
Vol.:(0123456789)

Language Resources and Evaluation
https://doi.org/10.1007/s10579-023-09704-w

1 3

ORIGINAL PAPER

Democratizing neural machine translation with OPUS‑MT

Jörg Tiedemann1   · Mikko Aulamo1 · Daria Bakshandaeva1 · Michele Boggia1 · 
Stig‑Arne Grönroos1,2 · Tommi Nieminen1 · Alessandro Raganato3 · 
Yves Scherrer1,4 · Raúl Vázquez1 · Sami Virpioja1

Accepted: 30 October 2023 
© The Author(s) 2023

Abstract
This paper presents the OPUS ecosystem with a focus on the development of open 
machine translation models and tools, and their integration into end-user applica-
tions, development platforms and professional workflows. We discuss our ongoing 
mission of increasing language coverage and translation quality, and also describe 
work on the development of modular translation models and speed-optimized com-
pact solutions for real-time translation on regular desktops and small devices.

Keywords  Neural machine translation · Parallel corpora · Computer-assisted 
translation · Open source

1  Introduction

Language technology carries a growing responsibility in a society that is increas-
ingly dominated by digital communication channels. Machine translation  (MT) 
plays a decisive role in cross-lingual information access and will continue to grow 
as a crucial component in our natural language processing (NLP) toolbox, enabling 
inclusiveness and equity among people with different cultural and linguistic back-
grounds. All the major IT companies recognize the importance of MT and push sig-
nificant efforts into the development of internal translation solutions with slogans 
like “no language left behind"1 and similar initiatives.

However, leaving MT to commercial exploitation comes with severe risks related 
to data privacy, transparency and inclusivity. The mission of OPUS (Tiedemann & 
Nygaard, 2004) and OPUS-MT (Tiedemann & Thottingal, 2020) is to push open and 
transparent solutions supported by the research community without profit-oriented 
goals in mind. The starting point is OPUS, a growing collection of public parallel 
data sets providing the essential fuel for open data-driven MT. Training data with 

Extended author information available on the last page of the article

1  https://​www.​micro​soft.​com/​en-​us/​resea​rch/​blog/​no-​langu​age-​left-​behind/ and https://​ai.​faceb​ook.​com/​
resea​rch/​no-​langu​age-​left-​behind/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10579-023-09704-w&domain=pdf
http://orcid.org/0000-0003-3065-7989
https://www.microsoft.com/en-us/research/blog/no-language-left-behind/
https://ai.facebook.com/research/no-language-left-behind/
https://ai.facebook.com/research/no-language-left-behind/


	 J. Tiedemann et al.

1 3

good language coverage is crucial for high-quality MT. OPUS-MT builds on that 
collection and provides public translation tools and MT solutions. The long tail of 
languages with limited NLP resources creates one of the largest challenges of mod-
ern language technology, and thus we aim at improved language coverage in OPUS 
and OPUS-MT. This paper describes the infrastructure that we are building to sup-
port our mission (see Fig. 1 for a high-level overview of the various components and 
their connections).

Recent years have seen a revolution in natural language processing due to the 
advances in deep learning and computing facilities that support training complex 
neural network architectures. This success was only possible thanks to the avail-
ability of open source frameworks and growing public data sets. Another corner-
stone in modern NLP is the distribution of pre-trained models that can be reused 
and adjusted to new tasks. Transfer learning has been shown to be very effective for 
many downstream tasks since it avoids expensive training procedures and draws sig-
nificant benefits from unsupervised pre-training on raw text. Surprisingly, little has 
been done until recently with respect to public translation models and most teams 
still develop translation engines from scratch, even the most basic ones. However, 
increasing energy consumption and awareness of the environmental impact of deep 
learning call for a better and more sustainable use of resources. We propose OPUS-
MT as a major hub for pre-trained translation models along with other initiatives 
that distribute deployable NLP models.

The most competitive architectures for neural language and translation mod-
els also present the drawback of having an ever-increasing size. Creating and even 
deploying such models becomes an obstacle and can only be done by well equipped 
units with sufficient High Performance Computing (HPC) backbones. Thus they 
tend to stay in the hands of large corporations that provide MT as a service. Even 
when creating high-quality models efficient enough to be run locally on the end-
user’s device would be possible, the corporations rarely have any incentive to pub-
lish such models with a license that would permit this.

Considering the importance of translation support, it is unfavorable if MT stays in 
the hands of a few high-tech corporations. Providing competitive public translation 
models with permissive licenses is, therefore, essential to avoid monopolies and to 
bring MT to the devices of end users, researchers and application developers with-
out any strings attached and (implicit) commercial exploitation of its users. Many 
every-day users may not be aware of the dangers of data leaks and exploitation of 
personal information when using so-called free online services that feed into com-
mercial products and targeted advertisements. In the spirit of open data and open 
source in NLP, OPUS-MT tries to democratize machine translation taking away the 
dependence on profit-maximizing services and tools. In the following we describe 
the OPUS ecosystem and how it supports this goal.

In Sect. 2 we focus on data outlining the principles of OPUS and the tools con-
nected to our collection, including the OPUS-API, OpusTools and OpusFilter tool-
kits. The section also presents the Tatoeba translation challenge. In Sect.  3, we 
provide details about the OPUS-MT framework, the training pipelines and the inte-
gration of MT models into various platforms such as Hugging Face, the European 



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

Language Grid and other end-user applications, as well as the OPUS-CAT profes-
sional workflow integration. Thereafter, we discuss benchmarks and evaluation as an 
important component in MT development in Sect. 4. Finally, we discuss our current 
efforts in scaling up language coverage and optimizing translation models in terms 
of speed and applicability in Sect. 5 before summarizing related work in Sect. 6 and 
concluding the paper with some final remarks.

2 � The open parallel corpus OPUS

OPUS2 has been a major hub for parallel corpora for about 18 years  (Tiedemann, 
2009, 2012; Tiedemann & Nygaard, 2004). It serves aligned bitexts (i.e. bilingually 
aligned parallel texts) for a large number of languages and language pairs, provid-
ing publicly available data sets for machine translation from various domains and 
sources. Currently, the released data sets cover over 600 languages and additional 
regional language variants that are compiled into sentence-aligned bitexts for more 
than 40,000 language pairs. In total there are ca. 20 billion sentences and sentence 
fragments that correspond to 290 billion tokens in the entire collection. The released 
data sets amount to about 12 TB of compressed files. Note that each sentence can be 
aligned to many other languages depending on the language coverage in individual 
sub-corpora. The distribution over languages and language pairs is naturally skewed 
and follows a Zipfian curve (Zipf, 1932) with a long tail of language pairs with lit-
tle data, whereas only a few languages cover the main part of the data set. However, 
there are over 300 language pairs that contain one million sentence pairs or more, 
providing a good base for high quality machine translation. Note, that the collection 
will be skewed toward certain domains and the use of the resulting models will be 
affected by the domain coverage for individual language pairs as well.

The native format for OPUS is a simple standalone XML format that allows to 
include additional markup depending on the original source. Sentences are marked 
with appropriate sentence boundary tags and alignments are stored as standoff anno-
tation in XCES Align format. Figure 2 shows an example of the annotation. Align-
ing text files based on sentence IDs has the advantage of scaling to large massively 
multilingual corpora such as software localisation data sets or Bible translations. 
Any document can be aligned with many translations or adaptations without repeat-
ing the essential content. The general principle in OPUS is to align all available 
language pairs to cover every possible language pair that can be extracted from the 
parallel data. Even alternative alignments can be provided without modifying the 
original corpus files, and without any impact on other alignments. Standoff align-
ment can also easily be augmented with meta-information such as alignment prob-
abilities or link type information. Those additional features can be used to filter data 
sets according to certain conditions (see Sect. 2.2).

For convenience, OPUS also provides common data formats that support a seam-
less integration into machine translation pipelines and downstream applications. 

2  https://​opus.​nlpl.​eu

https://opus.nlpl.eu


	 J. Tiedemann et al.

1 3

Those files are automatically generated from the native XML format and released 
from the OPUS storage facilities. In particular, we provide plain text file corpora 
with aligned sentences on corresponding lines [referred as Moses-style bitexts due 
to their application in the Moses toolkit (Koehn et al., 2007)], and translation mem-
ory exchange files (TMX) that can be loaded from software mainly used by profes-
sional translators. Note that those derived files typically lose information such as 
additional markup, document boundaries as well as link type information and align-
ment scores. TMX files are also deduplicated (on the level of translation units, i.e. 
pairs of aligned sentences) and empty links are removed from both Moses and TMX 
file formats. The link counts reveal those discrepancies, which may result in signifi-
cant differences for some sub-corpora in the collection.

For most corpora in OPUS, we also provide additional data files such as token 
frequency counts, word alignment files, extracted bilingual dictionaries and filtered 
phrase tables from statistical machine translation. We also provide monolingual 
data sets, some of which include data that goes far beyond the aligned texts. All of 
those released files are provided in a consistent file format and interface to make it 
convenient to integrate different subsets in systematic experiments and downstream 
applications. Note, however, that depending on the information available from the 
original sources there are slight differences in structures, markup and language IDs 
used in the various data collections. Notwithstanding, we try to follow common 
standards with mainly ISO-639-1 language codes with fallback to three-letter ISO-
639-2 and extensions specifying regional variants when necessary.

Certain inconsistencies (for example in language labels) and other issues are una-
voidable since all the data sets contain different levels of noise caused by file con-
version, sentence boundary detection and automatic sentence alignment, but most 
of it stems from the original sources. With each import, we implement filtering and 
cleaning procedures, and we continually aim to increase the quality level of the data. 
New releases will provide the result of those efforts as well as filtering software that 
can be adjusted for individual needs (see also Sect. 2.3).

Fig. 1   OPUS-MT and its connections to other components, platforms and applications



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

Also note that OPUS so far focuses on sentence-level alignments in the tradition 
of sentence-level machine translation. Certainly, the trend goes towards increased 
context in any NLP application, MT included, due to the improved capabilities of 
modern architectures to cope with larger input and the ability to produce coherent 
output with long-distance dependencies across sentence boundaries. Moving the 
entire collection to paragraph- and document-level units is impossible as many data 
sets are made out of individual sentences and their translation correspondences out 
of any context. However, some resources already include structural information and 
document-level alignment and we plan to make such information more easily acces-
sible to enable translation modelling on larger segments as well. However, so far, 
our efforts on machine translation are based on sentence-level models only as we 
will describe in more detail further down.

2.1 � Finding data sets using the OPUS‑API

The OPUS-API3 is an online API for searching data sets within OPUS. Data sets can 
be filtered by corpus names, available source and target languages, the type of pre-
processing and the released version of the corpus. The API responds with an output 

Basic corpus data with sentence boundaries (abbreviated for brevity):
<?xml version="1.0" encoding="utf-8"?>
<document>

<CHAPTER ID="0">
<P id="1"></P>
<SPEAKER ID="1" LANGUAGE="DE" NAME="Rübig">

<P id="2">
<s id="1">Madam President, I saw a few boats landing at Parliament this ...</s>
<s id="2">Not only were there language difficulties; the telephone line ...</s>
<s id="3">I would be most obliged if the number on which the security ...</s>

</P>
<P id="3"></P>

</SPEAKER>

Standoff annotation for sentence alignment (with scores):
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE cesAlign PUBLIC "-//CES//DTD XML cesAlign//EN" "">
<cesAlign version="1.0">
<linkGrp targType="s" toDoc="fr/2005/CES_AC71_2005_5SUMMARY.xml.gz"

fromDoc="en/2005/CES_AC71_2005_5SUMMARY.xml.gz">
<link certainty="0" xtargets=";1 2" id="SL1" />
<link certainty="0.612088" xtargets="1;3" id="SL2" />
<link certainty="0.173077" xtargets="2;4" id="SL3" />

...

Fig. 2   An example of XML encoded OPUS data (corpus and sentence alignments). Sentence IDs are 
used to link sentences between two documents. Multiple sentences may appear in a link in which there 
sentence IDs are separated by spaces. Source and target language IDs are separated by a semicolon and 
empty links may also appear (like the first link in the example above where no source language sentence 
is aligned with sentences 1 and 2 in the target language)

3  https://​opus.​nlpl.​eu/​opusa​pi/

https://opus.nlpl.eu/opusapi/


	 J. Tiedemann et al.

1 3

in JSON format. The response contains information and simple statistics about the 
corpora, such as a download link to the necessary corpus files, size of the data files 
in bytes, the number of sentence pairs and tokens among other things. Figure  3 
shows an example of the output.

In addition, the OPUS-API provides the functionality to list all available corpora 
and languages in OPUS, as well as more specific queries. For example, one can look 
up all available languages for a given corpus, or all target languages for a source lan-
guage within all of OPUS or within a given corpus. These commands are useful for 
finding data sets for specific language pairs.

2.2 � Fetching and processing parallel data with OpusTools

The OpusTools package4 (Aulamo et al., 2020) enables easy access to the corpora 
and data files in OPUS. It provides a Python interface to the OPUS-API, methods 
for downloading and formatting the identified corpora, and some additional func-
tionality for language detection and corpus splitting.

