from others for an individual to behave in a
certain manner and their motivation to comply with those people's views ((Ham et al. 2015))
11 Own perception of her ability to perform an action or change behavior.
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(SF, owner or renter) and perceived behavioral control over the investment (PBC1) are checked
and evaluated (δ1). While the ownership status is not essential in conservation (A2) and
switching (A3), δ2 and δ3 are calculated just based on perceived behavioral controls (PBC2

and PBC3). All this is captured by the following equations:

K ¼ AVG CEEK;CEEA;EDAð Þ
7

;

Mn ¼ AVG PNn; SNnð Þ
7

;

If n ¼ 1 and SF ¼ 1ð Þ δ1 ¼ PBC1

7

� �
else δ1 ¼ 0ð Þ;

If n ¼ 2ð Þ δ2 ¼ PBC2

7

� �
; If n ¼ 3ð Þ δ3 ¼ PBC3

7

� �
ð1Þ

2.3.2 Economic part

The economic part estimates utility of an individual agent for undertaking any of the three
main actions. Energy economics (Bhattacharyya 2011) assumes that households receive utility
from consuming energy (E, here green, brown, or gray) and a composite good (Z) under
budget constraints:

U ¼ Z � αþ E � 1−αð Þ ð2Þ
Here, α is the share of individual annual income spent on the composite good.

Niamir et al. (2018a) extend this standard utility by including the influence of knowledge
and awareness (K) and motivation (Mn) and adding actions’ intention (δn) as a weight on the
behavioral part:

U ¼ Z � αþ E � 1−αð Þð Þ � 1−δnð Þ þ K þMnð Þ:δn ð3Þ
This weight is calculated and normalized using the survey data.

2.3.3 Social dynamics and learning

Heterogeneous households engage in interactions and learn from each other. In particular, they
can exchange information with neighbors, which may alter own knowledge, awareness, and
motivation regarding energy-related behavior. Here, we employ a simple opinion dynamics
model (Acemoglu and Ozdaglar 2011; Degroot 1974; Hegselmann and Krause 2002;
Moussaid et al. 2015) assuming that each agent interacts with a fixed set of nearby neighbors.
Agents compare values of their own behavioral factors—knowledge, awareness, and
motivation—with those of their eight closest neighbors, and adjust their values for a closer
match. In different scenarios (Table 1), we introduce two types of interaction dynamics among
households: slow and fast. Following the slow dynamics, households in an active neighbor-
hood12 interact with maximally two neighbors (households 3 and 4 in Fig. 2a), and a
household(s) with lower than average value of the whole neighborhood increases their current

12 An active neighborhood is the one where at least one out of eight neighbors undertakes an energy-related
action.
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value by 5% (Fig. 2a). In the fast dynamics configuration, all households in an active neigh-
borhood exchange of opinions and learn from each other (Fig. 2b, Eq. 4). In addition, the related
perceived behavior control (PBCn) of a household that already took an action (household 5 in
Fig. 2) is raised by 5% (Eq. 5). Future research may focus on advancing this social dynamics
further, by for example differentiating per type of energy-efficiency action (observable or not) or
dynamics of diffusion process. Moreover, different channels to establish a social network may
be relevant for individual decisions. Understanding how the structure of social networks
initiated based on friendship, family, and other relationships beyond the spatial distance
(Allcott 2011; Jachimowicz et al. 2018) alone is a prominent future research direction, poten-
tially supported by big data form social media. Similarly, future research may focus on assessing
the consequences of social network structures—regular, small-world, or scale-free networks
(Newman, 2003; Watts, 2004)—on the aggregated energy and CO2 emission dynamics.

X ¼ CEEK;CEEA;EDA;PNn; SNnf g; n ¼ 1;…9f g ;
If Max mean X t

n

� �
;median X t

n

� �� �
≥X t

3 X tþ1
3 ¼ X t

3 þ 0:05 � X t
3

� �
;

If Max mean X t
n

� �
;median X t

n

� �� �
≥X t

4 X tþ1
4 ¼ X t

4 þ 0:05 � X t
4

� � ð4Þ

PBCtþ1
5 ¼ PBCt

5 þ 0:05 � PBCt
5; ð5Þ

2.3.4 Carbon emissions and pricing

In this research, we investigate CO2 emissions implied by households’ electricity consumption
which is supplied from power plants using different kinds of fuels. Carbon dioxide emission
factors for electricity have been derived as the ratio of CO2 emissions from fuel inputs of power
plants relative to the electricity delivered. CO2 emission factors of each fuel type are used as
defined in IPCC (2006). Three different kinds of electricity suppliers are considered, between
which the households can choose: “gray”, “brown”, and “green”. The assumptions regarding
fuel mixes and the resulting net CO2 emission factors are listed in Appendix, Table A1.

