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Abstract Water scarcity is critical in both Portugal and Spain; therefore, assessing future
changes in rainfall for this region is vital. We analyse rainfall projections from climate models
in the CMIP5 ensemble for the transnational basins of the Douro, Tagus and Guadiana with the
aim of estimating future impacts on water resources. Two downscaling methods (change factor
and a variation of empirical quantile mapping) and two ways of analysing future rainfall
changes (differences between 30 years periods and trends in transient rainfall) are used. For the
2050s, most models project a reduction in rainfall for all months and for both methods, but
there is significant spread between models. Almost all significant seasonal trends identified
from 1961 to 2100 are negative. For annual rainfall, only 3 (2) models show no significant
trends for the Douro/Tagus (Guadiana), while the rest show negative trends up to −6 % per
decade. Reductions in rainfall are projected for spring and autumn by almost all models, both
downscaling methods and both ways of analysing changes. This increases the confidence in
the projection of the lengthening of the dry season which could have serious impacts for
agriculture, water supply and forest fires in the region. A considerable part of the climate
model disagreement in the projection of future rainfall changes for the 2050s is shown to be
due to the use of 30 year intervals, leading to the conclusion that such intervals are too short to
be used under conditions of high inter-annual variability as found in the Iberian Peninsula.

1 Introduction

Water scarcity is critical in both Portugal and Spain due to the spatial and seasonal distribution
of rainfall and its large interannual variability (Trigo and DaCamara 2000; Goodess and Jones
2002; Rodrigo and Trigo 2007; González-Hidalgo et al. 2010; Guerreiro et al. 2014).
Therefore quantifying future changes in rainfall for this region is of vital importance. In this
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paper we assess changes in rainfall projected by the latest generation of Atmosphere-Ocean
General Circulation Models (GCMs) in the main international Iberian rivers (the Douro, the
Tagus and the Guadiana).

Few studies exist concerning future rainfall in these basins; Kilsby et al. (2007) looked at
the hydrological impacts of climate change on the Tagus and the Guadiana basins for 2070–
2100 under the SRES A2 scenario. They used one RCM (HadRM3H driven by HadCM3) and
two downscaling techniques: monthly bias correction and a circulation pattern (CP) based
stochastic rainfall model. Year-round rainfall decreases were projected, with annual mean
changes in rainfall for the Guadiana of −30.5 % (bias correction) and −15.1 % (CP) and for the
Tagus −24.3 and −11.5 %. Ekström et al. (2007) estimated the uncertainty of projections for
the combined area of the Tagus and Guadiana basins using climate model results available
from PRUDENCE (http://prudence.dmi.dk/). Annual precipitation changes between control
(1961–1990) and future (2070–2099) were between −42 % and +2 % (1st and 99th percentile).
A seasonal analysis showed a wide range of projections for the winter (between −19 % and +
22 %) and decreases in rainfall for all models for other seasons: −62 to −18 % for MAM, −83
to −2 % for JJA and −46 to −3 % for SON (Hingray et al. 2007).

Looking at the wider region, both Portugal and Spain have performed national studies of
climate change impacts (Santos et al. 2002; Brunet et al. 2009) based on GCMs from the third
phase of the Climate Model Intercomparison Project (CMIP3). The studies use different
methodologies for selection and downscaling the GCMs, but both found significant disagree-
ment between models and a wide range of projections for rainfall.

Several studies have examined the Mediterranean area which includes the Iberian
Peninsula, for example, Hertig and Jacobeit (2008). using statistical downscaling applied to
seven GCM runs (SRES-A2 scenario), projected an increase in winter precipitation and a
decrease in autumn and spring precipitation for the western and northern Mediterranean
regions (2071–2100 compared to 1990–2019). Giorgi and Lionello (2008) analysed climate
projections for the Mediterranean region using GCMs from CMIP3, RCMs from PRUDENCE
and a 20 km resolution model. They found that climate projections from different model
resolutions were broadly consistent, despite the higher resolution models showing orographic-
induced rainfall patterns, which were absent in GCMs. The results showed a general drying
and a pronounced warming, especially in summer, associated with a northward shift of the
Atlantic storm-track. Inter-annual variability also increases, leading to periods of extreme heat
and drought. They concluded that the changes were robust across time-periods and different
emission scenarios; however, since multi-model means were analysed no assessment of the
range of uncertainty was performed.