The main script in OpusTools is opus_read whose primary function is to read 
files from OPUS and to output the sentence pairs in various supported formats. 
Given source and target languages and a corpus name, opus_read downloads the 
necessary files via information from the OPUS-API. It parses XCES format align-
ment files and reads the corresponding sentences from compressed XML files to 
produce the requested output in the desired formats, including Moses-style bitexts 
and TMX. The opus_read script also provides the functionality to run basic data 
filtering. For example, one might only want to include one-to-one sentence align-
ment in the output. Additionally, it is possible to filter sentence pairs based on XML 
attributes such as sentence alignment confidence score (subject to the availability 
of the tags in the selected corpus). Furthermore, OpusTools contains the opus_
langid script, which can be used for language identification of OPUS files using 
pycld25 and langid.py6 (Lui & Baldwin, 2012). The script inserts language identifi-
cation attribute tags in the XML files to make it possible to use language identifica-
tion information for data filtering. In the future, we plan to systematically add meta-
data like automatically detected language tags to all data sets in OPUS. OpusTools 
will be useful for this task also for incoming data sets. While OpusTools only sup-
ports basic data filtering and conversion methods, the OpusFilter toolbox described 
below offers a much wider range of options for processing the corpora.

4  https://​github.​com/​Helsi​nki-​NLP/​OpusT​ools
5  https://​github.​com/​aboSa​moor/​pycld2
6  https://​github.​com/​saffsd/​langid.​py

https://github.com/Helsinki-NLP/OpusTools
https://github.com/aboSamoor/pycld2
https://github.com/saffsd/langid.py


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

2.3 � Cleaning and preparing data sets with OpusFilter

OpusFilter7 (Aulamo et al., 2020) is a toolbox for filtering and combining parallel 
corpora. The toolbox supports three main types of operations: corpus preparation 
tasks, essential preprocessing steps and, finally, various types of filters that aim to 
remove noise and unwanted content. In contrast to tools that implement a single fil-
tering method (e.g. Sánchez-Cartagena et al., 2018; Xu & Koehn, 2017), OpusFilter 
allows to apply different approaches, including custom filters defined by the user. 
Moreover, it can be used for other corpus manipulation tasks needed when building 
MT models, for example joining corpora, splitting them into training and test sets, 
and applying tokenization.

OpusFilter can connect to the OPUS corpus collection via the OpusTools library, 
but can also operate on local text files to process any monolingual, bilingual, or mul-
tiparallel corpora. A YAML8 configuration file defines the pipeline to transform raw 
corpus files to clean training and test set files. The same pipeline can be general-
ized over multiple language pairs. A single, easy-to-share configuration file design is 
central in our efforts to provide transparent solutions and to alleviate the reproduc-
ibility issues of experiments that affect the current MT research (Marie et al., 2021).

2.3.1 � Corpus‑level data preparation

The first steps in parallel corpus preparation are typically related to obtaining, 
joining and splitting the different corpora. The interface to the OPUS collection 
via OpusTools allows automatic downloading of the existing corpora. OpusFilter 

{
"corpora": [

{
"alignment_pairs": 29903792,
"corpus": "OpenSubtitles",
"documents": 38969,
"id": 328013,
"latest": "True",
"preprocessing": "xml",
"size": 297683,
"source": "en",
"source_tokens": 257890401,
"target": "fi",
"target_tokens": 161280297,
"url": "https://object.pouta.csc.fi/OPUS-OpenSubtitles/v2018/xml/en-fi.xml.gz",
"version": "v2018"

},
...

]
}

Fig. 3   An example of OPUS-API’s JSON output showing the first item when querying for the latest ver-
sion of the English–Finnish OpenSubtitles corpus in XML format

7  https://​github.​com/​Helsi​nki-​NLP/​OpusF​ilter
8  https://​yaml.​org/

https://github.com/Helsinki-NLP/OpusFilter
https://yaml.org/


	 J. Tiedemann et al.

1 3

supports many common text file operations on parallel files: concatenation, head (N 
first lines), tail (N last lines), and slice (lines from N to M). There is a command for 
taking a random subset of a specific size from a corpus and splitting data into two 
subsets with given proportion. Another command allows combining multiple trans-
lations for the same segments in separate files into a single parallel set containing all 
available combinations or a sampled subset of them.9 Once corpus files have been 
created, one can proceed with essential text preprocessing described below.

2.3.2 � Segment‑level preprocessing

The preprocessing step can be used to apply a number of segment-level preproc-
essors to monolingual or parallel corpora. The implemented preprocessors include 
whitespace normalization, custom regular expression substitutions, monolingual 
sentence splitting,10 tokenization,11 Chinese word segmentation,12 Japanese word 
segmentation,13 and subword segmentation with BPE14(Sennrich et  al., 2016) or 
Morfessor15(Virpioja et  al., 2013). Custom preprocessors can be added by imple-
menting a simple Python class for them.

2.3.3 � Filtering

OpusFilter includes two types of filters. In the scope of a corpus, duplicate filtering 
provides ways to either remove identical segments (optionally ignoring casing and 
non-letter characters), either in all or just some of the languages, within a corpus. It 
is also possible to remove those segments from one corpus that overlap with another 
corpus (e.g. training data segments that overlap with the test data).

The rest of the filters work segment-by-segment, either accepting or removing 
each independently of the others. The filters currently implemented by OpusFilter 
include various length-based filters, language identification filters (based on lan-
gid.py16  (Lui & Baldwin, 2012), pycld2,17 and fasttext18  (Joulin et  al., 
2016; Joulin et  al. 2017), script, special character, and similarity filters, filters 
using varigram language models19(Siivola et  al., 2007), filters using word align-
ment models20(Östling & Tiedemann, 2016), and sentence embedding filter that 

9  For example, three Spanish translations and three French translations for the same English document 
can be combined to have nine Spanish–French pairs per each segment in the document.
10  https://​github.​com/​media​cloud/​sente​nce-​split​ter
11  https://​github.​com/​mingr​uimin​grui/​fast-​moses​token​izer
12  https://​github.​com/​fxsjy/​jieba
13  https://​github.​com/​Samur​aiT/​mecab-​pytho​n3
14  https://​github.​com/​rsenn​rich/​subwo​rd-​nmt
15  https://​github.​com/​aalto-​speech/​morfe​ssor
16  https://​github.​com/​saffsd/​langid.​py
17  https://​github.​com/​aboSa​moor/​pycld2
18  https://​fastt​ext.​cc/
19  https://​github.​com/​vsiiv​ola/​variKN
20  https://​github.​com/​rober​tostl​ing/​eflom​al

https://github.com/mediacloud/sentence-splitter
https://github.com/mingruimingrui/fast-mosestokenizer
https://github.com/fxsjy/jieba
https://github.com/SamuraiT/mecab-python3
https://github.com/rsennrich/subword-nmt
https://github.com/aalto-speech/morfessor
https://github.com/saffsd/langid.py
https://github.com/aboSamoor/pycld2
https://fasttext.cc/
https://github.com/vsiivola/variKN
https://github.com/robertostling/eflomal


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

estimates sentence similarity based on multilingual LASER embeddings21 (Artetxe 
& Schwenk, 2019).

The segment-by-segment filters that can be used in OpusFilter specify two meth-
ods: the score method determines a numerical or boolean output for the segments, 
and the accept method makes a decision whether to accept or reject the segments 
with the given score. The score may be just one value or a vector of multiple values. 
For example, LengthFilter returns the number of characters or words in the 
segment: one for monolingual corpus, two for bilingual corpus, and so on. The mini-
mum and maximum length parameters determine whether the segment is accepted 
or not.

Instead of directly applying the filtering decisions, OpusFilter can output the 
scores from the filters. They can be used to inspect the data and determine reason-
able thresholds for filtering. For this, OpusFilter includes tools for analyzing and 
visualizing the scores. In addition to direct filtering, the filter scores can also be 
used to train a classifier to make the filtering decision based on a combination of the 
scores (Vázquez et al,. 2019).

2.4 � The Tatoeba translation challenge

Recently, we created a special compilation of data released under the label of the 
Tatoeba translation challenge,22 (TTC for short)  (Tiedemann, 2020) to overcome 
some of the complications present in models trained on OPUS data. OPUS is a 
dynamic data collection with occasional new dataset releases, hence there are plenty 
of ways for compiling data sets from the collection and the coverage may always 
change. Moreover, data preprocessing and cleaning greatly influences the quality of 
MT, and frequent duplicates across all subsets together with substantial noise may 
have a negative influence on learning procedures.

The TTC is named after the selected test and development data, which we take 
from the Tatoeba corpus, a dataset of user-contributed translations in hundreds of 
languages. The latest release of the TTC includes 32 billion translation units23 in 
4,024 bitexts covering 487 languages. We compile the training data from OPUS cor-
pora and focus on creating a data set with consistent language labels that can easily 
be used for systematic machine translation experiments. All bitexts are deduplicated 
and filtered. We provide randomly shuffled training sets and dedicated development 
and test data to support a consistent experimental setup.

We divide the data set into several sub-challenges depending on the availability 
of training data. Details of the setup are available in Tiedemann (2020). The current 
state of our machine translation development with respect to the TTC is monitored 
using our dashboard (see Sect. 4.1). Geographic visualizations (see Fig. 4) also help 

21  https://​github.​com/​yannv​gn/​laser​embed​dings
22  https://​github.​com/​Helsi​nki-​NLP/​Tatoe​ba-​Chall​enge
23  Typically, translation units refer to aligned sentence pairs but they also include units of multiple sen-
tences aligned to corresponding translations as it is often the case in various parallel data sets. Tatoeba 
also frequently includes units with more than one sentence.

https://github.com/yannvgn/laserembeddings
https://github.com/Helsinki-NLP/Tatoeba-Challenge


	 J. Tiedemann et al.

1 3

to see the gaps in language coverage, which we try to fill in OPUS-MT. We also 
complement the evaluation with results from other established benchmarks. This is 
necessary as user contributed data such as the TTC benchmark can have various 
issues and a systematic quality control is beyond our capabilities. Furthermore, TTC 
refers to a specific kind of content mostly targeted at language learners and travelers 
with a focus on every-day language and rather short and frequent expressions.

We aim at regularly updating the TTC dataset in order to capture the growing 
support for language pairs and domains. Releases of benchmarks will be updated 
more frequently, depending on the growth of the original Tatoeba database. We 
encourage the reader to contribute to the collection of translations24 to support our 
project. Training data releases will be compiled as needed whenever large new col-
lections enter the OPUS collection.

3 � Open machine translation with OPUS‑MT

With OPUS-MT, we strive to provide public state-of-the-art translation solutions 
and to be a major hub for pre-trained translation models. OPUS-MT is based on 
Marian, an efficient implementation of neural machine translation (NMT) in pure 
C++ and with minimal dependencies (Junczys-Dowmunt et al., 2018). Marian is a 
production-ready framework and includes optimized routines that enable a scalable 
approach to development and exploitation of modern MT systems. In more detail, 
OPUS-MT targets two main objectives: 

1.	 Training pipelines and models (Section 3.1): Scripts and procedures that can 
be used to systematically train neural MT models from public data collected in 
OPUS. The recipes include all necessary components that are required to cre-
ate competitive translation models, including data preparation, model training, 
back-translation and other kinds of data augmentation, as well as fine-tuning and 
evaluation. Using the pipelines, models are trained on a large scale and released 
with permissive licenses to be reused and integrated in various platforms and 
workflows.

2.	 MT servers and integration (Sections 3.3 and 3.4): Pre-trained models need to be 
integrated into various platforms to make them widely applicable for end-users, 
translation professionals, system developers and general MT researchers. OPUS-
MT provides simple server applications that can be used to deploy translation 
engines. The project also emphasizes integration into external infrastructures such 
as the Hugging Face transformers library and model hub (Sect. 3.3.1) and 
the European Language Grid (Sect. 3.3.2). Professional workflows are supported 
through plugins and installation packages tailored towards end users.

24  https://​tatoe​ba.​org/​en/​users/​regis​ter

https://tatoeba.org/en/users/register


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

The following sections provide an overview of the implementation and functionality 
of the training pipelines, the release procedures and documentation of pre-trained 
translation models, the implementation of server applications, and the integration 
into various platforms and software packages.

3.1 � Training pipelines

The main purpose of OPUS-MT training pipelines is the integration of data prepara-
tion with flexible recipes for running experiments and massive NMT pre-training. 
Our intention is to create reusable procedures that we can run internally for creating 
the models we would like to use and release. However, we also share those recipes 
since we want to create a transparent approach that can be inspected and replicated.

The implementation of training pipelines is based on GNU Make25 recipes. The 
make command and makefiles are well established work horses in the automation 
of compilation workflows and with that they provide a stable and tested environ-
ment, which is highly beneficial for our purposes. The philosophy of defining build 
targets that have various dependencies fits very well in the picture of model training 
and NLP experiments. Makefiles define the recipes and dependency chains that need 
to be followed in order to produce the final product, in our case NMT models and 
release packages.

Fig. 4   Language coverage of translation models visualized on an interactive map. Geolocations of lan-
guages are taken from Glottolog and dot colors indicate the translation quality in terms of an automatic 
evaluation metric measured on the Tatoeba test set in this case on a scale from green (best) to red (worst). 
Smaller circles refer to smaller, less reliable test sets

25  https://​www.​gnu.​org/​softw​are/​make/

https://www.gnu.org/software/make/


	 J. Tiedemann et al.

1 3

There are several advantages that we benefit from when using makefiles:

•	 Dependencies are automatically resolved and the build process is interrupted if 
essential dependencies cannot be resolved.

•	 Intermediate files and results can be reused and do not have to be built again if 
not necessary. Timestamps automatically determine whether targets need to be 
re-built and updated, which may affect the entire pipeline.

•	 Targets can be built in parallel and the make command determines which reci-
pes can run simultaneously without breaking dependencies defined by the inter-
nal recipes.

•	 Unnecessary intermediate files are deleted at the end of the process.
•	 Static pattern rules can be used to create template recipes, which can help to 

define generic procedures that apply to many related tasks.
•	 Many in-built functions support the manipulation of variables, file names and 

build workflows.

