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Abstract Greenhouse gases emission inventories are computed with rather low
precision. Moreover, their uncertainty distributions may be asymmetric. This should
be accounted for in the compliance and trading rules. In this paper we model the
uncertainty of inventories as intervals or using fuzzy numbers. The latter allows us
to better shape the uncertainty distributions. The compliance and emission trading
rules obtained generalize the results for the symmetric uncertainty distributions that
were considered in the earlier papers by the present authors (Nahorski et al., Water
Air & Soil Pollution. Focus 7(4–5):539–558, 2007; Nahorski and Horabik, 2007,
J Energy Eng 134(2):47–52, 2008). However, unlike in the symmetric distribution,
in the asymmetric fuzzy case it is necessary to apply approximations because of
nonlinearities in the formulas. The final conclusion is that the interval uncertainty
rules can be applied, but with a much higher substitutional noncompliance risk, which
is a parameter of the rules.

1 Introduction

Emission of greenhouse gases is a basic element of the climate change models.
See, for example, Stern (2007) where results are presented in probabilistic terms.
However, greenhouse gas inventories estimates are not calculated exactly. Possible
error magnitudes depend on the types of gas considered, activities involved, and
countries, ranging from a few to over 100 percent. Moreover, distributions of errors
for different gases as well as for national inventories may be asymmetric (Ramirez
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et al. 2006; Winiwarter and Muik 2007). The methods of checking compliance and,
particularly, establishing rules for emission trading proposed to date for the uncertain
inventories (Jonas et al. 2010; Jonas and Nilsson 2007; Nahorski et al. 2007; Nahorski
and Horabik 2008) concern only the symmetric distributions and mainly the interval
uncertainty models.

In Nahorski et al. (2007) the compliance and trading rules were considered for
the interval uncertainties of emissions. In order to have a high enough likelihood of
fulfilling the compliance, lower limit of reductions were required (undershooting),
and an appropriate recalculation of the traded emissions needed to be performed.
However, the interval uncertainty approach provides too conservative a reduction
of limits and a recalculation of traded emissions. Although the stochastic case may
be useful for the determination of new compliance rule, see also Gillenwater et al.
(2007), only a complicated formula for recalculation of the traded emissions has been
provided (Nahorski et al. 2007), which is practically useless because it is valid only for
uncorrelated inventories. In this paper a fuzzy uncertainty is considered. The fuzzy
set calculus basically inherits the rules from the interval calculus and thereby provides
simpler calculations than that for the stochastic variables. At the same time the fuzzy
variables may be shaped to have distributions that are more concentrated around
observed values than in the interval case, where the information on distribution is
lost. Thus, it can better approximate the real distributions. This paper also deals
with the asymmetric cases, aiming to improve the precision of assessments as to
whether the given emission limits or reductions are satisfied, and being able to
guarantee (with a small prescribed risk) that this limit or reduction has been fulfilled
in emission trading among parties and in other possible flexible mechanisms under
the Kyoto Protocol. Improved precision, as compared with the interval case, means
lower compliance costs and more reliable estimates of inventories for the climate
change models.

We derive in this paper a new formula for recalculation of the trading quantities
for the fuzzy and symmetric distributions, which is a generalization of that used for
the interval approach. To obtain an analogous formula for the asymmetric fuzzy case,
an approximation is required. The one proposed in this paper is a generalization of
those for both the symmetric fuzzy case and the asymmetric interval approach.

Summing up, we derive here new rules for checking compliance and for emission
trading, for asymmetric fuzzy distributions. They are generalizations of the rules
presented in Nahorski et al. (2007) and Nahorski and Horabik (2008) for symmetric
distributions and interval uncertainty and they reduce to them as special instances
provided that appropriate parameters are taken. Comparison of the rules obtained
for the fuzzy approach with those for the interval approach shows that the latter can
be used equivalently, but with a much bigger substitutional parameter than originally
designed for the noncompliance risk.

In Section 2 we formulate the problem and introduce some basic notation.
Then, in Section 3, we deal with the asymmetric interval uncertainty and we derive
conditions for checking compliance and formulas for so-called effective emissions,
which can be directly traded, without taking into account the emission uncertainty.
In Section 4 a family of fuzzy numbers is introduced. These are used to model the full
inventory uncertainty and form the basis for derivations of generalized compliance
and emission trading rules. These rules are compared with the interval approach
rules, and their equivalence in applications considered in the paper, for appropriately
chosen parameters, is shown. Section 6 concludes.
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2 Problem formulation

Two systems for reducing greenhouse gases emissions have been applied. One, called
cap and trade, as, for example, in the European Trade System, where the limits on
emissions from chosen activities are distributed among member countries in the first
stage and then finally between companies within the European Union. The problem
here is to check, if L, the given emission limit for the company, expressed as emission
permit, has not been exceeded, that is, if

x ≤ L (1)

where x is the real, unknown emission of a party in a given year. Unfortunately,
x is not known exactly, as only its available estimate of the emission x̂ can be
calculated. The estimate of the total emissions by a party is calculated from an
inventory of emissions from every contributing activity, including absorption by
sinks. These are, however, highly uncertain, see (Winiwarter 2004; Monni et al.
2007). Moreover, uncertainties of inventories x̂ differ among different activities both
in terms of the range and distributions. Another system used under the Kyoto
Protocol requires each participating country to reduce a pre-specified percentage
of its base year emissions within the given period (from 1990 to 2008–2012 for most
countries), although some countries are granted an opportunity to stabilize emissions
at the base year level or even to increase its emissions in a limited way. Three
so-called flexible mechanisms are connected with the Kyoto Protocol. These are:
Joint Implementation, Clean Development Mechanism, and Permit Trading. All are
related to buying the emissions saved by other parties. In all these cases, the problem
is to check to see if the declared reduction has actually been achieved.