To estimate the impact of climate policies, namely a carbon price, we design and add
climate policy scenarios by including carbon price in the utility estimations of households.

2.4 End-user scenarios

Traditionally, rational optimization models such as CGE models, have been used to predict
household energy consumption under various socio-economic scenarios including shared
socioeconomic pathways (SSP)13. Here, the baseline scenario represents this traditional
economic setup where rational and fully informed households make optimal decisions.
Therefore, we use aggregated residential electricity consumption from the EXIMOD model
downscaled to the regional level. The baseline scenario (gray dash-line in Figs. 3 and 5) is an
output of this CGE model under SSP2 (business as usual).

We use this baseline scenario as a benchmark to compare the output of our behaviorally rich
ABM. Four end-user scenarios in BENCH.v2 are designed to explore the impacts of hetero-
geneity in household attributes such as income and electricity consumption, social dynamics
(bottom-up approach), and carbon price pressure (top-down approach) strategies on the
individual and aggregated household behavioral change (Table 1). In all cases, based on the

13 https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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energy behavior change of households, we assess the following macro-metrics at the regional
level: the diffusion of each of the three types of behavioral actions (A1–3) among households
over time, and the changes in carbon emission reduction per capita.

3 Results and discussion

We present the results of the BENCH.v2 simulations by tracking individual and cumulative
impacts of behavioral changes on carbon emissions among 1383 individual households in the
Overijssel provinces over 14 years (2016–2030). Given the stochastic nature of ABMs, we
perform multiple (N = 100) repetitive runs of each simulation experiment (Lee et al. 2015).

3.1 Behavioral scenarios

In scenario SD, the heterogeneous households with various income, electricity consumption,
and dwelling conditions go through a cognitive process to decide whether to pursue any
behavioral change or not. Figure 3 shows that introducing heterogeneity to the household
economic and housing attributes leads to a reduction in carbon emissions resulting from
changes in the residential electricity consumption in comparison to the baseline (gray dash-
line), CO2 emissions resulting from residential electricity consumption decrease 5% by 2030
by simply adding heterogeneity in household attributes and preferences. The decrease indicates

Table 1 End-user scenario settings: climate policy and human behavior scenarios

BENCH.v2 scenarios Social dynamics Carbon price

Scenario SD Slow dynamics
In an active neighborhood:

households interact with maximum two neighbors

–

Scenario FD Fast dynamics
In an active neighborhood:

households interact with all available neighbors

–

Scenario SDC Slow dynamics
In an active neighborhood:

households interact with maximum two neighbors

25 Euro/ton by 2030

Scenario FDC Fast dynamics
In an active neighborhood:

households interact with all available neighbors

25 Euro/ton by 2030

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

(a) (b)

Fig. 2 Social dynamics and learning in an active neighborhood where household “5” undertook an action at time
t. a Slow dynamics: households 3 and 4 are affected and engage in social learning. b Fast dynamics: all
households in the neighborhood are affected and engage in social learning
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a difference between a scenario with a representative agent vs the one where we disaggregate a
representative consumer assuming a distribution of economic and housing attributes and
interactions among households in the neighborhood (Fig. 3, black line).

Scenario FD shows what happens if we have more intense social dynamics within a
neighborhood—households have more opportunities to interact and learn—therefore the
diffusion of information is faster inside society. The blue line in Fig. 3 illustrates the impact
of fast social dynamics alone, which delivers another 4.3% more reduction in carbon emissions
by 2030 compared to scenario SD.

Table 2 shows which actions (A1–A3) contributed the most to the cumulative CO2 emission
savings. Our results indicate that such behavioral changes as investments in solar panels (A1)

Table 2 Avoided CO2 emissions (tons per capita) resulting from households’ energy-related actions, share of
each action is reported in parenthesis; under behavioral scenarios (SD, FD), 2030

Actions Scenarios

SD FD

A1: investment 0.01 (9.3%) 0.03 (10.7%)
A2: conservation 0.04 (26%) 0.08 (26.1%)
A3: switching 0.10 (64.8%) 0.20 (63.3%)

Fig. 3 Macro impact of heterogeneous households’ behavioral change on CO2 emissions over time. Behavioral
scenarios (SD, FD), combining behavioral-climate scenarios: combination of carbon price and slow and fast
social dynamics (SDC, FDC), and baseline scenario (2017–2030). The shaded bounds around the curves indicate
the uncertainty intervals across 100 runs
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may deliver between 9 and 11%, conserving electricity by using less or changing their daily
habits and usage patterns (A2) and switching to brown and green electricity supplier (A3)
contribute 26% and 63–65% in CO2 reduction correspondingly. Our survey also shows that
around 11% of households in Overijssel province already installed solar panels; this indicates
that households that already made an investment before 2016 are willing to switch to green
supplier or save energy through changing their usage pattern. We observe that intensive social
learning and diffusion of information (scenario FD) has more impact on A3 and A2.