OPUS-MT tries to make use of those advantages and implements recipe chains 
that cover all necessary sub-tasks for training, testing and releasing NMT models. 
The goal is to provide various high-level make commands that can run in batch 
mode with variables that control properties and procedures to enable a systematic 
exploitation of massively parallel data sets. Without those generic recipes it would 
not have been possible to train such a large amount of models that we were able 
to release already (over 2,300 models at the time of writing, 744 multilingual ones 
among them with varying language coverage on source and target side).

Our training pipelines are stored in a public git repository26 and build recipes are 
subject to change as we continuously develop the system. The main components and 
principles stay the same and documentation is provided within the repository. Here, 
we only provide a high-level overview of the package and refer the interested reader 
to the original source.

3.1.1 � Setup and basic training

Setting up and starting training batch jobs is straightforward and is optimized for 
modern Linux-based systems with sufficient storage space, the availability of a 
CUDA compatible GPU and access to online sources. Installing the pipelines and 
software dependencies can be done on the command-line using the installation 
recipes: 

26  https://​github.​com/​Helsi​nki-​NLP/​OPUS-​MT-​train

https://github.com/Helsinki-NLP/OPUS-MT-train


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

Training generic models can be done by basic high-level targets that take care of 
the entire pipeline and sub-tasks necessary for fetching data and starting the training 
procedures. The documentation includes an extensive list of command line variables 
to control the properties and parameters of the various sub-tasks. However, the most 
essential variables to be set are the source and target language specifications: 

The above example demonstrates how easy it is to create a (multilingual) neural 
OPUS-MT model by just giving a set of language IDs to be included in the model 
(Finnish and Estonian as source languages and Danish, Swedish and English as 
target languages in this case). Note that the first command can be skipped because 
data is a prerequisite for the training recipe that will fetch and prepare data in any 
case.27 The recipes are designed to take care of fetching all available data sets from 
OPUS with combinations of source and target languages. A random disjoint sample 
(in all language combinations) from a dedicated corpus will be used as validation 
and test data and remaining data goes into training. There is a manually specified 
hard-coded priority list of OPUS corpora that will be used as test and development 
data focusing on language coverage and relative cleanliness. The list and mecha-
nisms are likely to change over time with further evolvements of OPUS and the 
OPUS-MT training recipes. Alternatively, the TTC data sets can be used to apply a 
consistent split into train, development and test data. Models that use multiple target 
languages will automatically use target language labels to augment the completely 
shared transformer model.

In general, OPUS-MT will use the latest releases of OPUS to prepare the data. 
Some basic sanity checking and filtering (removal of non-printable or broken Uni-
code characters and some length-based filtering) is done but no major changes are 
applied to the sources. Subword segmentation models are trained using Sentence-
Piece  (Kudo & Richardson, 2018) and word alignments are created using eflo-
mal (Östling & Tiedemann, 2016) to feed the guided alignment feature that is used 
by default.28 The default parameters provide a good fit for regular baseline models 
but we encourage further optimization of hyper-parameters. For more details on how 
to control the setup, please look at the documentation of the recipes themselves. The 
eval target will compute automatic evaluation metrics on heldout data. Another 
target (eval-testsets) can be used to also benchmark with other test sets avail-
able for supported language pairs. Those need to be available in the repository.

27  Note that the eval target is not implemented with train as a pre-requisite in order to avoid that 
calls for evaluation automatically trigger expensive data fetching and training procedures.
28  Neural word aligners like awesome aligner (Dou & Neubig, 2021) could be used as well but we prefer 
a language-agnostic aligner like eflomal that does not require pre-trained language models with a cer-
tain language coverage and the potential need of additional fine-tuning.



	 J. Tiedemann et al.

1 3

OPUS-MT also supports temperature-based data sampling  (Arivazhagan et  al., 
2019), which is important to balance the availability of specific language pair exam-
ples in multilingual translation models. Adding a parameter to the training data 
creation recipes will influence the proportions used for skewed data sets. To give 
a practical example: adding MAX_DATA_SIZE=1000000 DATA_SAMPLING_
WEIGHT=0.2 to the make command will cause the system to select proportionally 
to the temperature-adjusted likelihood p1∕5

l
 of observing an example in language l 

from the entire data set. The additional parameter MAX_DATA_SIZE sets the sam-
ple size to one million examples for the largest language pair and all other language 
pairs will be down- or over-sampled according to the sample rate.

3.1.2 � Batch jobs on HPC infrastructure

The main mode of running OPUS-MT training pipelines is to use batch jobs on 
high-performance computing (HPC) clusters using the Slurm Workload Manager29 
as a job scheduler. To support a flexible use of all recipes, OPUS-MT implements 
generic pattern rules to turn any recipe (or makefile target) into a Slurm batch job. 
This is done by defining a special suffix that can be appended to any target available 
in the makefile-based build system. When adding such a suffix, the recipe will gen-
erate a Slurm script with the original target as a goal and submit it to the job sched-
uler using the setup specified for the HPC-specific environment. Note that those set-
tings are now basically hard-coded to work in our own environment and adjustments 
need to be made to match the local installation of your HPC cluster. Below, you can 
see an example for submitting the training job for the same model discussed above 
with a walltime of 72 h (the .submit suffix triggers the creation of the batch job 
script and the submission to the Slurm engine): 

Various variables can be used to control the behavior and resource allocation 
of those jobs. For details, have a look at the documentation and definitions in the 
source code.

3.1.3 � Data augmentation

Data augmentation is particularly important for less resourced languages. However, 
even better resourced languages benefit from back-translation (Sennrich et al., 2016) 
and other techniques that increase the coverage of the data. OPUS-MT implements 
convenient procedures to produce back-translations and pivot-based triangulation 
data.

By default, monolingual data extracted from Wikipedia and other public data 
sets provided by the Wikimedia foundation are available for back-translation. For 

29  https://​slurm.​sched​md.​com/​overv​iew.​html

https://slurm.schedmd.com/overview.html


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

supported languages, OPUS-MT fetches the previously prepared data from our 
object storage and uses existing models in the opposite translation direction to trans-
late them back into a source language. Back-translation is done for individual lan-
guage pairs, but multilingual models can certainly be used besides of bilingual ones 
for that purpose, too.

Training OPUS-MT models in different directions can be done iteratively and, 
thus, back-translated data can improve step by step and with that the quality of trans-
lation models in both directions can go up (Hoang et al., 2018). This is especially 
useful in low-resource settings where initial back-translations may be quite noisy 
and translation quality first needs to reach reasonable levels in both directions. An 
example of such an iterative back-translation procedure is illustrated in Fig. 5, where 
a model for translating from English to Central Bikol is improved with several itera-
tions of back-translation.

Another effective method for data augmentation is triangulation and pivot-based 
translation. Many data sets are English-centric, but the demand for direct transla-
tion between non-English languages is certainly growing and still under-explored. 
A practical real-world example arose in the on-going crisis in Ukraine. Refugees 
moving to various European countries need support to manage information flow and 
communication in the local languages. Figure 6 illustrates the various ways of aug-
menting data for improved translation, in this example between Ukrainian and Finn-
ish (in both directions).

Triangulation of English-centric data is an easy way of producing additional 
training material. MultiParaCrawl30 is created in this way by pivoting alignments on 
identical sentences in English. A non-negligible amount of the 1.5 million sentence 
pairs for Finnish–Ukrainian could be extracted in this way from the original Eng-
lish–Ukrainian and English–Finnish bitexts in ParaCrawl.

Pivot-based translation is another straightforward way of producing artificial 
training data. Translating one side of a bitext can turn existing data sets into a syn-
thetic parallel corpus for a different language pair. This is especially useful if strong 
high-quality models can be used to perform that automatic translation. In our run-
ning example, we can use a multilingual model for related East Slavic languages 
to translate from Russian to Ukrainian and another optimized model for translat-
ing English into Finnish to transform English–Ukrainian and Russian–Finnish data 
into the desired Finnish–Ukrainian language pair. Note that we include both syn-
thetic source language data (from the English–Ukrainian corpus where English is 
translated to Finnish) and synthetic target language data (from the Russian–Ukrain-
ian corpus with Russian translated into Ukrainian). Typically, synthetic target lan-
guage is not preferred because of the additional noise that may enter a translation 
model. However, given the quality that can be achieved for closely related lan-
guages, this procedure is stable enough and quite effective as another means of data 
augmentation.

Multilingual models would be an alternative for implicitly including pivot lan-
guages, but the pivot-based direct translation approach has the advantage that we 

30  https://​opus.​nlpl.​eu/​Multi​ParaC​rawl.​php

https://opus.nlpl.eu/MultiParaCrawl.php


	 J. Tiedemann et al.

1 3

do not need to increase the capacity of the translation model (by blowing up the 
number of parameters) to accommodate additional languages nor do we need to 
be concerned about balancing between different languages in mixed language 
data. Furthermore, we can once again benefit from existing pre-trained models 
that have already been optimized in various ways, avoiding to re-learn everything 
from scratch.

Fig. 5   Iterative back-translation as a means of data augmentation. OPUS-MT uses Wikipedia content as 
monolingual data and the example illustrates the iterative improvements (in the barchart to the right) 
for translations between English and Central Bikol (an Austronesian language spoken in the Philippines) 
in terms of BLEU scores. Monolingual data coming from Wikipedia is translated in several rounds of 
improved forward and backward translation using the fresh translations to create the current synthetic 
back-translated data for augmenting the translation models in both directions

Fig. 6   Data augmentation using triangulation and pivot-based machine translation. Synthetic training 
data can be created from English-centric parallel corpora and automatic translations of some pivot lan-
guage using existing OPUS-MT models. The illustration shows the approach on the example of Ukrain-
ian–Finnish translation



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

3.1.4 � Fine‑tuning

Usually, it is also common to fine-tune models for specific tasks or domains. OPUS-
MT supports fine-tuning in a way that a short cycle of additional training based on 
small task-specific training data can be triggered. A common situation is that a local 
translation memory can serve as additional training material. Special recipes enable 
such a fine-tuning process.

Another common scenario is that multilingual models can be fine-tuned for spe-
cific language pairs. The idea is to take advantage of transfer learning in the general 
training phase and then to use language-specific data to fine-tune the model for that 
particular language pair. This is also supported by OPUS-MT and the released col-
lection of training pipelines and recipes. However, in our experience, it is difficult to 
define proper learning parameters to avoid over-fitting and catastrophic forgetting. 
Therefore, we typically do not release such fine-tuned models and leave it up to end-
users or developers of specific solutions to perform such a process.

3.1.5 � Evaluating and releasing

The final task we want to discuss in this section refers to evaluation and packaging of 
models. The targets for testing the models have already been mentioned earlier. The 
OPUS-MT repository, furthermore, includes common benchmark test sets and those 
are useful to compare model quality with other established and published research. 
We are currently working on a more principled way to benchmark all released mod-
els. More information about that effort is given in Sect. 4.

An important feature is also the creation of release packages. Special targets are 
defined to collect all necessary information, generate documentation in terms of 
readme files and YAML files together with benchmark results and other essential 
details. Release packages contain models including essential pre- and post-process-
ing scripts, subword segmentation models, and decoder configurations. Training 
log files are also included. For internal use, we also support convenient functions 
for storing and fetching models as well as intermediate work files from our external 
storage service. Various procedures are defined to update information available for 
external users including lists of released models and important properties that define 
their functionality.

Releases are done inside of ObjectStorage containers with a CEPH backend,31 
which are linked from project websites and GitHub markdown pages. Information 
about their performance is also available and more information on benchmarking 
will be given further down in Sect. 4.

31  Ceph is an open-source, distributed storage system, see https://​ceph.​io/.

https://ceph.io/


	 J. Tiedemann et al.

1 3

3.2 � Machine translation server applications

OPUS-MT also provides ways of deploying models and building translation serv-
ers to demonstrate and use MT from web applications or through service APIs. Our 
implementations32 leverage the efficient decoder released as part of Marian-NMT33 
in its server mode to create a running translation service. Two alternative appli-
cations are available, one based on the Tornado web framework and another one 
implementing websocket services that can easily be deployed on common Linux 
servers and virtual machines.

The Tornado-based solution is also containerized using docker and can in this 
way be deployed in various environments. Simple web frontends demonstrate the 
usage of the service APIs. Configuration and setup is straightforward using the 
released packages from OPUS-MT. The server backends take care of all basic pre- 
and post-processing (including sentence splitting and subword tokenization) and 
provide a simple JSON interface to the actual server. Both applications can also 
combine several translation services and provide them through the common inter-
face and API. Models to be supported can be specified in configuration files. An 
example for a Tornado web app configuration is shown in Fig. 7.

The websocket service provides some additional functionalities that can be use-
ful when deploying OPUS-MT models. There is an additional router daemon that 
can serve as a central access point, which is able to connect to various translation 
backends. The integration of multilingual models is also well supported. Further-
more, the output also provides the segmentation into subword units and an align-
ment between them, which is meaningful for models that are trained with the guided 
alignment feature of Marian-NMT.34 Interfaces can then show links between input 
and output tokens to better trace the connections between source and target language 
inside of the translation model. Alignments can also be useful for additional post-
processing features built on top of the translation service itself like placing tags 
and formatting information. An example output is shown in Fig.  8. Furthermore, 
the server backend also implements a cache that speeds up translation substantially 
when identical sentences are passed into the engine. The cache implements a simple 
yet efficient lookup function in a hashed database, which is stored on the local disk 
of the server.

Our web applications are mainly provided for demonstration purposes, but they 
can be used as a starting point for serious platform integration and real-world appli-
cations, as we will discuss in the next section.