With emission reductions, the compliance checking is slightly more complicated
than in the cap-and-trade system because the limit referred to is also uncertain. This
leads to the problem of comparing two uncertain values. Here, however, this problem
will be transformed to the form similar to (1), that is to the comparison of uncertain
value with the exactly known limit. Let us denote by δ the fraction of the party’s
emissions to be reduced. The value of δ may be negative, for parties required to limit
their emission increase. Denoting by xb the basic emission and by xc the emission to
be checked, the following inequality should be satisfied

xc − (1 − δ)xb ≤ 0 (2)

This inequality has the same form as (1), with the inspected variable xc − (1 − δ)xb

and the limit L = 0. Similarly as earlier, neither xc nor xb are known precisely
enough. Thus, only the difference in estimates can be calculated

x̂c − (1 − δ)x̂b (3)

where both x̂c and x̂b are known inaccurately. In the Kyoto Protocol context, xb is the
emission in the basic year and xc the emission in the compliance period. We are not,
however, interested here in reference and compliance times, but only in the values
to be compared.

Moreover, the emission estimate of a party may be modified by selling or buying
uncertain emissions, which adds to the final uncertainty on the left hand side. These
problems are discussed in the sequel using two models of uncertainty: interval and
fuzzy.
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3 Interval uncertainty

Material in this section is a generalization of the results for the symmetric intervals
given in Nahorski et al. (2007). The methodological concept is the same, but
the results differ because of changed assumptions, although they do reduce to the
previous results, when the symmetric intervals are considered in the equations. The
derivations in this section are fundamental for the rest of the material and are
therefore presented in a fairly complete way, even if they are more or less straight
generalizations of the formulas for the symmetric intervals.

3.1 Compliance

Let us denote the lower spread of the uncertainty interval by dl and the upper spread
by du. Then, the real basic emission xb and the real checked emission xc are situated
in the intervals

xb ∈ [
x̂b − dl

b , x̂b + du
b

]
, xc ∈ [

x̂c − dl
c, x̂c + du

c

]

Known limit We start with the simpler case of the limit L which is known exactly.
To be completely sure that a party (typically a company) fulfills the limit, its emission
inventory should satisfy the following condition, see Fig. 1a.

x̂c + du
c ≤ L (4)

As the bounds can be quite large, a weaker condition will be used, see Nahorski
et al. (2007). A party is compliant with the risk α if its emission inventory satisfies the
condition

x̂c + du
c ≤ L + α

(
dl

c + du
c

)
(5)

The risk is here understood as a likelihood that the party may not fulfill the agreed
obligation regarding the emission limit or reduction because of the uncertainty of the
emission inventory.

Fig. 1 Full compliance (a) and compliance with risk α (b) in the interval uncertainty approach for
the known limit case
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Condition (5) means that the αth part of the party’s emission estimate (inventory)
uncertainty interval is allowed to lie above the limit L, see Fig. 1b. After some
algebraic manipulations the condition (5) can be also written in the following form

x̂c +
[

1 −
(

1 + dl
c

du
c

)
α

]
du

c ≤ L (6)

The above condition shows that a part of the upper spread of the uncertainty interval
is added to the emission estimate before compliance is checked. This can be also
interpreted to mean that an unreported emission, due to uncertainty, is included in
the condition to reduce the risk of non-compliance.

For the symmetric interval dl
c = du

c = dc the condition (6) takes the form

x̂c + (1 − 2α)dc ≤ L

which has been derived in Nahorski and Horabik (2008).

Emission reduction A more difficult case of checking an emission reduction, when
both the checked and the basic emission are uncertain, will be transformed to the
problem of a known limit by considering the difference of the checked and reduced
emissions, as mentioned earlier. Using the interval calculus rules, we get

xc − (1 − δ)xb ∈ [
Dx̂ − dl

bc, Dx̂ + du
bc

]

where
Dx̂ = x̂c − (1 − δ)x̂b (7)

and the lower and upper spreads are

dl
bc = dl

c + (1 − δ)du
b , du

bc = du
c + (1 − δ)dl

b (8)

However, the inventories x̂b and x̂c are dependent and the values of dl
bc and du

bc are
usually much smaller than those resulting from the above expression. Nahorski et al.
(2007) proposed to take this into account by modification of the formulas (8) to

dl
bc = (1 − ζ )

(
dl

c + (1 − δ)du
b

)
(9)

du
bc = (1 − ζ )

(
du

c + (1 − δ)dl
b

)
(10)

where 0 ≤ ζ ≤ 1 is an appropriate chosen dependency coefficient. This will be also
assumed in this paper.1

Now, to be fully credible, that is, to be sure that (2) is satisfied, the party should
prove

Dx̂ + du
bc ≤ 0 (11)

This non-equality condition is analogous to (4), with the upper limit L = 0.

1Modification of the addition operator has a disadvantage. As far as the usual addition is commuta-
tive and associative (i.e. for the intervals A, B and C it holds A + B = B + A and A + B + C = (A +
B) + C = A + (B + C)), then the modified operator with operations (9) and (10), denoted below as
+ζ , is only commutative and not associative, because then (A +ζ B) +ζ C �= A +ζ (B +ζ C). Thus,
practically, the operator +ζ can be used only for pairs of numbers. But this is actually exactly what is
needed in the application considered in this paper.
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When a party is compliant with risk α, then the part of its distribution that lies
above zero is not bigger than α, see Fig. 2 for the geometrical interpretation. That
is, it holds Dx̂ + du

bc ≤ 2αdu
bc. After simple algebraic manipulations this gives the

condition

x̂c +
[

1 −
(

1 + dl
bc

du
bc

)

α

]

du
bc ≤ (1 − δ)x̂b (12)

This condition is analogous to (6). Thus, to prove the compliance with risk α the
party has to fulfill its obligation with the inventory emission estimate increased by

the value
[
1 − (

1 + dl
bc

du
bc

)
α
]
du

bc, dependent on its uncertainty.