A new generation of GCMs are now available from CMIP5. Nevertheless, due to their
coarse resolution, and inability to resolve significant sub-grid scale features, GCM outputs
have to be downscaled to assess local/regional impacts of climate change (Fowler et al. 2007).
Several downscaling techniques exist but they can be grouped into two main methods:
dynamical and statistical.

Dynamical downscaling consists of embedding a regional climate model (RCM) or a
limited-area model within a GCM (Fowler et al. 2007). RCMs show an improvement in the
description of orographic effects, land-sea contrast, land surface characteristics and mesoscale
circulation patterns (Maraun et al. 2010). However, they are extremely computationally
intensive which limits the number of runs available and they inherit biases from the driving
GCM (Fowler et al. 2007). RCMs also tend to show a wet (dry) bias in dry (wet) months and a
warm bias in hot and dry regions (Maraun et al. 2010). Bias correction, based on empirical
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statistical relationships between model outputs and observations, has been used to transform
the statistical properties of the modelled data (from an RCM or a GCM) to match the observed
data. This assumes that this correction remains valid for future climate conditions (Boé et al.
2009).

Statistical downscaling is based on the establishment of empirical relationships between
output variables from GCMs or RCMs and observed variables of the local climate. The
simplest statistical downscaling method is the change-factor (CF), perturbation or delta-
change approach where the mean change between control and future GCM outputs is applied
to observations. Its simplicity makes it possible to downscale several GCM/scenarios quickly
but this method assumes that the GCM bias is constant in time and that variability and spatial
patterns of climate will remain the same (Fowler et al. 2007). The CF method cannot be used
to simulate transient changes in climate as the mean changes are calculated for specific time
slices. Also, it can introduce a step change when applying different monthly change factors to
the data. However it preserves spatial correlations between stations or grid points, which some
complex statistical methods are not able to. The CF method is not suitable for the study of
extreme events but might be appropriate for studies where changes in average values are
relevant such as regional water resources studies (Sunyer et al. 2010).

Both statistical and dynamical downscaling methods inherit GCM circulation errors such as
the insufficient number of blocking events over Europe which can cause drought and heat
waves in the summer (Maraun et al. 2010). Therefore, it can be preferable to use a simple
statistical method to downscale a large ensemble of GCMs in order to characterize the
envelope of uncertainty than dynamically downscale a single or a few GCMs (Boé et al.
2009). In this study, simple downscaling methods were applied to the most recent ensemble of
GCMs, CMIP5.

Questions remain on how to use downscaled outputs of multi-model ensembles in impact
studies. Averaging across models is widely used but is hard to interpret and defend (Knutti
et al. 2010a) and may produce physically implausible results (Knutti 2010). Choosing one, or
only a small subset of climate models, based on similarity to observations for the variable of
study is also very common, and was the methodology used in the Portuguese national study
(Santos et al. 2002). However, producing similar conditions to those observed for a particular
parameter, time interval or region does not mean that the relevant atmospheric physics are well
simulated. Furthermore, since a general all-purpose metric to evaluate climate models has not
been found and different metrics produce different rankings of models, excluding or weighting
models might lead to overconfidence in projections and unjustified convergence (Knutti et al.
2010a). Another commonly used methodology is to build a probability density function (PDF)
of change from the model ensemble. However, this assumes that models are independent,
distributed around a Bperfect model^ and adequately sample the range of uncertainty (Knutti
2008). CMIP models are not independent, therefore model agreement might not be an
indication of likelihood but a consequence of shared process representation and/or calibration
on particular datasets (Knutti et al. 2010a). Also the sampling of models is not random or
systematic (Knutti 2010).

On the other hand, choosing a few models representative of the range of climate model
outputs from CMIP5 allows for assessment of the uncertainties associated with the projections
and permits assessment of different adaptation strategies for different possible futures leading
to robust adaptation. Nonetheless, one has to consider that extreme ends of the plausible range
might not be sampled and that the chosen outcomes might be perceived as equally probable
(Knutti et al. 2010b).
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In this paper, we present a range of GCM projections of rainfall for the Douro, the Tagus and
the Guadiana. This is part of a wider study which analysed historical rainfall records (Guerreiro
et al. 2014) as well as future drought and discharge for the three basins. Therefore the selection
of climate models to analyse was made using both rainfall and temperature changes, despite
only rainfall results being shown here. The paper is organized as follows. In section 2 we
present the datasets used, followed by the methodology in section 3, including climate model
selection and downscaling methods used. Section 4 presents the results and discussion (2050s
projections and transient analysis) and the conclusions are presented in section 5. Additional
tables and plots are presented in the Electronic Supplementary Material – ESM.

