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Abstract The paper discusses long-term change in snowfall, rainfall and mixed
precipitation viewed in conjunction with air temperature and North Atlantic
Oscillation (NAO) in winter (December–February). In the study of contemporary
climate change and its effect on the hydrological cycle it is useful to focus on winter
precipitation forms. A 146-year secular observation series from Kraków, spanning the
period 1863–2008, was used to extract data on the number of days with precipitation
and on precipitation amount broken down by form. Statistically significant trends were
found in total and mixed precipitation, but not in snowfall and rainfall. The climate
warming effect has contributed to a material decrease in the snowfall to total winter
precipitation ratio during the second half of the 20th c. The highest impact of air
temperature was found in the wintertime variation in number of days with snowfall
while the NAO had a significant influence on the frequency and amount of both
rainfall and snowfall.
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1 Introduction

Studies of contemporary climate change show a strong air temperature increase in recent
years. According to the latest report of the Intergovernmental Panel on Climate Change
(IPCC 2007) the mean global temperature rose by 0.74°C between 1906 and 2005. It is not
so clear, however, what change has occurred in precipitation since this involves a high
degree of temporal and spatial variability. This makes any attempt to link it to the global
warming phenomenon more complicated.

In Poland the increase in air temperature observed during the second half of the 20th
century was accompanied by a decline in annual precipitation totals in lowland areas
(Kożuchowski and Żmudzka 2003; Kossowska-Cezak 2009). Projections for Poland
derived from the HadCM2 GS climate model involve greater precipitation, especially in
winter (Kożuchowski 2004). Potential benefits or drawbacks of the estimated increase in
precipitation will depend on the form of that precipitation and on its intensity. A similar
question was posed by H. Ye (2008) with relation to the predicted change in precipitation at
high latitudes.

In winter, snowfall frequency might be expected to diminish at the expense of
rainfall as temperature increases. This proposition may be overly simplistic however.
Indeed, regardless of its form (liquid and/or solid) and type (such as thunderstorm
precipitation, hailstorm or solidifying precipitation, Twardosz et al. 2011), precipitation
depends not only on temperature, but also on the water vapour content in the air and on
the topography. H. Ye (2008) aptly pointed out that the complexity of the climate
system and the feedback loops involved make it quite difficult to understand
dependencies between the type of precipitation and its frequency, especially at high
latitudes where the air temperatures in wintertime often remain below freezing point.
For this reason research on wintertime precipitation types in moderate and high
latitudes is highly significant in the study of contemporary climate change. One
example is snowfall, which is regarded as a good indicator for the detection and
monitoring of climate change at the global and regional scale (Namias 1985; Jaagus
1997; Hantel et al. 2000; Huntington et al. 2004).

Snowfall research also has a practical aspect related to road and air traffic problems
caused by this form of precipitation. At temperatures below 0°C solid precipitation leads to
a build-up of snow cover, a natural form of water retention. A number of hazardous
phenomena are linked to snow cover, such as flash floods or large-scale flooding caused by
rapid thaw.

The form and type of precipitation represent a wealth of knowledge about the climate
and its changes, but these data are rarely used in climatological research. The reason is that
it is notoriously difficult to categorise precipitation forms as this demands the kind of
information about weather phenomena that can only be accurately obtained from round the
clock visual observations. In Central Europe few meteorological stations offer this
kind of long-term record (Hohenpeissenberg in Germany since 1792, Warsaw since
1803, Prague-Klementinum since 1804 or Kremsmünster in Austria since 1820), and
Kraków is among these rare places.

In Kraków weather observations started in 1792 and were conducted by astronomers
until recently, when they were replaced by professional meteorologists (Twardosz and
Cebulska 2010). The record provides an unbroken homogeneous string of quality data on
daily precipitation, both numeric and descriptive, since 1863 (Twardosz and Niedźwiedź
2001). Homogeneity of the monthly and annual totals was verified and tested in earlier
studies (Niedźwiedź et al. 2009, Twardosz et al. 2010) and was identified at the confidence
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level of 0.05. Only for freezing precipitation (rain or drizzle) reliable data is available from
1920 onwards (Twardosz et al 2011). Precipitation fluctuations in Kraków have been shown
(Niedźwiedź et al. 2009, Twardosz et al. 2010) to be representative for larger region of
Central Europe.