3.2 Emission trading

The above compliance-proving policy can be used to modify the rules of emission
trading. The main idea presented in earlier papers (Nahorski et al. 2007; Nahorski
and Horabik 2008) involves transferring the emission seller uncertainty to the
emission buyer together with the quota of emissions traded and then including it
in the buyer’s emission balance. Here it is adapted to the asymmetric distributions.

Let us denote by RuS
c = duS

c /x̂S
c and RlS

c = dlS
c /x̂S

c the respective relative upper and
lower spreads of the uncertainty intervals of the seller and by ÊS the amount of
estimated emission traded. This emission is associated with lower and upper spreads
of the uncertainty intervals ÊS RlS

c or ÊS RuS
c , respectively.

Known limit First, let us consider the simpler case of known limit L. Before the
trade the buyer has to satisfy the condition (6), which is reformulated to

x̂B
c + duB

c − (
dlB

c + duB
c

)
α ≤ LB

After buying ÊS units of emissions from the seller and including the corresponding
uncertainty in the formula, the new condition looks like

x̂B
c − ÊS + duB

c + ÊS RuS
c − (

duB
c + ÊS RuS

c + dlB
c + ÊS RlS

c

)
α ≤ LB

The above conditions differ in the following value, which is called the ef fective
emission (Nahorski et al. 2007)

Eef f = ÊS − ÊS RuS
c + ÊS(RuS

c + RlS
c

)
α

Fig. 2 Full compliance (a) and compliance with risk α (b) in the interval uncertainty approach for
the emission reduction case
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which can be transformed to the form

Eef f = ÊS
{

1 −
[

1 −
(

1 + dlS
c

duS
c

)
α

]
RuS

c

}
(13)

The effective emission is smaller than the estimated emission. The bigger the relative
upper spread of the uncertainty interval of the seller is, the smaller the effective
emission. But it also depends on the ratio duS

c /dlS
c , and obviously on α.

Emission reduction When emission reduction is required, before the trade the
buying party checks the following condition

x̂B
c + duB

bc − (
duB

bc + dlB
bc

)
α ≤ (

1 − δB)
x̂B

b

After the transaction the condition changes into

x̂B
c − ÊS + duB

bc + ÊS RuS
c − (

duB
bc + ÊS RuS

c + dlB
bc + ÊS RlS

c

)
α ≤ (

1 − δB)
x̂B

b

Because of partial cancellation of the subtracted estimated emission and its uncer-
tainty in the buyer’s emission balance, the effective emission is

Eef f = ÊS
{

1 −
[

1 −
(

1 + dlS
c

duS
c

)
α

]
RuS

c

}
(14)

This is exactly the same formula as (13). The bigger the seller’s upper spread of
uncertainty interval is, the fewer the purchased units on the account of the buyer.
Expressions (13) and (14) reduce emissions estimated with an arbitrary precision
to globally comparable values, which can be directly subtracted from a country’s
estimated emission. This way it is possible to construct a market for the effective
emissions, see Nahorski et al. (2007) and Nahorski and Horabik (2007) for details.

4 Fuzzy uncertainty

The interval uncertainty approach does not use any information on the distribution
of inventory errors. Thus, its results are too conservative. Modeling the uncertainty
using the stochastic approach causes problems related to the non-linearities of the
underlying algebra. Instead, we propose to use the fuzzy approach in modeling
uncertainty distribution. It allows for a good approximation of the distribution while
keeping the algebra of the interval calculus simple. A short explanation of fuzzy sets
and some related notions is given in the Appendix.

In this paper the fuzzy numbers (see Appendix for a definition) are used to model
imperfect knowledge of uncertainty. A fuzzy number is a straight generalization of
an ordinary number, whose value is uncertain: the situation that we note pertains to
greenhouse gas inventories.

Usually, the main problem with the fuzzy set approach is to determine the mem-
bership function. Here, we introduce analytical membership functions dependent on
parameters. To estimate the parameters, the function can be fitted to the distribution
obtained from Monte Carlo simulations, as shown in the sequel. If there is a lack
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Fig. 3 Membership functions
for different values of γ

of experimental distributions, the parameter can be fixed to fit the experimenter
expectation.2

The most popular membership functions are the triangular or trapezoidal ones.
These functions are, however, rather inconvenient for our purpose because of
their bad approximations of the distribution tails, which are very important in the
applications described here.

Consider a family of fuzzy numbers Aγ = {(x, μ
γ

A(x))|x ∈ supp Aγ } indexed by
a vector parameter γ = [γ u

1 , γ l
2] ∈ C+ × C+, with the support supp Aγ = [−dl

A, du
A].

The proposed membership function has the form (see Fig. 3)

μ
γ

A(x) =
⎧
⎨

⎩

a
(
1 − x

du
A

)γ u

for 0 ≤ x ≤ du
A

a
(
1 + x

dl
A

)γ l

for dl
A ≤ x < 0

γ l, γ u �= 0 (15)

where a is a normalizing factor used for fitting the membership function to empirical
distributions. In the theoretical considerations it can be assumed that the member-
ship function has been normalized and therefore a = 1 is taken in the sequel. Let us
note that taking γ l = γ u = 0 we get the even distribution (see Fig. 3) and actually
reduce the considerations to the interval case.