32  https://​github.​com/​Helsi​nki-​NLP/​OPUS-​MT
33  https://​marian-​nmt.​github.​io/
34  This feature allows to guide one of the cross-lingual attention heads in the transformer with pre-com-
puted token alignments. In this way, we obtain an attention pattern that specializes on word alignment 
and it also helps to kickstart the training procedures with relevant prior knowledge, which can be useful 
especially in low-resource settings.

https://github.com/Helsinki-NLP/OPUS-MT
https://marian-nmt.github.io/


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

3.3 � Platform integration

The web services and applications described in the previous section already dem-
onstrate the practical use of OPUS-MT models beyond the pure NLP research 
field. But even in research, platform integration becomes increasingly important: 
training is expensive and developing models from scratch becomes rarer in cur-
rent approaches based on transfer learning. Integration into popular libraries and 
platforms is, therefore, essential to avoid unnecessary overheads of getting started 
with the basic facilities needed to make progress in research and development.

{
"en": {

"es": {
"configuration": "./models/en-es/decoder.yml",
"host": "localhost",
"port": "10001"

},
"fi": {

"configuration": "./models/en-fi/decoder.yml",
"host": "localhost",
"port": "10002"

},
}

}

Fig. 7   A simple configuration for an OPUS-MT server using the Tornado web app implementation pro-
viding services for English–Spanish and English–Finnish machine translation

{
"alignment": [

"0-0 1-1 2-2"
],
"result": "Huomenta, Suomi",
"segmentation": "spm",
"server": "192.168.1.15:40002",
"source": "sv",
"source-segments": [

"\u2581Godmorgon , \u2581Finland"
],
"target": "fi",
"target-segments": [

"\u2581Huomenta , \u2581Suomi"
]

}

Fig. 8   A translation response from a websocket server using OPUS-MT to translate from Swedish to 
Finnish. The final result after post-processing is available in the “result" item and “alignment" refers to 
subword token alignments between source and target language segments. Source and target segments list 
subword tokens separated by whitespaces. The Unicode character \u2581 at the beginning of some of 
them indicates the connection to the previous token (i.e. the need for removing the preceding space), 
which is commonly used by the SentencePiece tokenizer (Kudo, 2018)



	 J. Tiedemann et al.

1 3

In this section, we describe the efforts of connecting OPUS-MT to various exter-
nal platforms and software packages in order to make our models widely available 
and accessible for end-users, application developers and basic NLP researchers. 
We only provide a few examples of possible use cases. Many other applications 
are potential platforms where OPUS-MT can be integrated. For example, our mod-
els are already available through Tiyaro.ai,35 another model hub for AI apps. The 
resources are also listed in Meta-Share36 and tools could also be added to the CLA-
RIN switchboard.37

Fig. 9   An example of an OPUS-MT model card in the Hugging Face model hub. The blue text box on 
top of the screenshot shows a three-line code snippet for using the model from the transformers 
library. The model card includes information about the use of the model, supported languages and links 
to relevant project websites with further information about the original model and data sets used for cre-
ating it. The model hub also provides a live inference API that can be used to test the model (in the right 
column) and download statistics are also shown on the top of that column

35  https://​conso​le.​tiyaro.​ai/​explo​re?q=​opus-​mt &​pub=​Helsi​nki-​NLP
36  https://​metas​hare.​csc.​fi/
37  https://​switc​hboard.​clarin.​eu/

https://console.tiyaro.ai/explore?q=opus-mt%20&pub=Helsinki-NLP
https://metashare.csc.fi/
https://switchboard.clarin.eu/


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

3.3.1 � PyTorch and the transformers library

The success of deep learning has been made possible thanks to the availability of 
open software that allows easy adaptation of neural approaches to a wide range of 
tasks, NLP-related ones being very visible among them. General-purpose frame-
works such as PyTorch38 and Tensorflow39 provide the essential backbone of most 
of the work done in this area. Specialized high-level libraries on top of those frame-
works nowadays make it easy to get started with state-of-the-art approaches to neu-
ral NLP and also enable access to released pre-trained models of various kinds. The 
transformers library published by Hugging Face40 is one of the most popular 
hubs of modern NLP, which is largely driven by the community.

With the help of the scientists at Hugging Face, OPUS-MT models have been 
fully integrated into the transformers library by converting them to PyTorch. 
The impact is significant as this enables a wide range of users to immediately get 
access to thousands of pre-trained translation models supporting many languages 
and language pairs. Models are now available from the Hugging Face model hub 
and can be used with a few lines of code or even through the online inference API 
(see Fig. 9).

The collaboration with Hugging Face is on-going and future developments will 
make their way into the popular framework. Recently, conversion tools were adapted 
to cover more flexibly different architectures. Tensorflow-based backends are also 
supported now, which creates additional opportunities.

3.3.2 � Integration into the European language grid

The European Commission has been one of the most important players in creating 
resources and solutions for inclusive language technology. The European Language 
Grid (ELG) is one of the EU-supported initiatives to build a comprehensive infra-
structure for NLP resources and tools.41 OPUS-MT has been funded as one of the 
ELG pilot projects. This has led to a seamless integration of translation services 
based on OPUS-MT models in containerized server implementations at ELG.

ELG services can be accessed from their live platform and models are loaded 
on demand from their cloud infrastructure running through Kubernetes42 and Open-
Stack.43 HTTPS requests can be sent to the internal API and services such as OPUS-
MT can also be called programmatically from, for example, a dedicated ELG python 
library. Metadata records and persistent identifiers based on Digital Object Identi-
fiers (DOI)44 create sustainable resources according to the Findability, Accessibility, 

38  https://​pytor​ch.​org/
39  https://​www.​tenso​rflow.​org/
40  https://​huggi​ngface.​co/​trans​forme​rs/
41  https://​live.​europ​ean-​langu​age-​grid.​eu/
42  https://​kuber​netes.​io/
43  https://​www.​opens​tack.​org/
44  https://​www.​doi.​org/

https://pytorch.org/
https://www.tensorflow.org/
https://huggingface.co/transformers/
https://live.european-language-grid.eu/
https://kubernetes.io/
https://www.openstack.org/
https://www.doi.org/


	 J. Tiedemann et al.

1 3

Interoperability, and Reuse (FAIR) principles.45 The collaboration with ELG 
ensures long-term preservation of our developments and provides the necessary 
maintenance through their standardized infrastructure.

OPUS-MT now includes procedures to generate metadata records and docker 
images that can be pushed directly to Docker Hub46 and ELG. Through those rou-
tines, new services can easily be registered inside of the ELG platform and become 
available to end-users and developers after some internal validation period. Docker 
images are naturally also available outside of the ELG platform and can be fetched 
and deployed locally or on other cloud services. We also integrate ELG translation 
services into OPUS-CAT, making it possible to include OPUS-MT in professional 
translation workflows. More information on OPUS-CAT can be found in Sect. 3.4.

3.3.3 � End‑user applications

The previous sections already showed several ways of integrating OPUS-MT into 
end-user applications through online services and containerized server solutions. 
Further integration into tools described below demonstrate additional use cases and 
application areas.

Interactive and instant translation is useful for quick access to information 
in other languages. The Bergamot project47 created speed-optimised implementa-
tions for local translation engines that can run inside of a web browser or in dedi-
cated desktop applications.48 The main idea is to use knowledge distillation, quan-
tization and lexical shortlists49 to push the limits of decoding speed. Furthermore, 
decoder implementations can be optimized in various ways and a customized fork 
of Marian creates the backbone of the Bergamot solution. OPUS-MT models can 
be used through the same infrastructure as they are natively built in Marian-NMT. 
Furthermore, we currently work on systematic distillation of OPUS-MT models to 
create efficient student models that are compatible with the Bergamot project (see 
also Sect. 5.2). With those, our models become available in the repository of their 
browser-based MT solutions50 and the translateLocally desktop app51 (see Fig. 10).

Plugins and add-ons for commonly used applications are another means of 
bringing OPUS-MT to the actual end users. One example is social media channels 
that are frequently used by millions and even billions of people around the World. 
As a response to the crisis in Ukraine, we developed a prototype for translating 
from and to Ukrainian using a translation bot in Telegram. To date, according to 

45  https://​www.​go-​fair.​org/​fair-​princ​iples/
46  Docker Hub is a repository of user-contributed software container images, see https://​hub.​docker.​
com/.
47  https://​brows​er.​mt/
48  https://​trans​latel​ocally.​com/
49  A lexical shortlist restricts the output vocabulary to a small subset of translation candidates to improve 
decoding speed, see https://​marian-​nmt.​github.​io/​docs/ for further information.
50  https://​trans​latel​ocally.​com/​web/
51  OPUS-MT fork at https://​github.​com/​Helsi​nki-​NLP/​OPUS-​MT-​app/

https://www.go-fair.org/fair-principles/
https://hub.docker.com/
https://hub.docker.com/
https://browser.mt/
https://translatelocally.com/
https://marian-nmt.github.io/docs/
https://translatelocally.com/web/
https://github.com/Helsinki-NLP/OPUS-MT-app/


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

SimilarWeb statistics52 Telegram has been the most-used messaging platform in 
Ukraine both in Google Play Store and Apple App Store. The bot is implemented 
using aoigram, a framework for Telegram Bot API written in Python; it is asyn-
chronous, thus multiple requests can be processed almost simultaneously. Interact-
ing with the bot is easy and convenient as sending a message is all that is required 
to obtain the desired translation. The bot uses our websocket server and supports 
several source and target languages in connection with Ukrainian. An example of 
the operation of the bot is shown in Fig. 11.

3.4 � Professional workflows with OPUS‑CAT​

OPUS-CAT​53 is a collection of software packages that enable translators to use pre-
trained OPUS-MT models in computer-assisted translation tools. MT is currently 
routinely used in professional translation work, but the field is dominated by propri-
etary MT systems offered by large tech companies (such as Google or Microsoft) or 
specialized machine translation vendors (such as DeepL and ModernMT). OPUS-
CAT offers a free and open-source alternative to the proprietary MT products.

OPUS-CAT consists of a local MT engine and a selection of plugins and other 
types of CAT tool integration. The core of the local MT engine is a Windows build 
of the Marian framework, which is supplemented by a GUI for downloading and 
automatically installing OPUS-MT models from a centralized repository. The 
engine can be simply installed by extracting the installation package, and models 

Fig. 10   The translateLocally desktop application developed in the Bergamot project with an adaptation 
for OPUS-MT models. Here showing the example of Ukrainian–English translation with some cross-
lingual highlighting done through the alignment feature

52  https://​simil​arweb.​com/​apps/​top
53  https://​helsi​nki-​nlp.​github.​io/​OPUS-​CAT/

https://similarweb.com/apps/top
https://helsinki-nlp.github.io/OPUS-CAT/


	 J. Tiedemann et al.

1 3

can be searched by language names. The local MT engine does not require a connec-
tion to any external service, all the translations are generated on the user’s computer 
using its native CPU. The local MT engine is currently available only for Windows, 
since many CAT tools are also only available in Windows, and professional trans-
lators are therefore likely to be Windows users. Linux or Mac versions of the MT 
engine are currently under development.

The MT engine GUI provides a simple functionality for translating text, but the 
translations are mainly intended to be generated via an API that the MT engine 
exposes. CAT tool plugins and other integrations can be built on top of this API. 
OPUS-CAT currently supports most of the widely-used CAT tools. It includes 

Fig. 11   A simple Telegram translation bot serving the translation from and to Ukrainian. The example 
shows the translation of a short text snippet taken from Ukrainian Wikipedia



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

dedicated plugins for three desktop CAT tools: Trados Studio,54 memoQ,55 and 
OmegaT.56 In some CAT tools, such as Wordfast,57 OPUS-CAT can be used by con-
necting directly to its API through a custom MT provider functionality. OPUS-CAT 
also includes a Chrome browser extension, which makes it possible to use OPUS-
MT in browser-based CAT tools. The Chrome extension currently supports Phrase58 
(formerly Memsource) and XTM,59 and modifying it to support other browser-based 
CAT tools is relatively simple.

One of the advantages of using OPUS-CAT in professional translation is that 
it is inherently secure and confidential. Since no external services are used, sensi-
tive data is never at risk. While many commercial MT providers offer on-premises 
installations similar to OPUS-CAT, such installations are expensive and they cannot 
be adapted as freely as the open-source OPUS-CAT. The guaranteed confidentiality 
of OPUS-CAT also makes it possible for individual translators to use it in their work 
without breaching confidentiality agreements.

OPUS-CAT is intended for professional translators, so it includes functionalities 
for addressing issues related to MT use in professional translation, such as domain 
adaptation and tag handling.

The utility of generic NMT models in professional translation is uncertain, while 
performance improvements resulting from the use of domain-adapted NMT mod-
els have been observed multiple times (Läubli et  al., 2019; Macken et  al., 2020). 
Because of this, OPUS-CAT MT Engine includes a mode for fine-tuning models 
with bilingual data. Since fine-tuning has to be performed locally on a CPU, only 
small amounts of data are used (usually tens of thousands of translations pairs) and 
the training only lasts for a single epoch. To avoid problems with over-fitting, a very 
conservative learning rate is used (0.00002, a fifth of the default initial learning rate 
in Marian).

During fine-tuning, the model is validated against in-domain and out-of-domain 
validation sets, and the validation results are displayed graphically for the user to 
allow them to detect potential problems. Despite the conservative training settings 
and the small amount of data, informal testing and user feedback indicates that the 
fine-tuning has a noticeable effect on the usability of the MT system.