This study is concerned with long-term change in wintertime precipitation in terms of
the whole season and individual months (December–February). Overall precipitation was
stratified into snowfall, rainfall and mixed precipitation, and was linked with air
temperature and the North Atlantic Oscillation. The global warming effect, observed
during the last few decades, raises the question whether the air temperature increase is
indeed followed by changes in the frequency and amount of precipitation of different forms,
and what role the NAO plays in this development.

2 Data and methods

The study involved the 146-year (1863–2008) observation data series from Kraków, a city
located north of the Carpathian Mountains that, together with the Sudeten Mountains, forms
a strong climatic barrier dividing Central Europe into two parts (Fig. 1). Kraków receives
approximately 10% more precipitation than other southern Polish stations (Niedźwiedź et
al. 2009), but in long-term changes it well represents the large part of Central Europe.

Observations of atmospheric precipitation started in Kraków when a weather station was
established in 1792. Until the mid-19th century, observations were limited to the visual
method and noted just the presence and the form of precipitation. The era of instrumental
measurements of precipitation amount in Kraków began in August 1849.

This has continued ever since, leaving a continuous record, which—uniquely in Central
Europe—remained unbroken even during wars. Daily precipitation totals are available from
1863, which is the first year when the measurements can be brought in line with the
contemporary precipitation day standard adopted by the Polish weather service, i.e. from
6:00 am to 6:00 pm UTC (Twardosz and Cebulska 2010). The homogenisation of the
precipitation observation timing was possible due to a large amount of archive
metadata available. Until 1921, measurements were taken three times a day, in the
morning, in the afternoon and evening, after which the number of measurements
recorded was reduced to just the morning round. Until 1891, observations were
scheduled in local time, which was subsequently replaced with the Central European

Fig. 1 Kraków on a map of
Central Europe
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Time (a difference of 20 min). Ever since the establishment of the station, the
observations were performed by qualified observers, which is a guarantee of high
reliability. Astronomers, who were responsible for the observation during most of that
period, were replaced by meteorologists in 1950.

In the 19th century, early pluviometers were replaced with the Hellmann system
pluviometers that had smaller catchment surfaces (Twardosz and Cebulska 2010). To bring
these measurements to a common denominator daily totals were converted into the area of
200 cm2. This means that the change of the measurement apparatus does not affect the
uniformity of the measurement record (Twardosz 1997, 2005).

Totals of daily precipitation (≥0.1 mm) and a description of its form were taken into
account to define days with snowfall, rainfall and with mixed precipitation for the whole of
the winter season and for its individual months (December, January and February). Days
with liquid precipitation were defined as days with only rain or drizzle. Mixed precipitation
days include days with sleet, as well as with separate instances of snowfall and rain on the
same day. Days with snowfall are equivalent to days with solid precipitation (including
snow in various forms, diamond dust, snow crystals, snow grains, ice pellets), except hail,
which does not occur in winter. Two characteristics were taken into account, i.e. the number
of days with precipitation and the amount, stratified into forms. The various days were
coded as follows:

First letter: P for amount, N for number of days;
Second letter: L for liquid precipitation, M for mixed, S for snowfall and T for total
precipitation (L+M+S),
Third letter denotes individual months: December, January or February (D, J, F).

For example, PS would mean the amount of snowfall in winter, while NSD would mean
the number of days with snowfall in December.

A single letter T denotes mean winter temperature.
We also used the North Atlantic Oscillation (NAO) Index, the most important macro

scale index for the European climate, defined by J.W. Hurrell (1995) as the normalized
pressure difference between a station on the Azores and one on Iceland. We applied an
extended version of the index based on the normalised pressure difference between
Gibraltar and Reykjavik (Jones et al. 1997), updated on the Climate Research Unit website
(http://www.cru.uea.ac.uk/cru/data/nao.htm).