Figure 4 presents an estimate of an asymmetric distribution obtained using the
Monte Carlo method and presented in Winiwarter and Muik (2007).

4.1 Compliance

It is assumed that the uncertainty of the estimate x̂b is described by the membership
function

μ
γ

x̂b
(x) =

⎧
⎨

⎩

(
1 − x−x̂b

du
b

)γ u
b for x̂b ≤ x ≤ x̂b + du

b
(
1 + x−x̂b

dl
b

)γ l
b for x̂b − dl

b ≤ x < x̂b

2It is perhaps worth mentioning at this point that we treat the fuzzy approach only as an approxima-
tion of distribution and algebraic rules for the variables and not to introduce the possibility function,
see for example Bandemer (2006), which gives another possible approach to the problem.
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Fig. 4 An estimate of a membership function μ
γ

A(x) calculated using the Monte Carlo method

and of the estimate x̂c by

μ
γ

x̂c
(x) =

⎧
⎨

⎩

(
1 − x−x̂c

du
c

)γ u
c for x̂c ≤ x ≤ x̂c + du

c
(
1 + x−x̂c

dl
c

)γ l
c for x̂c − dl

c ≤ x < x̂c

(16)

Known limit We start with the exactly known limit case. First, we calculate by
integration the whole area A under the membership function. It is the sum of two
areas, see Fig. 5

A = Al + Au

Al =
∫ x̂c

x̂c−dl
c

(
1 + x − x̂c

dl
c

)γ l
c

dx = dl
c

1 + γ l
c

Au =
∫ x̂c+du

c

x̂c

(
1 − x − x̂c

du
c

)γ u
c

dx = du
c

1 + γ u
c

We now want to find the distance xcα between x̂c and x̂c + xcα , where the latter
is the value cutting off the most right αth part of the area under the membership
function, see Fig. 5. This area, denoted Aα , for 0 ≤ α ≤ Au/(Al + Au), where Al is
the area under the left branch of the membership function and Au under the right
branch is

Aα =
∫ x̂c+du

c

x̂c+xcα

(
1 − x − x̂c

du
c

)γ u
c

dx = du
c

1 + γ u
c

(
1 − xcα

du
c

)1+γ u
c

Now, it must hold

Aα = αA
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Fig. 5 Definition of areas under asymmetric fuzzy number membership function

which after some algebraic manipulations gives

xcα =
⎧
⎨

⎩
1 −

[(
1 + dl

c

du
c

1 + γ u
c

1 + γ l
c

)
α

] 1
1+γ u

c

⎫
⎬

⎭
du

c

Finally, the compliance checking condition is

x̂c +
⎧
⎨

⎩
1 −

[(
1 + dl

c

du
c

1 + γ u
c

1 + γ l
c

)
α

] 1
1+γ u

c

⎫
⎬

⎭
du

c ≤ L (17)

For the interval uncertainty case γ u
c = γ l

c = 0. Then the above condition is the
same as (6). For the symmetric case dl

c = du
c = dc and γ l

c = γ u
c = γc, and the above

condition takes the form

x̂c +
[
1 − (2α)

1
1+γc

]
dc ≤ L

This formula was derived in Nahorski and Horabik (2008).
For the symmetric case, only the range 0 ≤ α ≤ 0.5 is practically worth being

considered, as for α = 0.5 the above condition takes the form x̂c ≤ L, and for α > 0.5
we would allow for exceeding the limit, that is, for x̂c > L. For the asymmetric case
the range 0 ≤ α ≤ Au/(Al + Au) should be considered. Thus, the limiting α can take
values greater or smaller than 0.5. For the interval uncertainty the range will be
0 ≤ α ≤ du/(dl + du).

In addition, let us note that for the right-skewed distributions, as in Fig. 4, the
probability of non-compliance is greater than 0.5 when x̂c is equal to the limit L. It
is a consequence of the fact that in this case of asymmetry, it is more likely that the
limit L is exceeded than that it is not attained.

Emission reduction For the emission reduction case, to find the membership func-
tion of the fuzzy number Dx̂ = x̂c − (1 − δ)x̂b as a linear combination of the fuzzy
numbers x̂b and x̂c, the η-cuts will be used, see Appendix for an explanation of this
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notion. For the number x̂c the upper x̂ηu
c and the lower x̂ηl

c ends of the η-cut are as
follows, see Fig. 6. For x̂ηu

c we have

(
1 − x̂ηu

c − x̂c

du
c

)γ u
c

= η

Then, assuming γ u
c �= 0,

x̂ηu
c = x̂c + du

c

(
1 − η

1
γ u

c
)

In the same way, for x̂ηl
c , assuming γ l

c �= 0,

(

1 + x̂ηl
c − x̂c

dl
c

)γ l
c

= η

and

x̂ηl
c = x̂c − dl

c

(
1 − η

1

γ l
c

)

For γ u
c = 0 or γ l

c = 0 we have η = 1. For this case the expression like η
1

γ u
c is not

formally defined. Thus, we additionally define

η
1

γ u
c = 0, for γ u

c = 0

η
1

γ l
c = 0 for γ l

c = 0

The fuzzy number x̂b can be treated analogously. But we consider the number
−(1 − δ)x̂b . Taking analogous assumptions and additional definitions as above, we
now look for x̂ηu

b satisfying

(
1 − x̂ηu

b + (1 − δ)x̂b

(1 − δ)du
b

)γ u
b

= η

Fig. 6 Asymmetric fuzzy number and definitions of related parameters
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from where the upper end x̂ηu
b of the η-cut is given by

x̂ηu
b = −(1 − δ)x̂b + du

b (1 − δ)
(

1 − η
1

γ u
b

)