In professional translation, source documents often contain placeholder tags or 
tag pairs indicating formatting. Placing tags manually is time-consuming, so MT 
systems designed for professional translation should ideally place source tags auto-
matically in the generated MT. OPUS-CAT supports two methods of placing tags 
automatically. When fine-tuning a model, OPUS-CAT can be specified to include 
tags in the fine-tuning set, enabling the fine-tuned model to learn the correct tag 

54  https://​www.​trados.​com/​produ​cts/​trados-​studio/
55  https://​www.​memoq.​com/
56  https://​omegat.​org/
57  https://​www.​wordf​ast.​com/
58  https://​phrase.​com/
59  https://​xtm.​cloud/

https://www.trados.com/products/trados-studio/
https://www.memoq.com/
https://omegat.org/
https://www.wordfast.com/
https://phrase.com/
https://xtm.cloud/


	 J. Tiedemann et al.

1 3

placement implicitly. With base models, sub-word alignments (supported by most 
OPUS-MT models) can also be used to deduct the correct placement of tags.

OPUS-CAT further supports rules that can be used to pre-edit the source text 
before using it as MT input, or to post-edit the MT output before presenting it to the 
translator. These rules can be applied to address systematic errors in source texts or 
in MT output. For instance, a pre-edit rule can be created to change the letter case of 
the source text or to correct recurring typos, and a post-edit rule can be used to cor-
rect a recurring MT mistake.

Deviation from client- or domain-specific terminology is one of the main obsta-
cles to using MT in professional translation. While fine-tuning and the edit rules 
help to address some of the issues, they have their limitations: fine-tuning does not 
guarantee the use of correct terminology, it only increases the tendency to use it, 
and edit rules can be feasibly defined for only a very limited amount of cases. Work 
is currently in progress to include stronger terminology support in OPUS-CAT 
by implementing soft terminology constraints based on target lemma annotations 
(Bergmanis & Pinnis, 2021).

OPUS-CAT is currently the only open-source, free solution for neural machine 
translation use in professional translation. There is clearly demand for such a solu-
tion, as many individual translators currently use OPUS-CAT in their work, and sev-
eral organizations have included OPUS-CAT in their translation workflows. From 
the point of view of the wider OPUS-MT project, the significance of OPUS-CAT 
is that it provides another channel of disseminating the pre-trained models and of 
gathering feedback and experiences from an important group of MT users, i.e. pro-
fessional translators.

4 � Benchmarks and evaluation

Important in development but also for deployment is quality control and proce-
dures to monitor progress. Benchmarks and evaluation pipelines are essential 
to fill that need. Fortunately, regular shared tasks in machine translation produce 
various benchmarks and evaluation strategies, and recently growing interest in low-
resourced languages and domains also improves the language coverage of available 
test sets. Within our ecosystem, we try to systematically collect existing benchmarks 
and contribute to the collection also with our own efforts, e.g., through the Tatoeba 
translation challenge mentioned earlier in Sect. 2.4.

One of the crucial questions for the success of OPUS-MT is the quality of the 
models we release. Regularly monitoring and widely evaluating them is therefore 
essential. Comparing our models to established benchmarks and test sets is one way 
of approximating translation quality. OPUS-MT does not try to compete with highly 
domain-optimized models submitted to specific shared tasks but rather focuses on 
general-purpose models that can be re-used and refined later. Nevertheless, putting 
our models in perspective with other results is a good way of demonstrating their 
applicability. Figure  12 shows the example of Finnish–English translation results 
measured on the popular news translation task at WMT. The figure shows that our 
models fare well (in terms of BLEU scores) in comparison to officially submitted 



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

systems during the evaluation campaign even though they are not directly compara-
ble for various reasons (for example, being trained on different data sets and tuned 
for different domains).

For practical reasons, we currently focus on automatic evaluation but we also 
discuss options where community-driven leaderboards can facilitate regular manual 
evaluations as well. To support systematic benchmarking, we compile test sets into 
our own repository,60 which feeds into the OPUS-MT leaderboard described further 
down in Sect. 4.1. Additionally, we have also developed test suites to complement 
the general-purpose translation quality assessment addressed by regular MT bench-
marks, described in Sect. 4.2.

4.1 � The OPUS‑MT dashboard

The large number of models we train and the high language coverage and diversity 
we support makes it necessary to monitor progress and to obtain an overview of the 
available systems that are among the released packages. A common way to summa-
rize and compare models is to use leaderboards on established benchmarks. OPUS-
MT implements a simple interactive dashboard that provides information from our 
regular benchmarks in terms of tables and bar charts. Figure  13 shows a screen-
shot from our website61 with averaged BLEU scores for English–Ukrainian machine 
translation measured on Flores Goyal et al. (2022) and the Tatoeba benchmark. Cur-
rently, we support BLEU (Papineni et al., 2002), spBLEU (Goyal et al., 2022), chrF 
(Popović, 2015), chrf++ (Popović, 2017) and COMET (Stewart et al., 2020) scores 
but other measures may be added once they become available from our systematic 

Fig. 12   Comparing OPUS-MT models (in terms of BLEU scores) to official results from the news task 
at WMT in several years for translating from Finnish to English. WMT scores are taken from http://​wmt.​
ufal.​cz/

60  https://​github.​com/​Helsi​nki-​NLP/​OPUS-​MT-​tests​ets/
61  https://​opus.​nlpl.​eu/​dashb​oard/

http://wmt.ufal.cz/
http://wmt.ufal.cz/
https://github.com/Helsinki-NLP/OPUS-MT-testsets/
https://opus.nlpl.eu/dashboard/


	 J. Tiedemann et al.

1 3

test procedures. The dashboard allows to select language pairs, benchmarks and pro-
vides various views on language-specific or model-specific evaluations. The test set 
translations and the models themselves can be downloaded from the links provided 
in the table. The texts of the original benchmarks are also linked.

The dashboard takes the information from our score repository (OPUS-MT lead-
erboard) and currently does not support any dynamic upload of new models or trans-
lation results. The ambition is not to provide a fully-fledged system for benchmark-
ing new systems but rather to provide a view on our evaluation results to provide 
summaries and overviews of OPUS-MT capabilities. Note that we include a large 
variety of benchmarks in order to provide a comprehensive picture on model perfor-
mance, which is not restricted to one specific domain and evaluation test set.

Another useful visualization is the interactive geographic map that we generate 
from our released models.62 Figure  4 in Sect. 2.4 shows an example of such a plot. 
As we are striving for a wide language coverage, it is useful to visually see gaps 
across the globe. We, therefore, plot translation models according to their source 
or target language onto the geo-location provided by Glottolog.63 We use the lang-
info library64 to extract the location information from the Glottolog database using 
the ISO-standard language IDs in our translation models. OpenStreetMap is used 
to visualize the locations on a map and we indicate the size of the test set by the 
size of the dot (to illustrate reliability of the score) and use colors on a continuous 
scale from green (best) to red (worst) to indicate quality in terms of the selected 

Fig. 13   A screenshot from the OPUS-MT dashboard. The example shows averaged BLEU scores over 
two benchmarks (Flores and Tatoeba) for the translation from English to Ukrainian. Green bars mark 
compact student models that can be used for efficient translation

62  https://​opus.​nlpl.​eu/​NMT-​map/
63  https://​glott​olog.​org/
64  https://​github.​com/​rober​tostl​ing/​langi​nfo

https://opus.nlpl.eu/NMT-map/
https://glottolog.org/
https://github.com/robertostling/langinfo


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

benchmark. We base the visualization on chrF scores, which is more reliable across 
languages than BLEU, but note that even those scores are problematic to compare in 
general. Only the highest scoring model is shown for each language pair.

The map is interactive and allows to select source or target language to base the 
illustration on. We also generate maps for various benchmarks and use feature tem-
plates to show information about the model that correspond to a dot on the map. 
From that template, links to the downloadable model releases and further informa-
tion are available.

4.2 � Linguistic test suites

The impressive advances in translation quality seen in recent years have led to a dis-
cussion whether translations produced by professional human translators can still be 
distinguished from the output of NMT systems, and to what extent automatic evalu-
ation measures can reliably account for these differences (Hassan et al., 2018; Läubli 
et  al., 2018; Toral et  al., 2018). One answer to this question lies in the develop-
ment of so-called test suites (Burchardt et al., 2017) or challenge sets (Isabelle et al., 
2017) that focus on particular linguistic phenomena that are known to be difficult to 
evaluate with simple reference-based metrics such as BLEU. However, most exist-
ing test suites require significant amounts of expert knowledge and manual work for 
compiling the examples, which typically limits their coverage to a small number of 
translation directions.

To facilitate the development of test suites for a wide range of language pairs, we 
have introduced MuCoW,65 a language-independent method for automatically build-
ing test suites for lexically ambiguous nouns (Raganato et al., 2019, 2020; Scherrer 
et al., 2020). MuCoW takes advantage of the parallel corpora available in OPUS and 
of BabelNet (Navigli and Ponzetto, 2012), a wide-coverage multilingual encyclope-
dic dictionary obtained automatically from various resources (WordNet and Wiki-
pedia, among others). In a nutshell, the three following steps are needed to create a 
MuCoW test suite: 

1.	 We identify ambiguous source words and their translations in parallel corpora, 
matching only those words that are found to be ambiguous in BabelNet.

2.	 Since lexical resources such as BabelNet are known to suffer from overly fine 
granularity of their sense inventory, we merge the BabelNet sense clusters with 
similar meanings, taking advantage of pre-trained sense embeddings: if the cosine 
similarity between two sense embeddings exceeds a certain threshold, the cor-
responding clusters are merged (Raganato et al., 2019).

3.	 To build the test suite properly speaking, we extract sentence pairs from the par-
allel corpora, making sure that sentences from different corpora are represented. 
Each sentence is complemented with a list of correct and a list of incorrect trans-
lations of the ambiguous source word.

65  https://​github.​com/​Helsi​nki-​NLP/​MuCoW

https://github.com/Helsinki-NLP/MuCoW


	 J. Tiedemann et al.

1 3

Table 1 shows some examples of test suite instances for the English–German transla-
tion direction. MuCoW has identified watch, air, arm and pot as ambiguous English 
nouns, extracted example sentences using these nouns from various OPUS corpora, 
and associated each sentence with correct and incorrect German translations.

MuCoW has been first introduced at WMT-19 as a test suite for the News Trans-
lation Task, for 9 language pairs  (Raganato et al., 2019). In this context, we showed 
that tuned NMT systems performed well on our evaluation suite, but struggled when 
dealing with out-of-domain data. We observed the same trend in the following year at 
WMT-20, with only a general improvement in translation quality for the top-ranked 
systems (Scherrer et al., 2020).

Finally, we also created a MuCoW benchmark set that includes training data with 
known sense distributions, to evaluate competing systems on a fair ground (Raganato 
et al., 2020). Our findings show that state-of-the-art Transformer models struggle when 
dealing with rare word senses. Interestingly enough, adding more training data, not 
necessarily containing the ambiguous words of interest, contributes to mitigating such 
issues. Moreover, we also show that word segmentation does not affect the disambigua-
tion ability much, whereas the performance drops consistently across languages when 
evaluating sentences from noisy sources.

Table 1   Examples of English–German test suite instances

The ambiguous English source word is highlighted in bold, and correct and incorrect German transla-
tions—as inferred by the MuCoW procedure—are given

Example containing ambiguous word Correct
translations

Incorrect
translations

It occurred to me that my watch might be broken Armbanduhr, Uhr Wache
I hope you didn’t get distracted during your watch Wache Armbanduhr, Uhr
In winter, the dry leaves fly around in the air Luft, Luftraum, Aura Miene, Ausdruck
He remained silent for a moment, with a thoughtful but 

contented air
Miene, Ausdruck Luft, Luftraum, Aura

Harry had to back out of the competition because of a 
broken arm

Arm Waffe

So does the cop who left his side arm in a subway bath-
room

Waffe Arm

Drain the pasta and return the pasta to the pot Blumentopf, 
Kochtopf, Topf, 
Nachttopf

Marihuana, Gras

Where did those idiots get all of this pot anyhow? Marihuana, Gras Blumentopf, 
Kochtopf, Topf, 
Nachttopf



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

5 � Scaling‑up and scaling‑down

Increasing language coverage and providing lightweight models that are easy to 
integrate and deploy are both our priorities for advancing the MT field towards a 
more open and inclusive state. However, pursuing both objectives in parallel without 
losing translation performance is still an open problem.

A common approach to multilingual NMT makes use of fully shared models, 
where a single neural model is trained over parallel data including several transla-
tion directions, and all model weights are updated at every training step. The multi-
lingual models obtained with OPUS-MT as described in Sect. 3.1 are examples of 
this paradigm.

Adding languages to a fully shared multilingual model  (Johnson et  al., 2017) 
implies distributing the model capacity over several translation tasks, which may 
lead to decreased bilingual performance if the number of parameters of the model 
is kept constant. On the other side, having a large number of bilingual models, or 
a model architecture with language-specific components, can be impractical with-
out extensive access to HPC facilities. In the first case, the model size can become 
unmanageable due to the additional language-specific components. In the second 
case, scaling up language coverage involves handling a large number of (relatively 
small) NMT model files. In this section, we discuss two strategies that mitigate this 
issue and give an overview of ongoing experiments.