A linear trend was fitted to the precipitation characteristics. The statistical significances
of trend in air temperature and precipitation characteristics in the study period were also
determined using the Mann-Kendall test.

Pearson’s elementary correlation coefficient was applied to determine a statistical
relationship between the precipitation characteristics on the one hand and the air
temperature and NAO on the other (von Storch and Zwiers 1999). Principal Components
Analysis (PCA) was the method employed to analyse dependencies between the
precipitation characteristics, while temperature and time (i.e. the year) were included as
additional variables.

The question of trends over time has also been approached by using a standard
procedure of feature, i.e. variable, selection (Goyon and Elisseeff 2003) (using Statistica
v.9). The method is used to search for variables (among many available) that are
capable of explaining a given dependent variable. Such independent variables are
sorted according to their predictive power and the top-ones then are included in
further calculations. In trend investigation, however, we have applied an approach that
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may be considered the reverse of a typical one. Time was adopted as the dependent
variable, i.e. the variable to be explained by other variables. While time is by no
means dependent on the amount of snowfall etc., numerically the procedure is correct.
The feature selection procedure involves seeking variables capable of explaining the
time elapsing, i.e. those exhibiting the trend.

3 Results and discussion

3.1 Number of days and precipitation totals in winter

In winter, precipitation is recorded on 45 days per year on average in Kraków
(Table 1), which means that the probability of a day with precipitation is ca. 50%.
Snowfall represented the largest precipitation group and accounted for just under 50% of
days with precipitation in winter (more than 50% in January). There is a built-up area
effect involved resulting from the city-centre location of the weather station which means
that the average number of days with snowfall is 10 days lower than in out-of-town
locations (Twardosz 2002–2003). This effect is, however, smaller than the effect of
orography and atmospheric circulation (Twardosz 2007). Cyclonic circulation from the
northeastern sector is known to be the most favourable for snowfall in southern Poland
(Twardosz et al. 2010). Rainfall is the second most frequent precipitation forms after
snow and it accounts for 31% of days with precipitation in winter on average. Winter
rainfall is linked primarily with cyclonic situations with an advection of warm polar-
maritime air masses from the southwestern sector and with the passing of warm fronts
(Twardosz et al. 2010, 2011).

Mixed precipitation was the least frequent form with approximately 19% of all days with
precipitation. This form reflects a great variability of weather conditions over Poland that
manifests itself in a frequent alternation of warm and cool air masses.

The winter precipitation total is nearly 100 mm (Table 1) and this contributes 14.5%
±0.4% of the annual total, which is less than any other season. Nevertheless, winter
precipitation is very significant for wildlife, climate and hydrology. This is particularly
true of snowfall, which, given appropriate conditions, leads to the development of snow
cover that is a form of natural retention of water released later during springtime thaws.
Statistical characteristics of the number of wet days and precipitation totals are presented
in Table 2.

Snowfall totals are weakly correlated between adjacent months (r=0.15 Jan–Feb, r=
0.16 Dec–Jan). As might have been expected, there is no correlation between

Table 1 Average number of wet days ≥0.1 mm (N) and average precipitation amounts (P) by precipitation
form in Kraków (1863–2008) with standard error of the mean

Precipitation form Dec. Jan. Feb. Winter Dec. Jan. Feb. Winter

Average number of wet days (N) Average precipitation amounts (P, mm)

Liquid (L) 6.0±0.3 4.2±0.3 3.9±0.3 14.1±0.5 13.7±1.1 9.4±0.8 8.2±0.8 31.3±1.7

Mixed (M) 3.1±0.2 2.9±0.2 2.7±0.2 8.7±0.3 10.3±0.8 9.7±0.8 8.9±0.7 29.0±1.4

Snowfall (S) 6.2±0.3 7.8±0.4 6.8±0.4 20.9±0.7 11.6±0.9 12.8±0.9 11.7±1.0 37.2±1.8

Total (T)a 15.9±0.4 15.3±0.4 13.8±0.4 45.0±0.7 36.3±1.5 32.1±1.4 29.5±1.4 98.1±2.5

a All days with precipitation, including other precipitation types not included in this study
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precipitation in February and December (r=0.04). A similar correlation is found in terms
of the number of days with snowfall and it becomes even weaker with the other
precipitation forms.

