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of societal trade-offs
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Abstract Strategies for managing climate-change risks impact diverse stakeholder groups that
possess potentially conflicting preferences. Basic physics and economics suggest that recon-
ciling all of these preference conflicts may not be possible. Moreover, different climate risk
management strategies can yield diverse and potentially severe impacts across different global
stakeholders. These preference conflicts and their uncertain impacts require an explicit under-
standing of the trade-offs that emerge across different risk management strategies.
Traditionally, integrated assessment models (IAMs) typically aggregate the stakeholders’
preferences across the entire globe into a single, a priori defined utility function. This framing
hides climate risk management trade-offs as well as the inherent stakeholder compromises
implicit to the resulting single “optimal” expected utility solution. Here, we analyze a simple
IAM to quantify and visualize the multidimensional trade-offs among four objectives
representing global concerns: (i) global economic productivity, (ii) reliable temperature stabi-
lization, (iii) climate damages, and (iv) abatement costs. We quantify and visualize the
trade-offs across these objectives and demonstrate how a traditional optimal expected utility
policy implicitly eliminates many relevant policy pathways. Explicit trade-off analysis pro-
vides a richer context for exploring conflicting global policy preferences and clarifies the
implications of alternative climate risk mitigation policies to better inform negotiated
compromises.
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The goal of the internationally ratified Framework Convention on Climate Change is to
stabilize the level of greenhouse gas concentrations in the atmosphere to a level that “would
prevent dangerous anthropogenic interference with the climate system” in a way that “enable[s]
economic development to proceed in a sustainable manner” (United Nations 1992). As
described, this agreement seeks to balance the policy trade-offs that emerge when reducing
greenhouse gas emissions while seeking to maintain global economic productivity. Integrated
assessment models (IAMs) represent one class of tools that are being used to evaluate the
balance between climate risk mitigation and global economic welfare. IAMs of climate change
and the economy typically use utility-based abstractions of global welfare preferences to
analyze and select optimal climate change mitigation strategies (Weyant et al. 1996).
Framing the problem in terms of utility maximization aggregates the values and preferences
of diverse stakeholder groups into a single value function that is used to rank alternative
mitigation strategies. Simply maximizing the expectation of utility derives the optimal decision
for a single hypothetical rational agent. This approach has provided important insights (e.g.,
Nordhaus 2013, McInerney et al. 2012) and is based on simple axioms (Bentham 1879,
Ramsey 1931, Von Neumann and Morgenstern 1945); however, maximizing the expected
utility can have poor descriptive power for real decision making (Ellsberg 1961; Banzhaf
2009).

We use the Dynamic Integrated Climate-Economy model (DICE) to illustrate this com-
mensuration conundrum (Nordhaus 2013). DICE is one of three IAMs used by the United
States Environmental Protection Agency in determining the social cost of carbon, a quantity
used in cost-benefit analyses of climate-change mitigation and adaptation strategies
(Greenstone et al. 2013). The standard approach in DICE is to derive an optimal strategy by
maximizing the discounted expected utility of per capita consumption. When using this
approach, it is important to understand the implicit compromises made among critical stake-
holder preferences. To do so, we expand the problem formulation in DICE to consider four
objectives that approximate key stakeholder concerns: (i) expected utility maximization
(EUM) where the primary focus of the stakeholder is that the benefits justify the costs (U.S.
Office of Management and Budget 2003), (ii) maximize the reliability of limiting global mean
temperature rise to two degrees Celsius (Held et al. 2009) (REL2C) for those concerned about,
“dangerous anthropogenic interference with the Earth System” (United Nations 1992), (iii)
minimize the expected discounted climate damages (DAM) to approximate the preferences of
those concerned about vulnerable systems (McGranahan et al. 2007), and (iv) minimize the
expected cost of a carbon-abatement policy (ABATE) to represent those concerned with the
costs of mitigating climate change (Heggelund 2007). These objectives abstract highly diverse
stakeholder values and potential preferences that are vital to understanding the broader
contexts climate risk decisions (Gupta et al. 2007).