For the lower end x̂ηl
b of the η-cut the equation

(

1 + x̂ηl
b + (1 − δ)x̂b

(1 − δ)dl
b

)γ l
b

= η

provides

x̂ηl
b = −(1 − δ)x̂b − dl

b (1 − δ)
(

1 − η
1

γ l
b

)

Finally, the η-cut of the number Dx̂ is obtained by applying the modified interval
calculus rules (9) and (10) for the sum of the η-cuts of the numbers x̂c and −(1 − δ)x̂b .
Thus

Dx̂ηu = Dx̂ + (1 − ζ )

[
du

c

(
1 − η

1
γ u

c

)
+ dl

b (1 − δ)

(
1 − η

1

γ l
b

)]
(18)

Dx̂ηl = Dx̂ − (1 − ζ )

[
dl

c

(
1 − η

1

γ l
c

)
+ du

b (1 − δ)

(
1 − η

1
γ u

b

)]
(19)

The above equations show dependences of Dx̂ηl and Dx̂ηu on η, that is, they are the
reverse functions of the two branches of the membership function μ

γ

Dx̂(x), see Fig. 6.
Let us now transform (18) to

1 − Dx̂ηu − Dx̂
du

bc

= du
c η

1/γ u
c + dl

b (1 − δ)η1/γ l
b

du
c + dl

b (1 − δ)
(20)

where du
bc is given by (10), and define γ u

bc to satisfy the equation

du
c η

1/γ u
c + dl

b (1 − δ)η1/γ l
b

du
c + dl

b (1 − δ)
= η

1
γ u

bc

From the above

γ u
bc = 1

logη

du
c η1/γ u

c +dl
b (1−δ)η

1/γ l
b

du
c +dl

b (1−δ)

= log η

log du
c η1/γ u

c +dl
b (1−δ)η

1/γ l
b

du
c +dl

b (1−δ)

(21)

In the spirit of earlier additional definitions we also define

γ u
bc = 0 for γ u

c = 0 or γ l
b = 0

Now it is possible to write the right branch of the membership function as

μ
γ u
x̂bc

(x) =
(

1 − x − Dx̂
du

bc

)γ u
bc

Dx̂ ≤ x ≤ Dx̂ + du
bc (22)
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Likewise we get

μ
γ l
x̂bc

(x) =
(

1 + x − Dx̂

dl
bc

)γ l
bc

Dx̂ − dl
bc ≤ x ≤ Dx̂ (23)

where dl
bc is given by (9), and

γ l
bc = 1

logη

dl
cη

1/γ l
c +du

b (1−δ)η
1/γ u

b

dl
c+du

b (1−δ)

= log η

log dl
cη

1/γ l
c +du

b (1−δ)η
1/γ u

b

dl
c+du

b (1−δ)

(24)

with

γ l
bc = 0 for γ l

c = 0 or γ u
b = 0

Now, the most right αth part of the area under the membership function (22) is

Aα =
∫ Dx̂+du

bc

Dx̂+xα

(
1 − x − Dx̂

du
bc

)γ u
bc

dx = du
bc

1 + γ u
bc

(
1 − xα

du
bc

)1+γ u
bc

and the area under the entire membership function (22)–(23) is

A =
∫ Dx̂

Dx̂−dl
bc

(
1 + x − Dx̂

dl
bc

)γ l
bc

dx +
∫ Dx̂+du

bc

Dx̂

(
1 − x − Dx̂

du
bc

)γ u
bc

dx =

= dl
bc

1 + γ l
bc

+ du
bc

1 + γ u
bc

(25)

As Aα = αA, its solution for xα , denoted xbcα , has the form

xbcα =
⎧
⎨

⎩
1 −

[(

1 + dl
bc

du
bc

1 + γ u
bc

1 + γ l
bc

)

α

] 1
1+γ u

bc

⎫
⎬

⎭
du

bc (26)

and finally the compliance condition is

x̂c +
⎧
⎨

⎩
1 −

[(

1 + dl
bc

du
bc

1 + γ u
bc

1 + γ l
bc

)

α

] 1
1+γ u

bc

⎫
⎬

⎭
du

bc ≤ (1 − δ)x̂b (27)

This condition is analogous to (17). For the interval case γ l
bc = γ u

bc = 0 and (27)
reduces to (12). For the symmetric distribution dl

bc = du
bc = dbc and γ l

bc = γ u
bc = γbc

and it reduces to

x̂c +
[
1 − (2α)

1
1+γbc

]
dbc ≤ (1 − δ)x̂b (28)

The condition (28) has been derived in Nahorski and Horabik (2007).
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4.2 Emission trading

The formula for the effective emission can be quite easily obtained for the symmetric
distribution (28) using derivations similar to the interval case. Before the trade, the
buying party has to satisfy the condition

x̂B
c +

[
1 − (2α)

1
1+γ B

bc

]
dB

bc ≤ (1 − δB)x̂B
b

and after buying ÊS emission units from the seller it becomes

x̂B
c − ÊS +

[
1 − (2α)

1
1+γ B

bc

]
(dB

bc + ÊS RS
c ) ≤ (1 − δB)x̂B

b

Then the effective emission is

Eef f = ÊS
{

1 −
[

1 − (2α)
1

1+γ B
bc

]
RS

c

}
(29)

where RS
c = dS

c /x̂S
c and for the symmetric distributions dS

c = duS
c = dlS

c .
However, the problem becomes more difficult for the asymmetric distributions,

as then the uncertainty distribution bounds dl
bc and du

bc enter non-linearly into the
compliance condition (27). This is why linearization is now used to obtain the result.
The exact derivation is presented in Electronic Supplementary Material. That way
the following expression for the effective emission is obtained