Figure 2 shows long-term changes of the precipitation characteristics in question. It is
worth noting that the totals of all precipitation forms are strongly (positively) correlated
with the number of days with precipitation (r=0.75 on average).

Fig. 2 Comparison of the eight precipitation variables. Precipitation (P) and the number of days (N) are
given as pairs for Total precipitation as well as for each given form of precipitation (Liquid, Mixed, and
Snow). Smooth curves are obtained by Gaussian filtering with σ=2 year. The vertical scales are omitted for
clarity, averages and standard deviations of the characteristics, see Tables 1 and 2

Table 2 Statistical characteristics of the number of wet days (N) and precipitation amounts (P) by
precipitation form in Kraków (1863–2008): standard deviation (first value) and skewness (second value, the
standard error of skewness is 0.2)

Precipitation form Dec. Jan. Feb. Winter Dec. Jan. Feb. Winter

Number of wet days (N) Precipitation amounts (P, mm)

Liquid (L) 4.0 0.5 3.1 0.8 3.1 0.6 6.5 0.6 12.7 1.4 9.0 1.7 9.7 2.1 20.0 1.2

Mixed (M) 2.2 1.1 2.0 0.5 2.0 0.7 3.8 0.2 9.9 1.4 9.5 1.2 8.4 1.1 16.8 0.6

Snowfall (S) 3.9 0.8 4.5 0.9 4.4 0.6 8.4 0.5 11.9 1.9 10.2 0.9 10.7 1.8 21.1 0.8

Total (T) 4.4 −0.2 4.6 0.3 4.6 −0.2 8.3 −0.2 17.5 0.6 16.8 0.9 16.6 1.4 29.4 0.5
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3.2 Changes in precipitation in relation to air temperature

The observed increase in average winter temperature in Kraków was accompanied by a
statistically significant increase in the frequency and amount of total precipitation (Table 3).
Despite similarities between these trends, the correlation between temperature and
precipitation characteristics was weak at less than 0.2. Mixed precipitation also followed
statistically significant trends, but no such trends were found in snowfall and rainfall, either
during the entire season or in individual months. With respect to snowfall the findings are
corroborated by published research that finds no significant trends in snowfall in various
other areas at moderate latitudes (Laternser and Schneebeli 2003; Ke et al. 2009).

The question of time trend has also been approached by the standard procedure of feature
selection as mentioned in the Data and methods section. The result is given in Table 4. The
eleven variables (including temperature) are found to be significant “predictors” of time. The
number of days with mixed precipitation is the best predictor, followed by temperature. This
result, including also the less significant predictors, is in good agreement with the result of
regression (on time), as well as with the Mann-Kendall test for trend (Table 5).

Figure 3 shows a dependency of the number of days with snowfall on average winter
temperature. The correlation is negative, which means that as temperature increases the
frequency of snowfall decreases. Specifically an increase of the average winter temperature
by 1°C corresponds to a drop in the number of days with snowfall by 2.4 (the last item in
Table 3). Temperature change accounted for much (42% of variance) of the variability in
the number of days with snowfall.

According to that trend, for an average winter temperature that can go as high as 7.5°C
the expected number of days with snowfall is nil (the 95% confidence interval for the
temperature is from 6.0°C to 9.5°C).

The temperature increase also influenced the duration of the snow cover. M. Hantel et al.
(2000) concluded that a temperature increase by 1°C would reduce the duration of snow
cover in the Austrian Alps by approximately four weeks. Changes in air temperature clearly
have a greater impact on the frequency than the amount of snowfall, as demonstrated by the
42% of frequency variance mentioned above (Table 3).