3.2 Climate scenarios

To assess the impact of climate policies, an introduction of a carbon price in particular, we
design the scenario SDC. Here, the carbon price is introduced in the year 2017 and increases
linearly to 25 euro per ton by 2030 on the gray (primary of coal) and brown (primary of natural
gas) assuming 0.0009 ton CO2 per kWh coal and 0.0003 ton CO2 per kWh natural gas
emission factors. Carbon pricing significantly encourages individual behavioral changes
leading to additional 25% of CO2 reduction in SDC compared to the SD scenario (Fig. 3).
This indicates that carbon pricing has a significant impact on switching to green suppliers since
they are offering electricity at a lower price, and alternatively simply using less electricity to
save energy costs. This is confirmed by the detailed breakdown of energy-related actions over
time (Table 3).

In the scenario FDC, we examine the effects of combining both behavioral heterogeneity,
intensive social learning, and climate policy on households’ energy decisions and consequent-
ly on their carbon footprint. Figure 3 shows that by combining the carbon price tax (25 Euro
per ton) and households’ behavioral dynamics, we observe a significant reduction in CO2

emissions of household electricity consumption by 55% in 2030 compared to the baseline.
As soon as the carbon price is introduced, the number of households’ energy-related actions

increases, leading to 1.3–2.1 times more CO2 emission reduction per capita compared to
behavioral scenarios (SD and FD) depending on the slow and fast social dynamics. In a world
with slow social dynamics, the carbon price raises the number households choosing to switch
from gray/brown electricity to the brown/green one (action A3) significantly to 3.5 times in
compared to SD. Yet, as social interactions intensify (FDC), households choose for invest-
ments (A1) as the preferred action followed by switching (A3). The number of these two
actions raises up to 5.5 and 4.8 times in FDC compared to SD. At the same time, the number of
households who are interested in conservation and saving electricity by changing their habits
and usage patterns (A2) increases 1.5 times as soon as the carbon price applies; it remains the
same under the slow and fast social dynamics (SDC, FDC). Hence, the conservation strategy
switches from being the second best strategy in the absence of carbon pricing (26% of the

Table 3 Avoided CO2 emissions (tons per capita) resulting from households’ energy-related actions, share of
each action is reported in parenthesis; under behavioral and climate scenarios (SDC, FDC), 2030

Actions Scenarios

SDC FDC

A1: investment 0.07 (18.4%) 0.30 (17.4%)
A2: conservation 0.04 (9.6%) 0.16 (9.0%)
A3: switching 0.27 (72%) 1.27 (73.6%)
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overall CO2 reduction due to conservation, Table 2) to the third place when market-based
mitigation is present (10% of the all CO2 reduction comes from conservation under carbon
pricing, Table 3). This illustrates that the top-down strategy—carbon pricing—activates the
monetary part of individuals’ decisions, lead to an increase in investments and switching.

3.3 Capturing non-linearities

Figure 4a illustrates that an increase in the intensity of social interactions across all four
scenarios consistently leads to higher diffusion of actions A1–A3, implying that these behav-
ioral changes deliver more CO2 savings per capita under fast social learning rather than slow.

Fig. 4 The BENCH-v.2 agent-based model simulated complex and nonlinear behavior that is intractable in
equilibrium models. a Diffusion of households’ actions under behavioral and climate scenarios. b SD and SDC
comparison shows carbon price reducing 25% CO2 emissions (yellow box). FD shows that increasing social
interactions alone reduces 9% CO2 emissions (green box). However, applying both carbon price and social
interactions cuts down CO2 emissions by 55% (21% more than rational models could estimate)
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At the same time, when fast social learning combined with top-down strategies—climate
scenario (FDC)—it triggers significant changes in investment and switching, e.g., under FDC
scenario investment and switching, respectively, leading to 4 and 5 times increase in compar-
ison to SDC scenario. It quantitatively confirms that an effectiveness of a market-based climate
policy is improved when accompanied by an information provision policy.

The BENCH-v.2 agent-based model gives us this opportunity to simulate complex and
nonlinear behavior that is intractable in equilibrium models. In Fig. 4b, we reveal that while
their combined effect is better than that of social dynamics or carbon price alone, the trend is
non-linear. SD and SDC scenario comparison demonstrates that carbon price adds more 25%
CO2 emission reduction. Examining SD and FD scenarios shows that increasing social
interactions alone reduces 4% CO2 emission. However, applying both carbon price and social
interactions cuts down CO2 emissions to 55% (21%more than rational models could estimate).