2 Data

A gridded daily rainfall dataset for Iberia - IB02 - was used. This was produced by merging
two datasets, a Portuguese dataset: PT02 (Belo-Pereira et al. 2011) and a Spanish dataset:
Spain02 (Herrera et al. 2012). Both datasets have a resolution of 0.2° ×0.2° (see Fig. 1) and
use ordinary kriging based on a dense network of quality-controlled gauges (2000 in Spain and
400 in Portugal). The IB02 dataset covers the period from 1950 to 2003.

Monthly rainfall outputs from CMIP5 models for RCP8.5 (1861–2100) were downloaded
from http://climexp.knmi.nl where outputs are available regridded to a common grid (2.5°).
Sanderson et al. (2011) showed that RCP8.5 is similar to SRES A1FI and, although these are
the highest emission scenarios considered by IPCC, they still assume emissions well below
what the current energy mix would produce in the future. Therefore the lower RCPs were not
considered in this study.

At the time of download (June 2012) 65 model runs were available with the required
variables (see Table 1 in the ESM). Four GCM grids were chosen (see Fig. 1) to cover as much
of the basins as possible but without incorporating grids that contained ocean (since that could
bias the values of the grid’s spatial mean). 15 model runs were selected to assess future
changes in mean monthly rainfall (see Table 2 of the ESM).

Fig. 1 Map of southwestern
Europe with the grid points for
IB02 (gridded observed rainfall
data: grey) and the CMIP5 grid
cells (red) used in this study. The
three studied basins are also
outlined in blue
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3 Methodology

3.1 Climate model selection

Although only rainfall is assessed here, the selection of climate models reflects the aims of the
wider study focusing on future water resources in the Douro, Tagus and Guadiana basins. The
study aimed to examine the range of possible futures projected by the latest generation of
climate models (CMIP5). In view of the complexity of rainfall generation mechanisms in
Iberia, and the CMIP5 models’ systematic biases affecting the number and intensity of North
Atlantic cyclones (Zappa et al. 2013) it is not realistic to expect a full physically coherent set of
climate projections. Our approach here is to use a representative spread of projections to cover
possible future conditions.

Since future drought and river discharge were also assessed in the wider study (which
meant running a physically-based hydrological model) there was the need to select a subset of
the 64 GCM runs available from CMIP5. The pragmatic decision was taken to select the
smallest possible number of models that allowed the full uncertainty space for mean temper-
ature and rainfall changes to be captured (across the four GCM grid cells and four seasons).
Both rainfall and temperature changes were taken into account as temperature is then used to
estimate potential evapotranspiration.

We analyse change for the 2041–2070 period (hereafter referred to as the 2050s)
compared to the baseline period 1961–1990. The choice of future period to analyse is
always subjective, but we considered the 2050s as a relevant time-frame for water
resources planning.

Since only two variables were of interest, the selection was made by plotting changes in
mean temperature and rainfall for the four seasons and the four GCM grid cells (see Figure 1 of
the ESM) and selecting model runs that covered the full uncertainty space (shown in Figure 2
of the ESM): this resulted in a selection of 15 model runs (Table 2 of the ESM). We did not
attempt to represent the statistics of the CMIP5 ensemble but the full range of projected
futures. By choosing enough models to cover the uncertainty space (available from CMIP5
model runs for RCP8.5) and by not assigning probabilities to any of the models, we hope to
provide useful and transparent plausible future scenarios that can be used by others to test an
array of adaptation alternatives, as suggested by Knutti et al. (2010b).

CMIP5 model performance in reproducing historical rainfall statistics was assessed by
comparing the mean monthly rainfall and coefficient of variation (CV) between CMIP5
outputs and gridded observed rainfall (IB02) spatially aggregated to the CMIP5 grids for
1950–2003 (see Fig. 2 for plots of grids 1 and 2). In most cases the observed monthly mean
lies within the range of the model mean monthly outputs. In the northern grid cells (1 and 3)
most models are too wet throughout the year (except for September for grid cell 1), while in the
southern grid cells (2 and 4) most models are too wet in summer. However, most models
underestimate the CVof the observed data in all grid cells. These results point to the need for
bias-correction of the model results before use in impact studies.