Conflicting stakeholder preferences are often abstracted using a summation of alternative
mathematical forms as well as weightings of the abatement costs and damage functions (e.g.,
Kolstad and Toman 2001, Keller et al. 2000, Keller et al. 2005, McInerney et al., 2012). For
example, a stakeholder concerned with reliably keeping the global mean temperature increase
below two degrees Celsius may define a damage function with extraordinary costs when the
temperature exceeds the threshold. Conversely, a stakeholder concerned about abatement costs
may choose a steeply-increasing abatement cost function. Drouet et al. (2015) provides a
recent illustration of this general approach in representing different stakeholder values and risk
preferences. These aggregated approximations for conflicting stakeholder preferences can
provide useful insights, but they face several challenges. For one, this approach hides the
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weighting of societal preferences in an a priori choice of the cost functions and aggregates into
a single objective, thus the tradeoff among the societal preferences becomes muddled and
difficult to analyze. Moreover, the complex group-decision-making context merits more
explicit understanding of how policy pathways impact tradeoffs in societal values (National
Research Council 2009).

While the four objectives explored in this study are a small subset of the possible
stakeholder preferences, but they provide sufficient coverage to illustrate the implicit
trade-offs of the EUM formulation. For easier interpretation, we re-cast expected utility in
terms of balanced growth equivalent (Anthoff and Tol 2009), which expresses the change in
consumption stream from that of a no-climate-damages case for a given policy (Fig. 1a, purple
box EUM solution). A sole focus on achieving optimal expected utility implicitly commits us
to a non-negligible degree of future climate damages, which may not be tolerable by certain
stakeholders (Fig. 2, purple box/line). The a priori definition of utility as the single metric of
concern can produce decision myopia.

Expanding the problem formulation by considering a broader suite of objectives can
reveal decision relevant trade-offs and reduce decision myopia. For example, adding the
reliability of the two degrees Celsius stabilization goal (REL2C) recasts the context and
implications of the EUM solution. The two-objective sub-space of the full four objective
problem shown highlights a strong trade-off between EUM and REL2C (Fig. 1b). The
ideal solution would maximize both EUM and REL2C. This ideal solution, however, is
infeasible given the coupled geophysical and economic constraints of the model. The
boundary between the feasible and infeasible solutions is the Pareto-front or “trade-off
curve” (black line). Solutions on the trade-off curve cannot be improved upon in the
underlying model with respect to one objective without degrading the other objective. The
trade-off curve is bounded by solutions that optimize each of the objectives separately
(blue box – EUM, green box – REL2C) and spans the entire range of possible REL2C
values (0% - 100%) (Fig. 1b). Given the strong tension between these two objectives, it
would be difficult to argue that the preference represented by the REL2C objective is
captured in the EUM problem formulation or appropriated any weight in the a priori
definition of utility. Unless explicitly represented in a multi-objective problem formulation,
this trade-off would remain hidden, presenting a case of myopia.

Increasing the number of objectives visualized to cover the full four-objective formulation
(Fig. 1c) clarifies the trade-offs that emerge when moving away from the extreme solutions
that optimize each individual preference perspective. The primary axes in this visualization are
the REL2C, DAM, and ABATE objectives while the color gradient represents the EUM
objective. The optimal single-objective solutions for the DAM (orange box) and ABATE
(cyan box) objectives occupy the extreme ends of the newly introduced visualized trade-offs.
While each of these boxes represents an optimal solution for a single objective, they do not
provide a compromise over preferences. In a decision-making scenario, the decision makers
would either be implicitly (e.g., Fig. 1a) or explicitly (e.g., Fig. 1c) trading off performance
among the objectives (Herman et al. 2014). The four-objective visual trade-off analysis
provides a richer context for explicitly selecting and understanding compromise climate
mitigation solutions. As an illustration of potential compromises, we have selected two
solutions as if decision makers selected them for further discussion (Fig. 1c, purple and
cyan circles). Although these solutions do not represent actual real-world elicited choices,
they are helpful in illustrating how explicit trade-off analyses can aid in understanding the
implications of negotiated compromises.