5.1 � Modular NMT

The OPUS ecosystem presents extensive potential for exploring and analyzing the 
capabilities of multilingual MT systems. Hand in hand with the European Research 
Council (ERC) funded Found in Translation (FoTran) project,66 we develop natu-
ral language understanding models trained on implicit information given by large 
collections of human translations. Aligning both initiatives, it is in our best inter-
est to distribute and make broadly available, both our toolkit for distributed training 
of multilingual models and the pre-trained models to be reused and also fine-tuned 
to new tasks. At training time, highly multilingual models require a large amount 
of computational power. However, we are building an architecture with a modular 
design that allows to reuse the trained components (language-specific and shared 
modules) on relatively small processing units,67 making multilingual models more 
affordable and increasing their applicability. In contrast to the OPUS-MT models, 
this implementation is based on OpenNMT-py68 (Klein et al., 2020). Our ambition 
is also to release models from those efforts in the near future but for now, we focus 
on the development of the modular and scalable framework first.

66  http://​www.​helsi​nki.​fi/​fotran
67  https://​github.​com/​Helsi​nki-​NLP/​FoTra​NMT
68  https://​github.​com/​OpenN​MT/​OpenN​MT-​py

http://www.helsinki.fi/fotran
https://github.com/Helsinki-NLP/FoTraNMT
https://github.com/OpenNMT/OpenNMT-py


	 J. Tiedemann et al.

1 3

5.1.1 � The multilingual attention‑bridge model

Our original motivation to build a multilingual translation model in FoTran is to 
explore the role of “cross-lingual grounding” for resolving ambiguities through 
translation. The intuition behind this idea is that translations provide a semantic 
mirror (Dyvik, 2004) reflecting the same meaning with the expressions of another 
language. We want to explore that signal in representation learning but it also 
becomes interesting in transfer learning for the original task of machine translation. 
We designed a modular NN architecture (Vázquez et al., 2019) in which the model 
incorporates an intermediate shared layer that exploits the semantics from each lan-
guage while keeping language-specific components.

The architecture is illustrated in the central diagram of Fig. 14. It follows a tra-
ditional sequence-to-sequence encoder–decoder architecture, but incorporates 
language specific encoders and decoders that are connected through a shared 
component to enable multilingual training and knowledge transfer. We obtain mul-
tilingual representations generated by the encoders by forcing the information to 
flow through a bottleneck inner-attention layer connecting all the language-specific 
modules (Vázquez et al., 2020). This layer summarizes the encoder information in a 
fixed-size (language-agnostic) meaning representation, which is useful for machine 
translation (including the support of zero-shot scenarios) and downstream tasks that 
require semantic reasoning and inference. Experimental results point towards the 
improvement of both the translation quality, and the abstractions acquired by our 
model when including more languages (Vázquez et al., 2019; Raganato et al., 2019).

5.1.2 � Scaling up for high linguistic diversity

In its basic implementation, our multilingual model requires high computational 
resources at training time due to the use of language-specific modules. Scaling up 
the number of translation directions on a single device is restricted by the memory 
limits of that specific computing node.

attention bridge

esdecfrdecdedec endec

enencesencfrenc deenc

En→Es

Transl. Directions

Es→Fr

Fr→De

De→Fr

En→De

Es→En

Fr→Es

Language dependent encoder modules

Language dependent decoder modules

attention bridge attention bridge

esdec dedecfrdecendec

enenc frencesencdeenc

attention bridge

GPU1 GPU2

Fig. 14   Diagram of the multilingual attention-bridge model used in a simple example. In this example 
we use 7 language pairs and 2 GPUs to illustrate the effectiveness of assigning language pairs in different 
GPUs to reduce inter-device communication



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

To address those challenges, we implemented a multi-node and multi-GPU train-
ing setup that incorporates the following strategies: (1)  distribute efficiently the 
modules across several processing units, (2) train the network over many translation 
directions reducing memory overhead, and (3)  reuse the trained modules without 
having to load the entire network. Taken together, these strategies deliver a cost-
effective multilingual NMT system that can further be used for extracting multilin-
gual meaning representations.

We distribute the model across multiple processing units by loading, in each 
device, encoders and decoders for only a subset of the translation directions. The 
inner-attention layer is shared across all processing units. All modules that are pre-
sent in more than one device are initialized with the same weights. Parameters that 
are present in more than one device need to remain synchronous at each training 
step. We schedule the gradient communication of all parameters to reduce the inter 
communication load.

In general, allocating language pairs with common source/target languages on the 
same device decreases both the total memory footprint of the model and the amount 
of communication needed to keep the modules synced. To see this, we can follow 
the example in Fig.  14. In the example, there are 7 language pairs to be trained 
simultaneously, and we have access to 2 GPUs. Defining a partition like the one on 
the right-most minimizes the amount of communication between the devices to keep 
the modules synced, reducing the training time.

Gathering together language pairs based on the source (or target) language could 
result in a scattered configuration depending on the target (or source) languages 
included. When dealing with a high number of translation directions (and a limited 
number of source and target languages) it becomes impossible to avoid this condi-
tion. We address these problems using two strategies. First, we solve the allocation 
problem to minimize inter-device communication. Since in most cases the problem 
has no feasible exact solution, we approximate it using a local search algorithm over 
a cost matrix that makes it cheaper to assign the same language to a given GPU. 
Second, we propose to schedule the gradient updates to minimize the waiting time 
when inter-device communication happens.

With this infrastructure at hand, we currently work on scaling up experiments 
to highly multilingual models that we can train on large high-performance clusters 
with a wide distribution of components over compute nodes and massively parallel 
training data. We aim at a large language coverage and will also release the model 
with separate components that can individually be loaded for efficient inference and 
further fine-tuning or downstream testing.

5.2 � Knowledge distillation

Machine translation requires optimization for speed and size to be available in 
practical solutions and on various devices. OPUS-MT models are already compact 
and fast in comparison to the ever-growing multilingual language models that are 
often referred to in recent NLP work. Nevertheless, there are various ways to fur-
ther improve decoding speed while reducing resource requirements. Knowledge 



	 J. Tiedemann et al.

1 3

distillation (Hinton et al., 2015) is one of the popular techniques that reduces com-
plex neural architectures (used as a so-called teacher model) to compact student 
models, which obtain the essential information from the generalization the teacher 
model has learned previously in a typically very expensive and time-consuming 
learning process.

We use sequence-level knowledge distillation  (Kim & Rush, 2016), in which a 
teacher model provides complete translations of some training data, and the student 
model learns the task on that output rather than the original reference translations. 
For simplicity, we “forward-translate” the training data with the teacher model using 
a narrow-width beam search and only use the best translation for teaching the stu-
dent. Currently, we do not apply ensemble methods either, which would push the 
output quality of the teacher a bit further. However, we apply normalized cross-
entropy filtering  (Behnke et  al., 2021) to remove some translation noise using a 
reverse translation model to score the translations obtained by the teacher model. 
This score indicates the level of “hallucination”, i.e. how much the translation 
diverges from the original input in a sense that it cannot reliably be reconstructed 
from the translation produced by the system. Following related work, we retain 95% 
of the data that have been sorted by that score.

In our current experiments, we look at different network architectures to study 
the impact of distillation. In particular, we use a base transformer model with 6 lay-
ers in the decoder and then reduce the decoder from a 6-layer transformer model 
to an RNN-based variant using simpler simple recurrent units (SSRU) (Kim et al., 
2019) with two stacked layers (henceforth called “small"). Following previous 
work (Behnke et al., 2021), we also test the reduction of the embedding size to 256 
dimensions (from 512 in default settings) and try two different variants (“tiny" and 
“tiny11") that differ in the size of the transformer feed-forward network parameter 
(1,536 in “tiny11" instead of the default 2048 in “tiny") and the size of the encoder 
(3 layers in “tiny" instead of 6).

A drop in performance can be expected when reducing the network and the 
parameters size of the model. However, student models are known to recover well 
from the reduced capacity and, therefore, create efficient alternatives to more expen-
sive models. Figure 15 shows our results in terms of BLEU scores for Finnish–Eng-
lish MT for the various models we tried in comparison to standard non-distilled 
ones. We can see that in all cases the regular model of corresponding size is outper-
formed by the student distilled from a larger teacher model and, especially impor-
tant, smaller student models substantially recover from the drop in performance we 
see with reduced model capacities in regular training from scratch. In particular, 
small students reach more or less the same performance as the much bigger teacher 
model, which is a remarkable achievement.

The effect of model reduction can be seen in terms of size and decoding 
speed. Table  2 summarizes properties and benchmarks on the Tatoeba test set 
with 10,000 sentences and over 48,000 words for the Finnish–English models 
discussed above. The space requirements go down dramatically and the small-
est model is just about 23 MB in size, about 10% of the big transformer model 
we used as a teacher (12 layers each in encoder and decoder). We also see the 
importance of quantization (using 8-bit integers, int8, in this case). Another 



1 3

Democratizing neural machine translation with OPUS‑MT﻿	

substantial improvement can be seen in decoding speed: The smallest model is 
able to decode the entire test set in less than 10 s on a 4-core CPU machine, an 
increase in speed by more than factor 4 compared to the base transformer model. 
Additional lexical shortlists, compiled from 100 top aligned tokens on the train-
ing data, make it possible to push the time down to about 6 s.

With these levels of performance and size, we can afford real-time translation 
on regular and even small devices. The browser-based MT solutions and local 
desktop apps discussed in Sect. 3.3 become feasible solutions with such highly-
optimized distilled student models and the models are compatible with the Ber-
gamot-derived systems and can immediately applied in applications based on 
that project (see, e.g. https://​trans​latel​ocally.​com/​web/).

25

26

27

28

29

30

31

32

33

34

35

36

2019 2017 2016 2015

OPUS-MT base

student base

OPUS-MT small

student small

OPUS-MT tiny11

student tiny11

OPUS-MT tiny

student tiny

OPUS-MT big

Fig. 15   Comparing regular NMT models (labeled as OPUS-MT) to distilled student models created 
through sequence-level knowledge distillation for Finnish–English MT models of various sizes. All dis-
tilled models use the same teacher model (transformer-big, last bar in each group) and regular models are 
trained from scratch with the same architectures as the corresponding student models. The years in the 
X-axis refer to different news test sets from WMT and the scores refer to BLEU scores

Table 2   Comparison of different 
models for translating from 
Finnish to English

Decoding speed is measured on the Tatoeba test set with 10,000 sen-
tences covering approximately 48,000 words. Model names refer to 
the same settings as in Fig. 15. Model size refers to gzipped file size 
(with and without model quantization). Decoding is done on a CPU 
node with 4 cores with and without lexical shortlists (see Sect. 3.3.3)

Model Compressed model size Decoding speed

Original Quantized 4 CPUs +Shortlist

Big 891 MB 224 MB
Base 294 MB 74 MB 46.36s 40.47s
Small 226 MB 57 MB 24.07s 17.89s
Tiny11 96 MB 25 MB 10.98s 7.24s
Tiny 89 MB 23 MB 9.90s 6.22s

https://translatelocally.com/web/


	 J. Tiedemann et al.

1 3

6 � Related work

OPUS and OPUS-MT are certainly not alone on the quest for open and transpar-
ent machine translation. Numerous projects and initiatives have been created over 
the years and listing them all is beyond the scope of this section. One of the issues 
with project-related work is the long-term perspective and the creation of sustain-
able platforms with a clear continuation.

During the era of statistical machine translation, many projects have been related 
to the framework of Moses,69 leading to a rich infrastructure of resources and tools. 
Projects to be mentioned include EuroMatrix, EuroMatrixPlus,70 TC-STAR,71 
LetsMT!72 and MateCAT.73

Another long-lasting infrastructure from the paradigm of rule-based machine 
translation is connected to Apertium.74 Compared to most developments driven by 
EU projects that typically result in commercial exploitation, the development of 
Apertium always emphasizes its place as an open-source and free translation plat-
form. In that sense, it is the most related work to OPUS-MT, but with a focus on a 
different translation approach and a much longer history.

OPUS and OPUS-MT build on top of many other open-source and data-sharing 
efforts. EU-funded research projects and resource development supported the crea-
tion of resources and tools in projects like ParaCrawl,75 GoURMET,76 MT4ALL77 
and MaCoCu.78

Open software platforms are also essential for our project and the rapid develop-
ment of neural MT could not have been possible without software packages such as 
OpenNMT79 and Marian-NMT,80 to name just two of them with relevance to our 
project. Translation efficiency was a focus in the Bergamot project,81 and the work 
continues in the HPLT project,82 which has close ties to OPUS and OPUS-MT.

Language coverage in NLP and inclusivity are also addressed by various regional 
and international initiatives. Masakhane,83 for example, is a grass-roots organization 
for African NLP, which includes dedicated work on resource and tool development 
for translating African languages. From the Nordic perspective, one can mention 

69  http://​www2.​statmt.​org/​moses/
70  https://​www.​eurom​atrix​plus.​net/
71  http://​www.​tcstar.​org/
72  http://​proje​ct.​letsmt.​eu/
73  https://​www.​matec​at.​com/
74  https://​www.​apert​ium.​org/
75  https://​www.​parac​rawl.​eu/
76  https://​gourm​et-​proje​ct.​eu/
77  http://​ixa2.​si.​ehu.​eus/​mt4all/​proje​ct.​html
78  https://​macocu.​eu/
79  https://​openn​mt.​net/
80  https://​marian-​nmt.​github.​io/
81  https://​brows​er.​mt/
82  https://​hplt-​proje​ct.​org/
83  https://​www.​masak​hane.​io/

http://www2.statmt.org/moses/
https://www.euromatrixplus.net/
http://www.tcstar.org/
http://project.letsmt.eu/
https://www.matecat.com/
https://www.apertium.org/
https://www.paracrawl.eu/
https://gourmet-project.eu/
http://ixa2.si.ehu.eus/mt4all/project.html
https://macocu.eu/
https://opennmt.net/
https://marian-nmt.github.io/
https://browser.mt/
https://hplt-project.org/
https://www.masakhane.io/


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

Giellatekno,84 with their focus on Sami language technology. The EU also tries to 
push for more comprehensive data sharing and resource building with the European 
Language Resource Coordination (ELRC)85 and their digital strategy on creating 
accessible data spaces. Resource repositories like Meta-Share86 have been devel-
oped and filled with information, links and metadata, and resource infrastructures 
such as CLARIN87 play an important role in the coordination of such efforts.