As shown by R.E. Davis et al. (1999) and T.R. Karl et al. (1993) snowfall amount
may follow either a positive or negative correlation with temperature. Both studies

Table 3 Time trend of precipitation characteristics as described by linear regression on time (year number).
In the last row the result of regression of NS on temperature is given

R2 Regression coef. p-value Significance

Temp. 0.128 +1.96±0.43 deg/100 year 0.00001 ***

NT 0.1 +6.4±1.6 days/100 year 0.00007 ***

PT 0.04 +15.8±5.7 mm/100 year 0.006 **

NM 0.24 +4.49±0.66 days/100 year <0.000001 ***

PM 0.12 +13.9±3.1 mm/100 year 0.00002 **

NL 0.012 +2.1±1.2 days /100 year 0.1 -

PL 0.0003 −0.7±0.4 mm/100 year 0.85 Not Sign.

NS 0.0001 +0.2±1.6 days /100 year 0.88 Not Sign.

PS 0.0007 +1.4±4.2 mm/100 year 0.74 Not Sign.

PS/PT (%) 0.016 −0.06±0.04%/100 year 0.13 Not Sign.

NS/Temp. 0.42 −2.38±0.23 days/deg <0.000001 ***
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concluded that what determined the index of such a correlation was the location of the
measurement point, which was also responsible for the range of mean monthly temperatures.
Where the mean monthly temperature is relatively high the correlation is negative and vice-
versa. This effect is consistent with the Clausius-Clapeyron formula that defines conditions for
water vapour condensation. Indeed, higher steam concentration in warmer air results in higher
snowfall amount and, as demonstrated by H. Ye (2008), its frequency.

A certain inconsistency was noticed in the trends and correlations between precipitation
and temperature. While the amount of snow precipitation (PS) and the number of days with
snowfall (NS) are strongly correlated with temperature (negatively at −0.57, −0.65), which
is only obvious, and temperature is well correlated with time (positively; 0.36) (exhibiting
the time trend), the correlation of PS and NS with time is close to nil (0.03, 0.01). The
correlation of PS and NS is high (0.76), which seems natural. The observed inconsistency is
of a climatic rather than a numeric nature, since the time-temperature correlation, while
strongly significant, is far from being close to 1. An additional check was performed on the
situation. The correlation of NS with de-trended temperature was calculated. The increase
of the correlation coefficient (from 0.653 to 0.704) is small, however it explains a 16%
increase in the variability. This means that the removal of the time trend from the
temperature record makes the snow precipitation even better correlated (negatively) with
temperature. It indicates (is the result of) the lack of any trend in precipitation. (Calculation
of de-trended temperature: Tdet ¼ T� 0:0196»Timeþ 39:31, where Time=1863, 1864,…
2008, and the numerical parameters are from the regression, Table 3). Figure 4 shows the
variation of the number of days with snowfall with temperature, which was plotted to a
reversed scale to bring the two plots together in that graph.

For the purpose of precipitation change forecasting it is very important of learn about
relationships between the ratio of the snowfall to total winter precipitation (PS/PT) and air
temperature (Przybylak 2002). Figure 5 shows long-term changes of this ratio. During three
winter seasons, i.e. 1885/86, 1928/29 and 1939/40, the PS/PT ratio reached its highest levels
at more than 80%. During seven other winter seasons, i.e. 1865/66, 1900/01, 1915/16, 1924/
25, 1950/51, 1993/94 and 2007/08 it was at its lowest at less than 10%. During the second
half of the 20th c., the PS/PT ratio is observed to drop markedly, but looking at the entire
1863–2008 series this trend to the decrease is insignificant (p-value 0.13, Table 3).

The ratio of snowfall to total winter precipitation (PS/PT) is the quantity exhibiting the
best correlation with temperature (r=−0.73). To explore the correlation in the course of the

Table 5 The Mann-Kendall test of trend. The standardized normal variable z is given (values below −2 or
above 2 are significant at α=0.05)

NM T PM NT PT NL PS NS PL

6 4.7 4.1 3.5 2.7 1.4 0.5 0.1 −0.1

Table 4 The best time “predictors” i.e. the characteristics which best exhibit the time trend. Variables are
sorted according to the value of the statistic F; the resulting p-value is also given. The characteristics with p>
0.05 are omitted