Climatic Change (2016) 134:713–723 715



Intermediate or compromise solutions chosen from the trade-off curve may provide
satisficing outcomes across all stakeholder preferences whereas the single objective optimal
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Fig. 1 DICE problem formulation expansion. We expand the DICE problem formulation from (A) single-
objective EUM to (B) a two-objective formulation trading off between EUM and REL2C and finally to (C) the
four-objective problem formulation that includes ABATE and DAM. Squares represent the optimal solution for
each of the single objectives and circles are illustrative compromise solutions. Arrows indicate the preferred
direction of the associated objective (i.e., increasing reliability of temperature stabilization or decreasing total
damages)
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solutions often represent extreme perspectives (Simon 1955; Yohe 2009) (Fig. 2). The EUM
solution (purple solid line in Fig. 2) prioritizes a balance between abatement costs and climate
damages, but at the expense of reliably achieving temperature stabilization. In fact, the
application of the discount rate in the DICE model influences the EUM solution to prefer
present day consumption over avoiding the discounted effects of future climate damages,
resulting in a climate risk management strategy that most closely mimics a sole focus on
abatement cost (see the cyan ABATE solution in Fig. 2). The steep slopes between objectives
in Fig. 2 indicate a strong trade-offs across objective pairs and highlight that finding a single
ideal solution that is optimal across all stakeholder preferences is impossible in the considered
model. The 4-objective tradeoffs provide a richer context for understanding potential climate
risk management compromises as well as their implications (Fig. 2, dashed lines). For
example, the cyan compromise solution demonstrates how increasing the reliability of stabi-
lizing atmospheric temperatures drastically decreases future climate damages by increasing
abatement investments to a level that yields a relatively modest reduction in global growth
equivalent (i.e., EUM).

More broadly, the climate risk mitigation solutions highlighted in our analysis (Fig. 2)
provide important insights with regard to the dependency of reliable stabilization on an
immediate, and sustained increase in global abatement efforts. The EUM solution results in
a relatively slow increase in abatement over time (purple line, Fig. 3). The exact numerical
results are, of course, subject to many caveats (discussed below). Nonetheless, the general
results highlight an important concept. The EUM solution commits us to a path with
potentially irreversible consequences. For example, the relatively limited action in the EUM
solution would render other important objectives, such as REL2C, unachievable (Figs. 2 and
3). When accounting for policy inertia (Grübler et al. 1999; Keller et al. 2008), the high levels
of performance for DAM and REL2C available in the unconstrained formulation are already
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Fig. 2 Parallel axis plot of the four single-objective optimal solutions and two compromise solutions. Each line
represents how a single solution performs in each of the objectives. The arrow on the left indicates the direction
of preference. The ideal solution would be one that produces a straight line across the top of the plot. Lines that
slope between objectives indicate a conflict between the objectives such that in order to perform well in one
objective, the solution must deteriorate in one or more other objectives. Solid lines with square points represent
the optimal single-objective solutions (EUM – purple, REL2C – green, ABATE – cyan, DAM – orange). Dashed
lines with circle points are the illustrative compromise solutions. The ranges of values achieved for each objective
in the multi-objective analysis are provided along the top and bottom of the plot
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infeasible (Fig. 4). The myopia of present climate-negotiations is effectively removing stake-
holders from the decision, which highlights the need for broadening the dialogue on the ethics
of climate risk management decisions.
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Fig. 3 Optimal and compromise abatement strategies. Abatement strategies associated with the four single-
objective optimal solutions (solid lines with boxes: EUM – purple, REL2C – green, ABATE – cyan, DAM –
orange) and two illustrative compromise solutions (dashed lines with circles). The abatement strategy is
expressed as an emissions control rate of greenhouse gases where 100% abatement means a complete reduction
of emissions. The time-horizon for the analysis is year 2300, but results are shown out to the end of this century
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Fig. 4 Effects of policy inertia on the four-objective Pareto-optimal solution set. Akin to Fig. 1c, the squares
represent the single objective optimal solutions and the circle represents the illustrative compromise solution. The
brushed solutions are those from the unconstrained problem formulation, while the opaque solutions are those
from the formulation with a 20% per-five-year control policy constraint. The control policy inertia constraint is
generous relative to those published in the literature (Grübler et al. 1999; Keller et al. 2008), yet the REL2C and
DAM optimal solutions from Fig. 1c are infeasible under this constraint. A more strict inertia constraint would
remove even more solutions, making it difficult to find satisficing solutions across stakeholders’ preferences
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Our results use a simple and transparent model to illustrate the power of a multi-objective
problem formulation for understanding the implicit choices and trade-offs that are embedded in the
standard EUM approach to analyzing climate-change risk management decisions. This simplicity,
however, results in several caveats. For example, the DICE model considers only globally
aggregated outcomes and is thus silent on critical questions surrounding intragenerational justice
(Rawls 2001). Furthermore, our analysis considers a rather shallow sample of the deep uncertainties
(e.g., Butler et al. 2014, Hall et al. 2012). As a last example, our considered objective space is a
small subset of the diverse values and objectives relevant to the design of climate change strategies.