Eef f = ÊS

⎧
⎨

⎩
1 −

⎧
⎨

⎩
1 −

[(
1 + dlS

c

duS
c

)
α

] 1
1+γ uB

bc

⎫
⎬

⎭
RuS

c

⎫
⎬

⎭
(30)

It generalizes expressions for simpler cases. In particular, for the known limit case the
following substitution should be made: γ uB

bc → γ uB
c . For the symmetric distributions

the substitutions are: dlS
c → dS, duS

c → dS, γ uB
bc → γ B

bc, which provide (29). For the
interval uncertainty: γ uB

bc → 0, which gives (14).
In comparison with the formula (14) for the interval uncertainty, the formulas

(29) and (30) depend on parameters γ B
bc or γ uB

bc of the emission buyer uncertainty
distributions. This would considerably complicate the market, as the traded quota
depends in such a case both on the seller and the buyer uncertainty distributions.
This problem will not be discussed in this paper.

4.3 Equivalence of approaches

We start here with a summary of results. Table 1 provides relevant formulas for
compliance condition and effective emission in the case of known limit for various
types of uncertainty models considered.

Let us note that, for a given case, the same compliance condition or the same
effective emissions can be obtained for the interval model as for the fuzzy model,
choosing an appropriate value of α in the former one. Let us denote by αI the value
for the interval model and by αF for the fuzzy one. It can be noticed that actually it is
enough to consider only the asymmetric cases, as the results for the symmetric cases
are obtained taking specific values od parameters.
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Table 1 Model review

Model Compliance checking Effective emission

Interval x̂c + (1 − 2α)dc ≤ L Eef f = Ês
[
1 − (1 − 2α) RS

c
]

symmetric

Interval x̂c +
[
1 −

(
1 + dl

c
du

c

)
α
]

du
c ≤ L Eef f = Ês

{
1 −

[
1 −

(
1 + dlS

c
duS

c

)
α
]

RuS
c

}

asymmetric

Fuzzy x̂c +
[
1 − (2α)

1
1+γc

]
dc ≤ L Eef f = Ês

{
1 −

[
1 − (2α)

1
1+γ B

c

]
RS

c

}

symmetric

Fuzzy x̂c +
{

1 −
[(

1+ Eef f = Ês×

asymmetric dl
c

du
c

1+γ u
c

1+γ l
c

)
α
] 1

1+γ u
c

}
du

c ≤ L

{

1 −
{

1 −
[(

1 + dlS
c

duS
c

)
α
] 1

1+γ uB
c

}

RuS
c

}

Equaling the effective emissions Eef f,F = Eef f,I , from the second and the fourth
rows in the last column of the Table 1, after simple algebraic manipulations we arrive
at the following condition

[(
1 + dlS

c

duS
c

)
αI

]1+γ uB
bc

=
(

1 + dlS
c

duS
c

)
αF

If the cases αF = 0 (no noncompliance risk) and γ uB
bc = 0 (interval uncertainty) are

excluded, then

αI

αF
=

[(
1 + dlS

c

duS
c

)
αI

]−γ uB
bc

Thus we have

αI > αF for αI ≤ duS
c

duS
c + dlS

c
and γ uB

bc > 0

Both conditions are very mild. The second is obviously satisfied. Taking into account
that in the up to now considered cases duS

c ≥ dlS
c , then in the first condition the upper

limit is not smaller than 0.5, which is true for the symmetric case.
For the compliance checking, comparing formulas from the second and the fourth

rows in the middle column we get

[(
1 + dl

c

du
c

)
αI

]1+γ u
c

=
(

1 + dl
c

du
c

1 + γ u
c

1 + γ l
c

)
αF

from where

αI

αF
=

1 + dl
c

du
c

1+γ u
c

1+γ l
c

1 + dl
c

du
c

[(
1 + dl

c

du
c

)
αI

]−γ u
c

Now, if αI ≤ du
c

du
c +dl

c
and γ u

c ≥ γ l
c > 0 , and at least one of these conditions is strict, then

again

αI > αF
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Table 2 Dependence of αI on
αF and γ uB

bc

αF ↓ γ uB
bc → 0.1 0.5 1 1.5 2 2.5

dl
c/du

c = 0.2
0.05 0.06 0.13 0.20 0.27 0.33 0.37
0.10 0.12 0.20 0.29 0.36 0.41 0.45
0.15 0.18 0.27 0.35 0.42 0.47 0.51
0.20 0.23 0.32 0.41 0.47 0.52 0.55
0.25 0.28 0.37 0.46 0.51 0.56 0.59

dl
c/du

c = 0.5
0.05 0.06 0.12 0.18 0.24 0.28 0.32
0.10 0.12 0.19 0.26 0.31 0.35 0.39
0.15 0.17 0.25 0.32 0.37 0.41 0.44
0.20 0.22 0.30 0.37 0.41 0.45 0.47
0.25 0.27 0.35 0.41 0.45 0.48 0.50

dl
c/du

c = 1 (symmetric case)
0.05 0.06 0.11 0.16 0.20 0.23 0.26
0.10 0.12 0.17 0.22 0.26 0.29 0.32
0.15 0.17 0.22 0.27 0.31 0.33 0.35
0.20 0.22 0.27 0.32 0.35 0.37 0.38
0.25 0.27 0.32 0.35 0.38 0.40 0.41

Thus, the noncompliance risk parameter α in the interval uncertainty model has to
be greater than in the fuzzy model to get the same compliance conditions or effective
emissions.

Dependence of αI on αF and γ uB
bc for effective emissions is shown in Table 2.