Another push for open machine translation certainly also comes from commer-
cial research labs and NLP startups. Research at big tech companies supports the 
development of platforms such as fairseq,88 tensor2tensor89 and Sockeye.90 Impor-
tant multilingual resources such as WikiMatrix and CCMatrix have their origin in 
those labs and made their way into OPUS. The No Language Left Behind project91 
together with extended benchmarks92 further pushed the frontiers of multilingual 
machine translation. Another central point for NLP research nowadays is Hugging 
Face together with their popular transformers library and the growing collec-
tion of data sets93 and models.94 The availability of all resources in one hub makes it 
easy and straightforward to get started with NLP research.

Another recent initiative to be mentioned in connection with machine translation 
is LibreTranslate.95 Their efforts are very much in line with OPUS and OPUS-MT, 
and we will explore collaboration possibilities in future work to join their and other 
great open-source initiatives that appear in modern NLP.

7 � Conclusions

This paper provides an overview of OPUS-MT and its embedding into the OPUS 
ecosystem. We describe various components that facilitate data curation, model 
development and machine translation integration into various platforms and appli-
cations. Our initiative emphasizes a large language coverage and focuses on pub-
lic resources and open-source solutions in order to create a transparent and widely 
applicable support for machine translation. The efforts of OPUS-MT already pro-
duced a large number of high-quality pre-trained NMT models that are ready to be 
used and adapted to various needs in research and practical application develop-
ment. With this, the project supports a sustainable infrastructure that enables reuse 

84  https://​giell​atekno.​uit.​no
85  https://​lr-​coord​inati​on.​eu/
86  http://​www.​meta-​share.​org/
87  https://​www.​clarin.​eu/
88  https://​github.​com/​faceb​ookre​search/​fairs​eq
89  https://​github.​com/​tenso​rflow/​tenso​r2ten​sor
90  https://​github.​com/​awsla​bs/​socke​ye
91  https://​ai.​faceb​ook.​com/​resea​rch/​no-​langu​age-​left-​behind/
92  https://​github.​com/​faceb​ookre​search/​flores
93  https://​huggi​ngface.​co/​datas​ets
94  https://​huggi​ngface.​co/​models
95  https://​libre​trans​late.​com/

https://giellatekno.uit.no
https://lr-coordination.eu/
http://www.meta-share.org/
https://www.clarin.eu/
https://github.com/facebookresearch/fairseq
https://github.com/tensorflow/tensor2tensor
https://github.com/awslabs/sockeye
https://ai.facebook.com/research/no-language-left-behind/
https://github.com/facebookresearch/flores
https://huggingface.co/datasets
https://huggingface.co/models
https://libretranslate.com/


	 J. Tiedemann et al.

1 3

of computationally expensive components. Giving access to the entire output of our 
project enables us to make efficient machine translation available for a wide range of 
users and NLP developers, without the need of high-performance IT infrastructure 
to train complex neural models from scratch. Democratizing MT in this way is a 
major step in the direction of an inclusive information society where language bar-
riers do not lead to significant disadvantages. OPUS-MT contributes to this mission 
with its community-driven open source initiative.

Our future plans include the development of practical solutions for modular NMT 
in a highly multilingual setup and further advances in transfer learning and model 
efficiency. We also continue our efforts in data collection and curation and aim 
to further increase language support and coverage. Furthermore, we also want to 
include paragraph- or document-level translation models in OPUS-MT and integrate 
other advances that can be pushed into production-ready solutions.

Acknowledgements  The research presented in this paper was supported by the FoTran project, funded by 
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion program (grant agreement no. 771113), the European Language Grid project through its open call for 
pilot projects with funding from the European Union’s Horizon 2020 Research and Innovation program 
under grant agreement no. 825627 (ELG) and the Swedish Culture Foundation (Svenska Kulturfonden) 
in Finland under the grant agreement no. 139592. Continued support is provided by the EU Horizon pro-
ject HPLT (grant agreement no. 101070350) and GreenNLP funded by the Academy of Finland (project 
ID 353164). The work was also supported by the NVIDIA AI Technology Center (NVAITC) and we 
would like to thank NVIDIA for their hardware grants providing GPU cards for research and develop-
ment. Finally, we like to acknowledge the great support by CSC, the Finnish IT Center for Science Ltd., 
providing extensive computing and storage facilities used in this research and all projects associated with 
it.

Funding  Open Access funding provided by University of Helsinki (including Helsinki University Central 
Hospital).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Arivazhagan, N., Bapna, A., Firat, O., Lepikhin, D., Johnson, M., Krikun, M., Chen, M.X., Cao, Y., 
Foster, G., Cherry, C., Macherey, W., Chen, Z., & Wu, Y. (2019). Massively multilingual neural 
machine translation in the wild: Findings and challenges. https://​arxiv.​org/​abs/​1907.​05019

Artetxe, M., & Schwenk, H. (2019). Margin-based parallel corpus mining with multilingual sentence 
embeddings. In Proceedings of the 57th annual meeting of the Association for Computational 
Linguistics (pp. 3197–3203). Association for Computational Linguistics. https://​aclan​tholo​gy.​org/​
P19-​1309

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1907.05019
https://aclanthology.org/P19-1309
https://aclanthology.org/P19-1309


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

Aulamo, M., Sulubacak, U., Virpioja, S., & Tiedemann, J. (2020). OpusTools and parallel corpus diag-
nostics. In Proceedings of the 12th language resources and evaluation conference (pp. 3782–3789). 
European Language Resources Association. https://​aclan​tholo​gy.​org/​2020.​lrec-1.​467

Aulamo, M., Virpioja, S., & Tiedemann, J. (2020). OpusFilter: A configurable parallel corpus filtering 
toolbox. In Proceedings of the 58th annual meeting of the Association for Computational Linguis-
tics: System demonstrations (pp. 150–156). Association for Computational Linguistics. https://​aclan​
tholo​gy.​org/​2020.​acl-​demos.​20

Behnke, M., Bogoychev, N., Aji, A.F., Heafield, K., Nail, G., Zhu, Q., Tchistiakova, S., van der Linde, J., 
Chen, P., Kashyap, S., & Grundkiewicz, R. (2021). Efficient machine translation with model prun-
ing and quantization. In Proceedings of the sixth conference on machine translation (pp. 775–780). 
Association for Computational Linguistics. https://​aclan​tholo​gy.​org/​2021.​wmt-1.​74

Bergmanis, T., & Pinnis, M. (2021). Facilitating terminology translation with target lemma annota-
tions. In Proceedings of the 16th conference of the European Chapter of the Association for Com-
putational Linguistics (Main Volume, pp. 3105–3111). Association for Computational Linguistics. 
https://​aclan​tholo​gy.​org/​2021.​eacl-​main.​271

Burchardt, A., Macketanz, V., Dehdari, J., Heigold, G., Peter, J.-T., & Williams, P. (2017). A linguistic 
evaluation of rule-based, phrase-based, and neural MT engines. The Prague Bulletin of Mathemati-
cal Linguistics, 108, 159–170.

Dou, Z.-Y., & Neubig, G. (2021). Word alignment by fine-tuning embeddings on parallel corpora. In Pro-
ceedings of the 16th conference of the European Chapter of the Association for Computational Lin-
guistics (Main Volume, pp. 2112–2128). Association for Computational Linguistics. https://​aclan​
tholo​gy.​org/​2021.​eacl-​main.​181

Dyvik, H. (2004). Translations as semantic mirrors: From parallel corpus to wordnet. In Advances in 
corpus linguistics, papers from the 23rd international conference on english language research on 
computerized corpora (ICAME) (Vol. 49, pp. 309–326). Brill. https://​doi.​org/​10.​1163/​97890​04333​
710_​019

Goyal, N., Gao, C., Chaudhary, V., Chen, P.-J., Wenzek, G., Ju, D., Krishnan, S., Ranzato, M., Guzmán, 
F., & Fan, A. (2022). The Flores-101 evaluation benchmark for low-resource and multilingual 
machine translation. Transactions of the Association for Computational Linguistics, 10, 522–538. 
https://​doi.​org/​10.​1162/​tacl_a_​00474

Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., Huang, X., Junczys-Dowmunt, 
M., Lewis, W., Li, M., Liu, S., Liu, T.-Y., Luo, R., Menezes, A., Qin, T., Seide, F., Tan, X., Tian, 
F., Wu, L., Wu, S., Xia, Y., Zhang, D., Zhang, Z., & Zhou, M. (2018). Achieving human parity on 
automatic Chinese to English news translation. https://​arxiv.​org/​abs/​1803.​05567

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv:​1503.​
02531

Hoang, V.C.D., Koehn, P., Haffari, G., & Cohn, T. (2018). Iterative back-translation for neural machine 
translation. In Proceedings of the 2nd workshop on neural machine translation and generation (pp. 
18–24). Association for Computational Linguistics. https://​aclan​tholo​gy.​org/​W18-​2703

Isabelle, P., Cherry, C., & Foster, G. (2017). A challenge set approach to evaluating machine translation. 
In Proceedings of the 2017 conference on empirical methods in natural language processing (pp. 
2486–2496). Association for Computational Linguistics. https://​aclan​tholo​gy.​org/​D17-​1263

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, 
M., Corrado, G., Hughes, M., & Dean, J. (2017). Google’s multilingual neural machine translation 
system: Enabling zero-shot translation. Transactions of the Association for Computational Linguis-
tics, 5, 339–351. https://​doi.​org/​10.​1162/​tacl_a_​00065

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016). FastText.zip: Com-
pressing text classification models. arXiv:​1612.​03651

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for efficient text classification. 
In Proceedings of the 15th conference of the European Chapter of the Association for Computa-
tional Linguistics (Volume 2: Short Papers, pp. 427–431). Association for Computational Linguis-
tics. https://​aclan​tholo​gy.​org/​E17-​2068

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann, T., Seide, 
F., Germann, U., Fikri Aji, A., Bogoychev, N., Martins, A.F.T., & Birch, A. (2018). Marian: Fast 
neural machine translation in C++. In Proceedings of ACL 2018, System Demonstrations (pp. 116–
121). Association for Computational Linguistics. http://​www.​aclweb.​org/​antho​logy/​P18-​4020

Kim, Y.J., Junczys-Dowmunt, M., Hassan, H., Fikri Aji, A., Heafield, K., Grundkiewicz, R., & Bogoy-
chev, N. (2019). From research to production and back: Ludicrously fast neural machine translation. 

https://aclanthology.org/2020.lrec-1.467
https://aclanthology.org/2020.acl-demos.20
https://aclanthology.org/2020.acl-demos.20
https://aclanthology.org/2021.wmt-1.74
https://aclanthology.org/2021.eacl-main.271
https://aclanthology.org/2021.eacl-main.181
https://aclanthology.org/2021.eacl-main.181
https://doi.org/10.1163/9789004333710_019
https://doi.org/10.1163/9789004333710_019
https://doi.org/10.1162/tacl_a_00474
https://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://aclanthology.org/W18-2703
https://aclanthology.org/D17-1263
https://doi.org/10.1162/tacl_a_00065
http://arxiv.org/abs/1612.03651
https://aclanthology.org/E17-2068
http://www.aclweb.org/anthology/P18-4020


	 J. Tiedemann et al.

1 3

In Proceedings of the 3rd workshop on neural generation and translation (pp. 280–288). Associa-
tion for Computational Linguistics. https://​aclan​tholo​gy.​org/​D19-​5632

Kim, Y., & Rush, A.M. (2016). Sequence-level knowledge distillation. In Proceedings of the 2016 confer-
ence on empirical methods in natural language processing (pp. 1317–1327). Association for Com-
putational Linguistics. https://​aclan​tholo​gy.​org/​D16-​1139

Klein, G., Hernandez, F., Nguyen, V., & Senellart, J. (2020). The OpenNMT neural machine translation 
toolkit: 2020 edition. In Proceedings of the 14th conference of the Association for Machine Transla-
tion in the Americas (Vol 1: Research Track, pp. 102–109). Association for Machine Translation in 
the Americas. https://​aclan​tholo​gy.​org/​2020.​amta-​resea​rch.9

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., 
Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., & Herbst, E. (2007). Moses: Open source 
toolkit for statistical machine translation. In Proceedings of the 45th annual meeting of the Associa-
tion for Computational Linguistics companion volume proceedings of the demo and poster sessions 
(pp. 177–180). Association for Computational Linguistics. https://​aclan​tholo​gy.​org/​P07-​2045

Kudo, T. (2018). Subword regularization: Improving neural network translation models with multiple 
subword candidates. In Proceedings of the 56th annual meeting of the Association for Computa-
tional Linguistics (Vol 1: Long Papers, pp. 66–75). Association for Computational Linguistics. 
https://​aclan​tholo​gy.​org/​P18-​1007

Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent subword tokenizer 
and detokenizer for neural text processing. In Proceedings of the 2018 conference on empirical 
methods in natural language processing: System demonstrations (pp. 66–71). Association for Com-
putational Linguistics. https://​aclan​tholo​gy.​org/​D18-​2012

Läubli, S., Amrhein, C., Düggelin, P., Gonzalez, B., Zwahlen, A., & Volk, M. (2019). Post-editing pro-
ductivity with neural machine translation: An empirical assessment of speed and quality in the 
banking and finance domain. In Proceedings of machine translation summit XVII: Research track 
(pp. 267–272). European Association for Machine Translation. https://​aclan​tholo​gy.​org/​W19-​6626

Läubli, S., Sennrich, R., & Volk, M. (2018). Has machine translation achieved human parity? A case for 
document-level evaluation. In Proceedings of the 2018 conference on empirical methods in natural 
language processing (pp. 4791–4796). Association for Computational Linguistics. https://​aclan​tholo​
gy.​org/​D18-​1512

Lui, M., & Baldwin, T. (2012). langid.py: An off-the-shelf language identification tool. In Proceedings 
of the ACL 2012 system demonstrations (pp. 25–30). Association for Computational Linguistics. 
https://​aclan​tholo​gy.​org/​P12-​3005

Macken, L., Prou, D., & Tezcan, A. (2020). Quantifying the effect of machine translation in a high-qual-
ity human translation production process. Informatics. https://​doi.​org/​10.​3390/​infor​matic​s7020​012

Marie, B., Fujita, A., & Rubino, R. (2021). Scientific credibility of machine translation research: A meta-
evaluation of 769 papers. In Proceedings of the 59th annual meeting of the Association for Compu-
tational Linguistics and the 11th international joint conference on natural language processing (Vol 
1: Long Papers, pp. 7297–7306). Association for Computational Linguistics. https://​aclan​tholo​gy.​
org/​2021.​acl-​long.​566

Navigli, R., & Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and application 
of a wide-coverage multilingual semantic network. Artificial Intelligence, 193, 217–250.