Despite these caveats, we show that the standard problem formulation hinges on strong
assumptions about the relevance of stakeholder preferences. Specifically, the standard formulation
is vulnerable to questionable assumptions in how it exploits an a priori-weighted representation of
the potentially conflicting preferences of multiple stakeholders. Explicitly evaluating the
higher-dimensional trade-offs reduces this vulnerability and provides richer contextual support
for choosing negotiated climate risk mitigation strategies. We demonstrate how concessions in
expected utility can lead to large gains in Earth-system related objectives and the externalities of
climate change on vulnerable populations. We also show that committing to an abatement policy
that maximizes global utility could possibly remove relevant stakeholder preferences from the
problem, raising concerns about the ethics of climate-related decision-making. The new formu-
lation can improve the ability of IAMs to provide decision support through an a posteriori
assessment of performance criteria over the Pareto-optimal solution set.

1 Methods

1.1 Porting DICE to C/C++

We ported the GAMS version of the DICE 2013R model (DICE2013Rv2_102213_
vanilla_v24b.gms) to C/C++ to more seamlessly integrate with the Borg-MOEA software.We tested
the consistency of our port with the original GAMS code (Online Resource Fig. ESM1) and
found that results from our port are virtually indistinguishable from those of the original
GAMS code for the deterministic optimal solution with default parameters. The ported DICE
model (CDICE2013) along with the coupled DOECLIM climate model (discussed below) are
available at https://github.com/scrim-network/cdice_doeclim.

1.2 Representing key aspects of uncertainty in DICE

We represent a key uncertainty in DICE in order to calculate the expectations and reliabilities
associated with each of the objectives. To do so, we produce 100 samples from a log-normal fit
to a recently published distribution of climate sensitivity (Olson et al. 2012) (μ= 1.098001424,
σ= 0.265206276) using inverse-transform sampling.

To improve the consistency of the model temperature hindcasts with historical temperature
records, we couple the DOECLIM climate model (Kriegler 2005; Goes et al. 2011) to
CDICE2013. DOECLIM is a simple energy-balance model that connects the troposphere
and upper ocean with a diffusive deep-ocean layer. We calibrate the climate sensitivity, ocean
diffusivity, and aerosol forcing parameters in DOECLIM using the National Aeronautics and
Space Administration Goddard Institute for Space Studies (NASA-GISS) atmospheric tem-
perature anomalies and radiative forcing data (Hansen et al. 2010) (Online Resource
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Fig. ESM2) from years 1900 through 2010. We calibrate the parameters by iterating over
values of climate sensitivity while optimizing the ocean diffusivity and aerosol forcing
parameters that minimizes the sum of square residuals between the model results and
NASA-GISS temperature data (Online Resource Fig. ESM3). We acknowledge that using a
Markov-Chain Monte Carlo analysis to obtain the full joint distributions of the three param-
eters would be a more formal and exhaustive calibration, but our approximate method seems
sufficient for the purposes of this study.