Var. NM T NMF NMJ PMJ PM NT NMD PMD NTF NTJ

F 5.5 3.7 3.7 3.4 3.3 3.2 2.9 2.9 2.3 2.1 2.1

p-value 0.000002 0.0003 0.002 0.002 0.004 0.002 0.003 0.006 0.03 0.03 0.03
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time span considered, 30-year moving correlations were calculated (Fig. 6). The plot shows
that the highest correlation (in the absolute sense) exceeds the value of −0.8, while the
lowest individual (nor smoothed) value is −0.6, which is still well beyond the significance
limit of −0.36 (two-sided test, α=0.05). General features of the plot seem to be statistically
significant, especially the deepest dependence on the temperature around 1930, as well as
around 1970.

In order to capture the relationship between multiple variables, PCA was carried
out on wintertime precipitation as a whole (Fig. 7) and on each individual month
(Fig. 8). Time and air temperature were added to the chart as the additional variables
as they displayed some degree of correlation. It is quite obvious that the variability
explained by the first two components is the greater as the number of variables
considered decreases. As far as winter precipitation is concerned (8 variables plus two
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Fig. 4 Standardized values of the reversed de-trended temperature (−Tdet) and the number of days with
snowfall (NS). The last was transformed before standardization by the proper BoxCox transform in order to
remove the natural skewness (the number of days is a nonnegative quantity)

Fig. 3 Dependence of number of days with snowfall on mean air temperature in winter with the 95%
confidence band for the regression line added
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additional ones), the first principal components comprise 38% and 35% of total
variability, respectively. It is interesting that both values are similar, while the third
PC has only 14%. This means that the first PC (see Fig. 7), which can be identified
with time (year), is only slightly more important than the other variability expressed
by the second PC. As is clear from the plot, the vertical axis (PC2) is defined by the
Snow-Liquid opposition. In addition temperature (an additional variable, which does
not define the axis) is roughly parallel to the vertical axis in the direction defined by
the liquid precipitation, which is natural. The first factor (horizontal axis) is defined
by the variables correlated with time, which is in agreement with the position of the
additional variable Time.

If more variables are taken into account (namely 21 monthly characteristics) the
percentage of the variability contained in the first two principal components cannot be too
high. In any case the general features visible in Fig. 7 are repeated in Fig. 8 with
insignificant rotation. Virtually all variables connected with snow (S) are in opposition to
temperature, however, the February characteristics are less dependent on temperature,
becoming closer to the direction of time. The best correlates of time are, consequently, the
characteristics of mixed precipitation.

3.3 Precipitation and NAO

Many studies have demonstrated that the influence of the North Atlantic Oscillation,
which is an index representing the inflow of air masses from the west (for the
positive phase), on precipitation in Central Europe was at its strongest in winter (e.g.
Niedźwiedź et al. 2009).

The NAO has a significant impact on both the number of days and the totals of
both rainfall and snowfall in the whole winter season (Fig. 9), as well as in particular
winter months (Table 6). The extreme positive, as well as negative correlations found in
Table 6 are illustrated on Fig. 10a,b. As NAO increases, reflecting an increased western
influx (positive phase), so do NL and PL, while NS and PS diminish. The effect has

Fig. 6 Moving (30 year window) correlation coefficient between PS/PT ratio and winter temperature; (curve
smoothed by Gaussian filtering)

Fig. 5 Variation of PS/PT ratio; smooth curves are obtained by Gaussian filtering
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to do with the incoming warmer air masses from over the Atlantic Ocean which
causing a rise in temperature. There is no correlation between NAO and either of the
mixed precipitation parameters, except the number of days in February (NMF). A
detailed analysis is necessary to explain this effect and it will require details of
regional-scale circulation, as well as air temperature data. In general, the North
Atlantic Oscillation accounted for 27% of the variance in snowfall totals in winter,
which are connected mainly with a negative phase of NAO. The influence of large
scale circulation (NAO) on winter precipitation is greater than a potential local urban
heat island effect, which is at its highest during anticyclonic situations when
precipitation is rather rare.