Östling, R., & Tiedemann, J. (2016). Efficient word alignment with Markov Chain Monte Carlo. The 
Prague Bulletin of Mathematical Linguistics, 106, 125–146.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method for automatic evaluation of 
machine translation. In Proceedings of the 40th annual meeting of the Association for Computa-
tional Linguistics (pp. 311–318). Association for Computational Linguistics. https://​aclan​tholo​gy.​
org/​P02-​1040

Popović, M. (2015). chrF: Character n-gram F-score for automatic MT evaluation. In Proceedings of the 
tenth workshop on statistical machine translation (pp. 392–395). Association for Computational 
Linguistics. https://​aclan​tholo​gy.​org/​W15-​3049

Popović, M. (2017). chrF++: Words helping character n-grams. In Proceedings of the second conference 
on machine translation (pp. 612–618). Association for Computational Linguistics. https://​aclan​tholo​
gy.​org/​W17-​4770

Raganato, A., Scherrer, Y., & Tiedemann, J. (2019). The MuCoW test suite at WMT 2019: Automati-
cally harvested multilingual contrastive word sense disambiguation test sets for machine translation. 
In Proceedings of the fourth conference on machine translation (Vol 2: Shared Task Papers, Day 

https://aclanthology.org/D19-5632
https://aclanthology.org/D16-1139
https://aclanthology.org/2020.amta-research.9
https://aclanthology.org/P07-2045
https://aclanthology.org/P18-1007
https://aclanthology.org/D18-2012
https://aclanthology.org/W19-6626
https://aclanthology.org/D18-1512
https://aclanthology.org/D18-1512
https://aclanthology.org/P12-3005
https://doi.org/10.3390/informatics7020012
https://aclanthology.org/2021.acl-long.566
https://aclanthology.org/2021.acl-long.566
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/W15-3049
https://aclanthology.org/W17-4770
https://aclanthology.org/W17-4770


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

1, pp. 470–480). Association for Computational Linguistics. https://​www.​aclweb.​org/​antho​logy/​
W19-​5354

Raganato, A., Scherrer, Y., & Tiedemann, J. (2020). An evaluation benchmark for testing the word sense 
disambiguation capabilities of machine translation systems. In Proceedings of The 12th language 
resources and evaluation conference (pp. 3668–3675). European Language Resources Association. 
https://​www.​aclweb.​org/​antho​logy/​2020.​lrec-1.​452

Raganato, A., Vázquez, R., Creutz, M., & Tiedemann, J. (2019). An evaluation of language-agnostic 
inner-attention-based representations in machine translation. In Proceedings of the 4th workshop 
on representation learning for NLP (RepL4NLP-2019) (pp. 27–32). Association for Computational 
Linguistics. https://​aclan​tholo​gy.​org/​W19-​4304

Sánchez-Cartagena, V.M., Bañón, M., Ortiz-Rojas, S., & Ramírez, G. (2018). Prompsit’s submission to 
WMT 2018 parallel corpus filtering shared task. In Proceedings of the third conference on machine 
translation: Shared task papers (pp. 955–962). Association for Computational Linguistics. https://​
aclan​tholo​gy.​org/​W18-​6488

Scherrer, Y., Raganato, A., & Tiedemann, J. (2020). The MUCOW word sense disambiguation test suite 
at WMT 2020. In Proceedings of the Fifth Conference on Machine Translation (pp. 365–370). 
Association for Computational Linguistics. https://​aclan​tholo​gy.​org/​2020.​wmt-1.​40

Sennrich, R., Haddow, B., & Birch, A. (2016a) Neural machine translation of rare words with subword 
units. In Proceedings of the 54th annual meeting of the Association for Computational Linguistics 
(Vol 1: Long Papers, pp. 1715–1725). Association for Computational Linguistics. https://​aclan​tholo​
gy.​org/​P16-​1162

Sennrich, R., Haddow, B., & Birch, A. (2016b). Improving neural machine translation models with 
monolingual data. In Proceedings of the 54th annual meeting of the Association for Computational 
Linguistics (Vol 1: Long Papers, pp. 86–96). Association for Computational Linguistics. https://​
aclan​tholo​gy.​org/​P16-​1009

Siivola, V., Hirsimäki, T., & Virpioja, S. (2007). On growing and pruning Kneser-Ney smoothed n-gram 
models. IEEE Transactions on Audio, Speech and Language Processing, 15(5), 1617–1624.

Stewart, C., Rei, R., Farinha, C., & Lavie, A. (2020). COMET—Deploying a new state-of-the-art MT 
evaluation metric in production. In Proceedings of the 14th conference of the association for 
machine translation in the Americas (Vol 2: User Track, pp. 78–109). Association for Machine 
Translation in the Americas. https://​aclan​tholo​gy.​org/​2020.​amta-​user.4

Tiedemann, J. (2009). News from OPUS–A collection of multilingual parallel corpora with tools and 
interfaces. Recent Advances in Natural Language Processing, V, 237–248.

Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Proceedings of the eighth inter-
national conference on language resources and evaluation (LREC’12) (pp. 2214–2218). European 
Language Resources Association (ELRA), Istanbul, Turkey . http://​www.​lrec-​conf.​org/​proce​edings/​
lrec2​012/​pdf/​463_​Paper.​pdf

Tiedemann, J. (2020). The Tatoeba translation challenge—Realistic data sets for low resource and multi-
lingual MT. In Proceedings of the fifth conference on machine translation (pp. 1174–1182). Asso-
ciation for Computational Linguistics. https://​aclan​tholo​gy.​org/​2020.​wmt-1.​139

Tiedemann, J., & Nygaard, L. (2004). The OPUS corpus—Parallel and free: http://​logos.​uio.​no/​opus. 
In Proceedings of the fourth international conference on language resources and evaluation 
(LREC’04) (pp. 1183–1186). European Language Resources Association (ELRA), Lisbon, Portugal 
. http://​www.​lrec-​conf.​org/​proce​edings/​lrec2​004/​pdf/​320.​pdf

Tiedemann, J., & Thottingal, S. (2020). OPUS-MT—Building open translation services for the world. In 
Proceedings of the 22nd annual conference of the European Association for Machine Translation 
(pp. 479–480). European Association for Machine Translation, Lisboa, Portugal. https://​aclan​tholo​
gy.​org/​2020.​eamt-1.​61

Toral, A., Castilho, S., Hu, K., & Way, A. (2018). Attaining the unattainable? Reassessing claims of 
human parity in neural machine translation. In Proceedings of the third conference on machine 
translation: Research papers (pp. 113–123). Association for Computational Linguistics. https://​
aclan​tholo​gy.​org/​W18-​6312

Vázquez, R., Raganato, A., Creutz, M., & Tiedemann, J. (2020). A systematic study of inner-attention-
based sentence representations in multilingual neural machine translation. Computational Linguis-
tics, 46(2), 387–424. https://​doi.​org/​10.​1162/​coli_a_​00377

Vázquez, R., Raganato, A., Tiedemann, J., & Creutz, M. (2019). Multilingual NMT with a language-
independent attention bridge. In Proceedings of the 4th workshop on representation learning for 

https://www.aclweb.org/anthology/W19-5354
https://www.aclweb.org/anthology/W19-5354
https://www.aclweb.org/anthology/2020.lrec-1.452
https://aclanthology.org/W19-4304
https://aclanthology.org/W18-6488
https://aclanthology.org/W18-6488
https://aclanthology.org/2020.wmt-1.40
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1009
https://aclanthology.org/P16-1009
https://aclanthology.org/2020.amta-user.4
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://aclanthology.org/2020.wmt-1.139
http://logos.uio.no/opus
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/W18-6312
https://aclanthology.org/W18-6312
https://doi.org/10.1162/coli_a_00377


	 J. Tiedemann et al.

1 3

NLP (RepL4NLP-2019) (pp. 33–39). Association for Computational Linguistics. https://​aclan​tholo​
gy.​org/​W19-​4305

Vázquez, R., Sulubacak, U., & Tiedemann, J. (2019). The University of Helsinki submission to the 
WMT19 parallel corpus filtering task. In Proceedings of the fourth conference on machine transla-
tion (Volume 3: Shared Task Papers, Day 2, pp. 294–300). Association for Computational Linguis-
tics. https://​aclan​tholo​gy.​org/​W19-​5441

Virpioja, S., Smit, P., Grönroos, S.-A., & Kurimo, M. (2013). Morfessor 2.0: Python implementation and 
extensions for Morfessor Baseline. Report 25/2013 in Aalto University publication series science 
+ technology, Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland

Xu, H., & Koehn, P. (2017). Zipporah: A fast and scalable data cleaning system for noisy web-crawled 
parallel corpora. In Proceedings of the 2017 conference on empirical methods in natural language 
processing (pp. 2945–2950). Association for Computational Linguistics. https://​www.​aclweb.​org/​
antho​logy/​D17-​1319

Zipf, G. K. (1932). Selected studies of the principle of relative frequency in language. Harvard University 
Press.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Jörg Tiedemann1   · Mikko Aulamo1 · Daria Bakshandaeva1 · Michele Boggia1 · 
Stig‑Arne Grönroos1,2 · Tommi Nieminen1 · Alessandro Raganato3 · 
Yves Scherrer1,4 · Raúl Vázquez1 · Sami Virpioja1

 *	 Jörg Tiedemann 
	 jorg.tiedemann@helsinki.fi

	 Mikko Aulamo 
	 mikko.aulamo@helsinki.fi

	 Daria Bakshandaeva 
	 daria.bakshandaeva@helsinki.fi

	 Michele Boggia 
	 michele.boggia@helsinki.fi

	 Stig‑Arne Grönroos 
	 stig-arne.gronroos@helsinki.fi

	 Tommi Nieminen 
	 tommi.nieminen@helsinki.fi

	 Alessandro Raganato 
	 alessandro.raganato@unimib.it

	 Yves Scherrer 
	 yves.scherrer@helsinki.fi

	 Raúl Vázquez 
	 raul.vazquez@gmail.com

	 Sami Virpioja 
	 sami.virpioja@helsinki.fi

1	 Department of Digital Humanities, University of Helsinki, Unioninkatu 40, 00014 Helsinki, 
Finland

https://aclanthology.org/W19-4305
https://aclanthology.org/W19-4305
https://aclanthology.org/W19-5441
https://www.aclweb.org/anthology/D17-1319
https://www.aclweb.org/anthology/D17-1319
http://orcid.org/0000-0003-3065-7989


1 3

Democratizing neural machine translation with OPUS‑MT﻿	

2	 Silo.AI, Fredrikinkatu 57 C, 00100 Helsinki, Finland
3	 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale 

Sarca 336, 20126 Milan, Italy
4	 Language Technology Group, Department of Informatics, University of Oslo, Gaustadalléen 

23B, 0373 Oslo, Norway


	Democratizing neural machine translation with OPUS-MT
	Abstract
	1 Introduction
	2 The open parallel corpus OPUS
	2.1 Finding data sets using the OPUS-API
	2.2 Fetching and processing parallel data with OpusTools
	2.3 Cleaning and preparing data sets with OpusFilter
	2.3.1 Corpus-level data preparation
	2.3.2 Segment-level preprocessing
	2.3.3 Filtering

	2.4 The Tatoeba translation challenge

	3 Open machine translation with OPUS-MT
	3.1 Training pipelines
	3.1.1 Setup and basic training
	3.1.2 Batch jobs on HPC infrastructure
	3.1.3 Data augmentation
	3.1.4 Fine-tuning
	3.1.5 Evaluating and releasing

	3.2 Machine translation server applications
	3.3 Platform integration
	3.3.1 PyTorch and the transformers library
	3.3.2 Integration into the European language grid
	3.3.3 End-user applications

	3.4 Professional workflows with OPUS-CAT​

	4 Benchmarks and evaluation
	4.1 The OPUS-MT dashboard
	4.2 Linguistic test suites

	5 Scaling-up and scaling-down
	5.1 Modular NMT
	5.1.1 The multilingual attention-bridge model
	5.1.2 Scaling up for high linguistic diversity

	5.2 Knowledge distillation

	6 Related work
	7 Conclusions
	Acknowledgements 
	References