3.2 Downscaling methods

Due to the coarse resolution and the biases of GCMs, their outputs have to be downscaled
before impact assessment. To assess uncertainties in downscaling we used two methods:
change-factor and a variation of empirical quantile mapping.
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Fig. 2 Monthly rainfall means and coefficients of variation for spatially aggregated observations (IB02) in red and
all CMIP5model runs in blue for the period 1950 to 2003 (per month and per GCMgrid cell). Error bars (using jack-
knife) of the observed rainfall are also plotted (although not always visible due to the scale of the plots)
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3.2.1 Change factor approach (CF)

For each month of the year and each GCM grid cell, a rainfall change factor was calculated by
dividing the mean future rainfall (2041–2070) by the modelled mean historical rainfall (1961–
1990). The change factors for each month and each GCM grid cell were then applied to the
time series of observed rainfall inside that GCM grid cell for that month.

3.2.2 Modified empirical quantile mapping (MEQM)

Empirical cumulative distribution functions (ECDFs) were calculated for rainfall from each
GCM grid cell and for IB02 (spatially aggregated to the GCM grid cell scale) for the 12 months
for 1961–2003. Then for each GCM simulated rainfall output a corresponding observed value
was found by matching the quantiles. For each month and each GCM, the quantile matching
was used to identify the year of observed data (spatially aggregated monthly IB02) that had the
same quantile as the GCM’s year being downscaled for that month. Subsequently, the corre-
spondent daily spatially distributed IB02 time-series for that year and that month was selected.

For example, let’s imagine that for a specific January, the GCM simulated rainfall is
100 mm. This corresponds to the quantile 0.674 using the ECDF calculated for the rainfall
of that GCM. The quantile 0.674 corresponds to a rainfall value of 110 mm using the ECDF
calculated for the historical rainfall (aggregated IB02). Subsequently, the daily spatially
distributed January historical time-series whose aggregated value was 110 mm was selected.

To retain the spatial correlation of historical rainfall across basins, only one grid cell was used
for the quantile matching. To capture the area that contributes most to the discharge of the basin,
grid cell 1 was used for the Douro and the Tagus and grid cell 2 was used for the Guadiana

One of the shortcomings of quantile matching is that it can only produce events within the
observed historical range. Therefore, rainfall during the future period with higher or lower values
than the observed range was subsequently adjusted using a change factor approach. The largest
number of future years outside the historical range is seen in the summer, with reductions in
rainfall. Across all months, the mean number of years below the 1961–2003 range is 5.9 % for
grid cell 1 and 5.5% for grid cell 2. The number of years above the 1961–2003 range are all below
3% except for December for grid cell 1 which is 5% (see figure 4 in Supplementary information).

4 Results and discussion

4.1 Projected changes in rainfall for the 2050s

Figure 3 shows the relative changes (between 1961–1990 and 2041–2070) inmonthly and annual
rainfall for the Douro, the Tagus and the Guadiana basins for both downscaling methods and for
the 15 GCMs. Due to high inter-annual variability of rainfall in this region, most changes are not
statistically significant. In Table 1 we present the number of models showing significant changes
for individual months between 1961–1990 and 2041–2070 using the Kolmogorov-Smirnov test
at the 0.05 significance level. All significant changes are reductions in rainfall with the exception
of one model in the Douro (model 4 for September) and one in the Tagus (model 14 for January).

Figure 3 shows that both downscaling methods produce similar rainfall projections for the
2050s, although the quantile mapping method tends to show larger inter-model dispersion
which could perhaps be expected since more information is retained from the climate models.
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The large differences in relative changes from the two methods in summer are, in reality, small
differences in absolute terms but amplified by very low rainfall in these months (see Figure 5
in supplementary information for absolute changes).

Most models project a reduction in rainfall in all three basins and for both downscaling
methods. However, inter-model dispersion on a monthly level is very large, with some models
showing increases in rainfall. The projected change in annual rainfall ranges from −33 % to +
7 % for the Douro, from −34 % to +10 % for the Tagus and from −41 % to +10 % for the
Guadiana. Particularly relevant for future water resources management is the reduction in
rainfall projected by almost all models, and both methods, for spring and autumn months.
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Fig. 3 Boxplots of relative changes in mean rainfall (between 1961–1990 and 2041–2070), per month (and
annual), projected by 15 CMIP5 GCMs downscaled using change factor (CF) and the modified empirical
quantile mapping (MEQM) methods for the Douro, Tagus and Guadiana basins. In each boxplot, the boxes
show the interquartile range (IQR), the whiskers show the 1.5 IQR, the band inside shows the median and the
dots show the outliers (points outside the 1.5 IQR)

474 Climatic Change (2016) 135:467–480



Projected monthly decreases are as large as −54 % for the Douro, −56 % for the Tagus and
−60 % for the Guadiana in spring (MAM) and −56 % for the Douro and −58 % for both the
Tagus and the Guadiana in autumn (SON).