The dependence of NS on time, temperature and the NAO is well illustrated by the result of
the multiple regression, where NS variability is explained by three independent variables in as
much as 50% (corrected R2=0.501, in the case of PS the R2=0.39). The regression formula is:

NS ¼ 0:045� 0:013ð Þ»Time� 2:4� 0:4ð Þ»Temperature� 1:1� 0:5ð Þ»NAO� 70� 27ð Þ:

The influence of the independent variables is illustrated by the relative error of the
respective regression coefficient; however the simplest method here is to observe the

Fig. 7 Principal Components Analysis was performed for 8 variables in winter: averages of precipitation (P),
and numbers of days (N) with the given form of precipitation (T—total, L—liquid, M—mixed, S—snow).
Winter temperature and simple time (year) are plotted as additional variables
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Student’s t values. The highest t, indicating the highest influence, is obtained for
temperature (t=8.5), next is time (t=3.4), and NAO (t=2.1). The timing of the influence
is significant in this multiple regression since it is to be removed from the most important

Fig. 8 Principal Components Analysis was performed for 21 variables: monthly averages of precipitation,
and monthly numbers of days with the given form of precipitation. The data are treated separately for
December, January, and February. Winter temperature and simple time (year) are plotted as additional
variables

Fig. 9 Correlation of winter pre-
cipitation characteristics with the
NAO index. The limits of the
statistical significance
(at α=0.05) are plotted
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variable, i.e. temperature. The NAO, steering temperature, is the least important as an
independent factor.

4 Conclusions

The paper used the secular precipitation record of Kraków to illustrate long-term variability
of snowfall, rainfall and mixed precipitation in relation to air temperature and North
Atlantic Oscillation during the winter season. The results suggest that change can be
identified in the overall total and frequency of winter precipitation and in mixed
precipitation (positive trend). This means that wintertime precipitation trends are linked
to changes in air temperature, which displays the strongest increase during this season.

Rainfall and snowfall are also strongly dependent on temperature, but no significant
long-term trend is found. Indeed, these forms of precipitation display a strong variability in
time, as a consequence of equally as high variability of circulation conditions in the
temperate zone that is dominated, particularly in winter, by cyclonic activity. What this
means is that only a very large change in the amount of precipitation has a potential of
statistical significance. Another reason for the inconsistencies in the direction of trends of
precipitation and temperature may be the location of the station in the centre of a large city.
The significant temperature trend may also be a result of a growing urban effect, which has
no impact on synoptic situations that bring precipitation. The climate warming effect,
however, has contributed to a marked decrease of the PS/PT ratio (snow to total
precipitation in winter) in the second half of the 20th c.

The study demonstrates that air temperature has an impact on the frequency and amount
of winter precipitation, but this impact is complex and depends also on other factors,
including circulation, which is responsible for the water vapour content in the air.

The study showed that:

– Much of the variability in the number of days with snowfall (42%) is accountable on
the basis of air temperature.

– Snowfall and rainfall are strongly, albeit differently, correlated with atmospheric
circulation. The higher the NAO value the higher the frequency and amount of rainfall,
but the lower the frequency and amount of snowfall. This NAO effect is at its strongest in
January when it explains 27% of the number of days with rainfall and 25% of snowfall.

– Should the growing trend in air temperature continue it should be expected that
snowfall will start decreasing in southern Poland and so will the amount of water from

Table 6 Correlation of precipitation and NAO. Values with significant correlations are printed in bold type

Precipitation characteristics January February December

PL 0.39 0.23 0.23

PM −0.01 0.16 0.05

PS −0.45 −0.45 −0.32
NL 0.52 0.45 0.30

NM 0.16 0.27 0.07

NS −0.50 −0.45 −0.37
NT −0.05 0.00 0.03
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that snowfall. To reduce the expected number of days with snowfall to nil, however, air
temperature would have to increase up to 7.5°C.
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Fig. 10 Scatter plots illustrating the dependence of the number of days with snowfall (NS) and liquid
precipitation (NL) in January on the NAO index. The linear regression line is plotted as well as it’s
confidence bound (95%)
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