The results show that αI rises quickly when γ uB
bc rises. In cases considered in our

calculations, estimates of γ uB
bc close to or much higher than 1.5 were obtained. Then,

practically it seems that αI ≥ 0.3 should be taken even for small values of αF .
An interpretation of these results is quite straightforward. Within the considered

family of distributions, ignorance of the uncertainty distribution in the interval case
requires a greater reduction. To obtain the same effective emissions as for the fuzzy
uncertainties, a bigger substitutional non-compliance risk should be adopted in the
interval approach. Thus, for αI , at least the values 0.3 or higher should be taken

Fig. 7 Fit of a membership
function μ

γ

A(x) to the
histogram for emission of CO2
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Fig. 8 Fit of a membership
function μ

γ

A(x) to the
histogram for emission of CH4

to compensate for ignorance of the exact knowledge of the uncertainty interval
distribution, even if a small non-compliance risk is actually meant.

5 An example

In the example the data from the Monto Carlo simulation presented in Ramirez
et al. (2006) are used. Uncertainty distributions of emissions of three gases, carbon
dioxide (CO2), methane (CH4), and fluorine (F), are considered. The uncertainty
distributions were chosen to illustrate the proposed rules of trade and are depicted in
Figs. 7, 8 and 9 together with fits of the distribution functions (15). It is assumed that
each emission is related to different companies, called CO2, CH4 and F, respectively.
Table 3 contains parameters of the distributions obtained from the fits.

Fig. 9 Fit of a membership
function μ

γ

A(x) to the
histogram for emission of F
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Table 3 Parameters of the
distributions

Distribution dl [Tg] γ l γ u du [Tg]

CO2 4.8 2.6 4.5 6.9
CH4 4.3 2.1 3.9 6.7
F 2.0 1.4 1.4 3.1

We do not consider the compliance, only the trade. Let us then suppose that
the three companies mentioned: CO2, CH4, and F, want to trade with each other.
The uncertainty of emissions in company CO2 is small, less than 4 percent, while
in the rest it is around 38 percent. On the other hand, the shape of the uncertainty
distributions of CO2 and CH4 are similar, with values γ of the order of 2–2.5 for the
lower and 4–4.5 for the upper branch, while the shape of F is close to triangular, with
γ equal to 1.4. In Table 4 the values of Eef f are depicted for three assumed trades,
when each company in turn is the seller while the others are buyers. Two values of the
original non-compliance risk α = 0.05 or 0.1 were assumed and substitutional values
of αI are given in the right-hand side of the table. Most of them are of the order of
0.4. For CO2, with small uncertainty, the values E1

ef f are only slightly smaller than 1.
The values E2

ef f and E3
ef f are much smaller, around 0.8–0.9.

Let us note that for the fuzzy distribution there is no unique substitutional risk
parameter αI related with the seller, because it also depends on who the buyer is.
This is what causes problems in the trade as compared to the interval case. A way
of avoiding this might be that a common value 0.4 or a smaller one, like 0.35, is
taken for αI to organize the market with a substitutional interval uncertainty. This
way the market scheduled in Nahorski et al. (2007) can be applied. A market with
substitutional risk parameters αI dependent on the buyer is, however, an interesting
question. It will be considered elsewhere.

6 Conclusions

The paper deals with the problem of checking compliance of pollutant emissions with
a given limit in the case where the observed emission values are highly uncertain with
asymmetric uncertainty distributions. High uncertainty should be also considered
in trading in emission permits, which is frequently used to minimize the emission
abatement cost, and this is also done in the paper. Asymmetric uncertainty is
evidenced by recent investigations, and particularly by Monte Carlo simulations of
uncertainty distributions.

Table 4 Effective emissions in
the trade and substitutional
values of αI for interval
uncertainty

Emission Ru
c E1

ef f E2
ef f E3

ef f α1
I α2

I α3
I

α = 0.05
CO2 0.043 Seller 0.86 0.86 – 0.21 0.36
CH4 0.385 0.98 Seller 0.85 0.39 – 0.36
F 0.371 0.97 0.75 Seller 0.39 0.37 –

α = 0.1
CO2 0.043 Seller 0.89 0.90 – 0.28 0.41
CH4 0.385 0.99 Seller 0.88 0.44 – 0.42
F 0.371 0.98 0.79 Seller 0.44 0.42 –
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Asymmetry of distributions biases the compliance and trading results, and it
constitutes an additional issue in troubles related to uncertainty of emission inven-
tories. This is due to unequal probabilities of occurrence of the real emission below
and above the nominal inventory value. The Monte Carlo simulations of national
greenhouse gases inventories (Winiwarter and Muik 2007; Ramirez et al. 2006) show
that the distributions are right-skewed, that is, real emissions higher that the nominal
value are more likely than the smaller ones. This means that even if the nominal
inventory value is exactly equal to the given limit and is considered to be compliant
according to the present standard, it is actually more probable that the real emission
is non-compliant than that it is compliant.

An interesting case3 of an asymmetric distribution of uncertainty is connected with
the risk of valuing forest carbon offsets caused by accidental losses, for example,
due to wildfires (Hurteau et al. 2009). The uncertainty there has a specific one-sided
distribution. This case has already entered the implementation stage in the United
States forest carbon storage project (Mignone et al. 2009). However, the solutions
applied there take into account that the related uncertainty is eventually resolved in
the future, as the damages are known after they have happened. This is in contrast
with the case discussed in this paper, where uncertainties are an inherent part of data
considered at all stages of decision making.

The idea proposed in this paper is based on grounding the derivations in the
fuzzy set approach. A family of fuzzy numbers depending on free parameters is
introduced. These parameters can be chosen to appropriately shape the distribution
of uncertainty. The approach provides the closed form formulas, which can be used
for designing a market for effective emission permits. A market with the effective
emission permits has been outlined in earlier papers (Nahorski et al. 2007; Nahorski
and Horabik 2008) for the symmetric case. That construction is also valid in the
asymmetric case discussed in this paper, after appropriate adaptation. However,
for the most general case of asymmetric membership functions, a closed analytical
solution could not be found. An approximate solution was considered for this case,
and a generalized rule for compliance has been derived.