Inter-model dispersion on a monthly level is large, with disagreement not only in the
magnitude but also the sign of projected change (see Fig. 3). Since only one greenhouse gas
scenario, RCP8.5, is used, this disagreement must result from either structural uncertainty in
climate model response or from under-sampling arising from natural variability. Deser et al.
(2012) showed that natural variability can contribute significantly to disagreement between
different GCMs even for timescales of more than 50 years, and particularly for regions dominated
by large-scale climate modes. Furthermore, Sokol Jurković and Pasarić (2013) showed that Iberia
has high inter-annual rainfall variability, common in arid and semi-arid regions.

Assuming that climate models can reproduce natural climate variability, the robustness of
using only 30-year time-slices to characterise climate for such regions should be examined. If
30 years is not long enough to characterize the local climate, than looking at differences
between two 30-year periods will not be indicative of long term changes due to climate change
(since the choice of 30-year period affects the results). We have assessed this robustness by
analysing long records of observed rainfall for two representative long-record sites of these
basins. Figure 4 demonstrates the variability in annual rainfall and how the choice of 30-year
period indeed can have a significant influence on the results. Therefore, we argue that a
transient analysis using the entire available record of bias corrected rainfall (1961–2100)
would be more informative since the effects of natural variability can then be separated from
the climate change signal.

4.2 Transient analysis

To assess whether the disagreement between changes projected by different models can be
explained by the selection of a specific 30-year period in the context of natural variability, we
examined long-term annual and seasonal trends for 1961–2100 using the empirical quantile

Table 1 Number of models
showing significant changes in
rainfall between 1961–1990 and
2050s using the Kolmogorov-
Smirnov test at 0.05 significance
level, per basin and per month (an-
nual values also included) for the
two downscaling methods (change
factor and Modified Empirical
Quantile Mapping - MEQM)

Note that all significant changes
are reductions in rainfall

Month Douro Tagus Guadiana

Change
Factor

MEQM Change
Factor

MEQM Change
Factor

MEQM

1 0 2 0 4 0 2

2 0 1 0 1 0 1

3 0 4 0 5 0 3

4 0 3 3 2 1 3

5 4 4 4 5 0 8

6 1 6 1 4 1 5

7 0 5 0 4 0 4

8 0 5 4 5 0 4

9 0 4 1 3 0 1

10 2 4 1 4 1 3

11 0 3 1 3 0 2

12 0 2 0 2 0 5

Annual 0 2 0 2 0 5
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mapping outputs. As the CF method cannot produce transient outputs an inter-comparison of
methods is not possible.

Trend significance was assessed using the Mann-Kendall test at the 5 % level (Mann 1945;
Kendall 1948) with pre-whitening as described in Yue et al. (2002). Trend magnitude was
calculated using linear regression and presented in Table 2 as change per decade calculated as a
percentage of the mean rainfall from 1961 to 2100. Results for annual rainfall for the Douro
basin are shown in Fig. 5. Results for annual rainfall for the Tagus and Guadiana and for
seasonal rainfall for all three basins are shown in Figures 6 to 19 of the ESM.

The results indicate a striking lack of positive trends in mean annual and seasonal rainfall in
the Guadiana basin and the existence of only one (two) positive trends in the Tagus (Douro).
This contrasts with the large range of both positive and negative model projections for mean
rainfall when examining only change between the baseline and a 30 year time-slice for the
2050s, shown in section 3.1.

For annual rainfall, only 3 (2) models show no significant trends for the Douro/Tagus
(Guadiana), the rest showed negative trends up to −5 % (−6 %) for the Douro and the Tagus
(Guadiana). Positive trends (2 % or 3 % per decade) are confined to the winter season (DJF)
and to the Douro (2 models) and the Tagus (1 model). For winter rainfall a few models show
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significant negative trends, especially in the Guadiana (up to −4 % per decade in the Douro
and the Tagus and up to −6 % per decade in the Guadiana) but most show no significant trend.

In spring (MAM) and autumn (SON), most models show negative trends that reach −6 % per
decade in the Douro and −7 % per decade in the Tagus and the Guadiana. This reinforces the
possible problem of dry season lengthening identified in section 3.1. The largest relative changes
are projected for summer (JJA) in all basins but these changes are small in absolute terms.