3.4 Sensitivity of emission reduction actions towards carbon price

Acknowledging the debate on the optimal level of a carbon tax, we performed a sensitivity
analysis on the carbon price. We ran two additional scenarios—FDC10 and FDC50—by
varying the carbon price from 10 (FDC10) to 50 (FDC50) Euro per ton by 2030. Figure 5
illustrates the CO2 emissions per capita resulting from individual behavioral changes A1–A3

Fig. 5 Dynamics of CO2 emission reduction from individual behavioral changes (A1–A3) under different carbon
price scenarios (gradually introduced €10, €25, and €50 per ton). The shaded bounds around the curves indicate
the uncertainty intervals across 100 runs
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assuming intensive social interactions under 3 carbon price values: 10 Euro/ton (FDC10), 25
Euro/ton (FDC25), and 50 Euro/ton (FDC50). According to Fig. 5, the BENCH-v.2 model is
sensitive to the carbon price. As expected, the higher the carbon price, the more CO2 emission
reduction is observed.

4 Conclusions and policy implications

The potential of reducing CO2 emissions through behavioral change becomes even more
important in the light of the Paris agreement. To promote behavioral changes among house-
holds, a range of market-based as well as other behavioral nudging policies (e.g., information)
could be used. Yet, many models assume that economic agents from a representative group(s)
have perfect access to information and adapt instantly and rationally to a new situation. This
paper focuses on estimating cumulative impacts of energy-related behavioral changes of
individual households on CO2 emissions by comparing behavioral and climate policy scenar-
ios. In particular, our model integrates both the elements of a rational choice as well as
contextual behavioral factors. By accommodating individual preferences, beliefs, and social
norms, we trace the process of individual decision making from awareness to motivation and
to the actual decision making. The computational settings allow us to explicitly model this
dynamics and to quantify the aggregated effect of individual behavioral changes in the overall
energy transition essential for climate mitigation studies (Creutzig et al. 2016).

Here, we apply the BENCH-v.2 ABM to shed light on the effects of individual decisions in
the complex climate-energy-economy system and explore the impact of socio-economic
heterogeneity, social dynamics, and carbon pricing on their energy-related decisions over time
in the Overijssel province of the Netherlands. While this study focuses on a relatively small
geographical region, there are no principal barriers to upscale and apply the concept to a larger
region, provided that sufficient statistical data are available(Niamir et al. 2018c).

The results indicate that accounting for demand side heterogeneity provides a better insight
into possible transitions to a low-carbon economy and climate change mitigation. The model
with household heterogeneity represented in socio-demographic, dwelling, and behavioral
factors shows rich dynamics and provides more-realistic image of socio-economics by simu-
lating economy through the social interactions of heterogeneous households. We analyzed four
end-user scenarios, which vary from the baseline scenario by introducing agent heterogeneity,
intensity of social interactions among households (slow or fast), and lack or presence of carbon
price (€10, €25 or €50 per ton). By comparing the behavioral and climate end-user scenarios,
we estimate the relative impact of bottom-up drivers (social dynamics and learning on the
diffusion of information) and top-down market policies (carbon price) on carbon emission
reduction. The impact of household attributes heterogeneity and social dynamics brings 5–9%
CO2 emission reduction by 2030. Adding carbon price cuts CO2 emission down to 55%
compared to the baseline scenario, which mimics the traditional economic setup of a rational
representative fully-informed household who makes the optimal decision.

It should be noted that in this research, we only focus on the demand side of the electricity
market and calculated CO2 emissions caused by residential demand. Future work could focus
on integrating this behaviorally rich demand side modeling with dynamics of the electricity
production side in the market with detailed modeling of various energy sources.

The results imply that the design of climate mitigation policies aiming at behavioral
changes should go beyond making the energy-related alternatives more attractive financially.
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In a transition to low-carbon economy, individuals become more than just consumers. In order
to facilitate this transition, the broader view on social environment, cultural practices, public
knowledge, producers technologies and services, and the facilities used by consumers are
needed to design implementable and politically feasible policy options (Bressers and
Ligteringen 2007). Accordingly, the policy mix should also aim at encouraging and facilitating
social interactions between individuals (households) and promoting and diffusing information
that they need. Such accompanying information and value-based policy instruments have the
potential to greatly contribute to the effectiveness of conventional price-based policies.
Therefore, the various financial, social, and other instruments in the policy mix should be
designed as a coherent set to reinforce each other, optimizing the joint effectiveness.
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