Application of the fuzzy numbers and consideration of asymmetric distributions
enabled us to much more precisely determine the required level of reduced invento-
ries to obtain a high likelihood of fulfilling the given limit or reduction. Moreover,
better accuracy in terms of determining the level give rise to better scaling of the
amounts of emission emitted by parties for use in trading, which has a measurable
financial meaning. Approximating distribution by a function dependent on parame-
ters allowed us to derive the analytical expressions for reduction of emissions and
for scaling the traded emissions. The distribution parameters have been acquired by
fitting the distribution functions to the data from the Monte Carlo simulations.

The results obtained are generalizations of the results derived for the interval and
symmetric uncertainty models. However, it was shown that the rules for the interval
case can be used instead of the generalized ones, provided that the appropriately
higher value of the risk of non-compliance is substituted in the interval case.

Although the fits of the functions presented in this paper to the data are quite
good, except perhaps in the central part of the uncertainty interval, the question of

3This direction of research has been brought to our attention by one of undisclosed reviewers.
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a possibly better fit to the data has been raised by one of the anonymous reviewers.
As this is certainly possible with a more flexible class of functions, the possibility of
obtaining a close analytical solution may be challenging. It will be a subject of further
investigations.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix: Fuzzy sets and fuzzy numbers

To introduce the notion of a fuzzy set, let us first consider a classical set A from
an universe U . This can be conveniently described by the characteristic function χA

defined as

χA(u) =
{

1 if u ∈ A
0 if u /∈ A

which says that a point u ∈ U belongs to the set, if χA(u) = 1, or does not belong, if
χA(u) = 0.

In a fuzzy set the characteristic function χA is generalized to take any value from
the interval [0, 1]. It is then called a membership function and is denoted μA. The
value of a membership function μA(u) reflects the degree of acceptance of the point u
to the set. Thus, a fuzzy set is characterized by the set A and the membership function
μA. A usual set is then a special fuzzy set with the membership function being the
characteristic function. A comparison of a membership function and a characteristic
function of a set is shown in Fig. 10.

A fuzzy set can be also fully characterized by a family of so-called η-cuts4 denoted
by Aη, that is, points of U , for which the value μA(u) assumes at least the value η.
See Fig. 10, where an example of a η-cut for η = 0.5 is depicted.

Two additional notions connected with a fuzzy set are worth mentioning. One is
the support, called supp A, which is the set of points u, for which the membership
function is positive, that is,

supp A = {u ∈ U : μA(u) > 0}
Another definition of the support may be formulated using η-cuts, as

supp A = lim
η→0

Aη

The second notion is the core of the fuzzy set, called core A, which is the set of points,
for which the membership function is equal 1, that is,

core A = {u ∈ U : μA(u) = 1}
Using the notion of the η-cuts we may also write

core A = A1

4Here we name the η-cut of a fuzzy set A the notion usually called the α-cut, i.e. the set Aη = {x ∈
supp A|μA(x) ≥ η}, for η ∈ (0, 1].
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Fig. 10 The characteristic
function and a membership
functions of the set A

A fuzzy set A is called a fuzzy number, if it satisfies three additional conditions:

1. core A consists of only one point.
2. The membership function does not increase starting from the core point toward

both sides.
3. Every η-cut is a (connected) closed interval.

A weaker definition of a fuzzy number is often used, with the first condition replaced
by

1’ There is a point belonging to the core A.

But in this paper we use the former stronger definition.
The η-cuts for a fuzzy number form a family of intervals. Each interval can be

interpreted as our measure of knowledge of the core value. Values of the level η

close to 1 mean that we are highly convinced that the core value is precise. Small
values of η, close to 0, mean that our conviction is low. See also Dubois and Prade
(2005) for more formal discussion of this subject. Calculations performed on fuzzy
numbers allow us to process all of this knowledge together.

Technically, two functions defined for non-negative arguments may be intro-
duced, L and R, (Bandemer 2006), such that they have the unique value 1 at 0,
L(0) = R(0) = 1, equal zero for arguments greater or equal 1, L(u) = R(u) = 0
for u ≥ 1, and are not increasing. Then, given that core A = {m}, the membership
function of a fuzzy number may be constructed using the above functions as its left
and right branches

μl
A(u) = L

(m − u
pl

)
for u ≤ m (31)

μr
A(u) = R

(u − m
pr

)
for u ≥ m (32)

where pl and pr are scale parameters, see Fig. 10. Let us denote the fuzzy number
constructed this way as A = (m, pl, pr)LR.

Although operations on fuzzy sets or fuzzy numbers can be defined in a more
general context, they are first restricted only to fuzzy numbers described in the
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above LR form. For two fuzzy numbers A = (m, pl, pr)LR and B = (n, ql, qr)LR the
following operations are defined, see Dubois and Prade (1978):

1. Addition

A + B = (m + n, pl + ql, pr + qr)LR (33)

2. Multiplication by a positive real number c

cA = (cm, cpl, cpr)LR (34)

3. Multiplication by a negative real number c

cA = (cm, |c|pr, |c|pl)RL (35)

with interchange of the function L and R in (31) and (32)

μl
cA(u) = R

(cm − u
|c|pr

)
for u ≤ cm

μr
cA(u) = L

(u − cm
|c|pl

)
for u ≥ cm

In the general case, the interval calculus for the η-cuts can be used to obtain the
appropriate operation.
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