It is important to keep inmind that these aremean values of change per decade, associated with
the calculation of long term linear trends; they do not imply a steady transition, and are themselves
affected by the start and end point of the time series and the associated point in the natural cycles.

5 Conclusions

This study aims to provide useful and plausible future rainfall scenarios which can be
subsequently used to test adaptation options for water resource management. For that purpose,
we selected sufficient output from climate models to allow the full uncertainty range of
projected changes in mean temperature and mean rainfall from CMIP5 (RCP8.5) to be studied.

Considerable spread was found within the projected changes for mean annual rainfall
(range between +10 % and −40 %), in agreement with both Portuguese and Spanish national
climate change impact studies (Santos et al. 2002; Brunet et al. 2009) and the study by
Ekström et al. (2007) for the Tagus and Guadiana.

Almost all models projected rainfall decreases in spring and autumn for both downscaling
methods (CF and MEQM) that, in the most severe projections, meant a halving of the rainfall
in these months. The projected ranges are similar to those obtained using a previous generation

Table 2 Magnitude of significant trends (at 5 % level and assuming a linear trend) in total rainfall for each basin,
eachmodel, annually and for each season expressed as percentage of change per decade (relative to 1961–2100mean)

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Douro

Annual -4 -3 -2 -1 -2 -1 -5 -4 -4 -2 -4 -3

SON -5 -4 -5 -2 -3 -2 -6 -4 -4 -5 -3 -4 -6

DJF -3 -4 -2 3 -4 2

MAM -3 -4 -2 -3 -3 -6 -2 -6 -4 -2 -2 -3 -4 -4

JJA -4 -3 -7 -4 -5 -6 -5 -4 -7 -5 -9 -7 -4

Tagus

Annual -4 -3 -2 -2 -2 -1 -5 -3 -4 -2 -4 -3

SON -6 -5 -6 -4 -2 -6 -5 -3 -5 -3 -5 -7

DJF -4 -4 3 -4

MAM -4 -4 -3 -3 -3 -7 -2 -6 -4 -2 -2 -2 -4 -3

JJA -4 -4 -8 -4 -5 -4 -6 -5 -6 -5 -9 -6 -4

Guadiana

Annual -5 -3 -3 -1 -2 -2 -1 -6 -5 -5 -3 -4 -4

SON -5 -4 -7 -2 -4 -7 -5 -3 -7 -3 -4 -7

DJF -5 -6 -5 -6 -4

MAM -4 -5 -3 -3 -3 -7 -3 -6 -5 -3 -2 -3 -3 -4

JJA -5 -5 -10 -3 -5 -4 -5 -3 -5 -6 -7 -9 -10 -4
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of climate models (Ekström et al. 2007; Hingray et al. 2007) for the Tagus and Guadiana for
the 2080s.

In addition to assessing changes on 30 year time-slices, transient changes from 1961 to
2100 were investigated. The magnitude of long-term linear trends was calculated for annual
and seasonal quantile-mapped rainfall for each basin. No significant positive trends were
projected in annual rainfall or in any season other than winter in the Douro (two models) and
the Tagus (one model). In spring (MAM) and autumn (SON) the majority of models projected
negative trends that reached −6 % per decade in the Douro and −7 % per decade in the Tagus
and the Guadiana. For annual rainfall, only 3 (2) models show no significant trends for the
Douro/Tagus (Guadiana), the rest showed negative trends up to −5 % (−6 %) for the Douro
and the Tagus (Guadiana).

Consistent reductions in rainfall were projected for spring and autumn by almost all models, both
downscaling methods and both methods of analysing future rainfall changes (time-slice and trend
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analysis). This agreement increases the confidence in the projection of a lengthening of the dry
season in the three basins with serious implications for agriculture, water supply and forest fires.

An important qualification to the likely magnitude of these future changes is revealed by
our comparative analysis using both transients (1961–2100) and limited time-slices (30 year
periods). We have shown that assessing rainfall changes using 30 year time-slices results in
unacceptably large uncertainties. In regimes with large natural, interannual variability, we
show that 30 years is insufficient to characterize the climate due to the large natural multi-
decadal variability which cannot be distinguished from climate change. On the other hand, the
use of longer time-series may make it possible to separate the climate change signal from
natural variability. We recommend, therefore, that more attention is given to using ensembles
of longer period transient climate model simulations rather than fixed time-slices. As well as
enabling the identification of the climate change signal from the natural variability, a further
benefit is that the natural variability can be better quantified and used together with the climate
change signal to inform robust adaptation.
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