A climate sensitivity sample with the calibrated ocean diffusivity and aerosol forcing
parameters represent a single state of the world (SOW). For each SOW, a hindcast of
atmospheric temperature anomalies is produced and used as the initial condition for the
CDICE2013 projections (Online Resource Fig. ESM3). For every evaluation of DICE in the
optimization process, the endogenous variables are recalculated for each state of the world,
producing 100 values or time-series of each endogenous variable.

Coupling DOECLIM to CDICE2013 not only helps maintain the relationship among model
parameters throughout the SOW sampling process, but shows that a better understanding of
the science while using past (hindcast) information pushes the Pareto-optimal solution set
closer to the ideal solution point (Online Resource Fig. ESM4). This improvement in objective
space translates to possible additional satisficing solutions in decision space and thus an
improved compromise across the preferences of the stakeholders.

1.3 Defining objectives

We define four objective functions.

EUM ¼ nsow
−1Σi W i ð1Þ

REL2C ¼ nsow
−1Σi maxt TAT ;t

� �
≤2:0

� �
i ð2Þ

ABATE ¼ nsow
−1ΣiΣt Λt;i 1þ rit;i

� �−t ð3Þ

DAM ¼ nsow
−1ΣiΣt Ωt;i 1þ rit;i

� �−t ð4Þ

Where nSOW is the number of SOW and i is an index over each SOW. The EUM
objective is similar to that defined in the original DICE model, except that we
calculate the expectation of utility over the states of the world previously described.
The REL2C objective is the fraction of SOW where the maximum deviation in
atmospheric temperature (TAT) at any time in the model projection t remains at or
below 2.0 degrees Celsius. The expression maxt (TAT,t) ≤ 2.0 produces one if true or
zero if false for SOW i. The ABATE and DAM objectives are the expectations over
the SOW of the net-present value of the abatement costs (Λ) and climate damages
(Ω), respectively, summed over time. The variable ri is the real interest rate calculated
endogenously within the model and is a function of time t and SOW i. The EUM
(Eq. 1) and REL2C (Eq. 2) objectives are maximized while the ABATE (Eq. 3) and
DAM (Eq. 4) objectives are minimized.
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1.4 Optimization

We use the Borg Multi-Objective Evolutionary Algorithm (Borg-MOEA) to search for the
complex Pareto surface generated by the four-objective functions used in our problem
formulation (Hadka and Reed 2012a). Borg-MOEA is an advanced evolutionary optimization
algorithm and has been shown to be one of the most powerful optimization algorithms to date
(Hadka and Reed 2012b; Woodruff et al. 2013). We chose Borg-MOEA as our optimization
algorithm for its efficiency and reliability in finding the complex four-dimensional Pareto
surface associated with our problem formulation.

The algorithm uses ε-dominance (Laumanns et al. 2002) as a means of numerical
precision in objective space. We use epsilon values of 0.1, 0.01, 0.05, and 0.05 for the
EUM, REL2C, ABATE, and DAM objectives respectively. This yields 2914 solutions (2251
solutions in the inertia constrained formulation) that create the four-dimensional
Pareto-optimal surface.

We define convergence to the Pareto-optimal surface through the use of the Borg-MOEA
operator selection probabilities and Pareto-improvements during the optimization (Online
Resource Fig. ESM5, ESM6). Borg-MOEA uses a combination of operators that select the
next potential solutions to be tested. Once the uniform mutation operator (UM) takes over the
solution proposition process (i.e. high probability) and the Pareto-improvement rate drops to
1% or less of the size of the solution set, additional optimization time would yield only
marginal gains in solution quality.
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