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Abstract
Semantic frames are formal structures describing situations, actions or events, e.g.,
Commerce buy, Kidnapping, or Exchange. Each frame provides a set of frame ele-
ments or semantic roles corresponding to participants of the situation and lexical
units (LUs)—words and phrases that can evoke this particular frame in texts. For
example, for the frame Kidnapping, two key roles are Perpetrator and the Victim,
and this frame can be evoked with lexical units abduct, kidnap, or snatcher. While
formally sound, the scarce availability of semantic frame resources and their limited
lexical coverage hinders the wider adoption of frame semantics across languages and
domains. To tackle this problem, firstly, we propose a method that takes as input a
few frame-annotated sentences and generates alternative lexical realizations of lexical
units and semantic roles matching the original frame definition. Secondly, we show
that the obtained synthetically generated semantic frame annotated examples help to
improve the quality of frame-semantic parsing. To evaluate our proposed approach, we
decompose our work into two parts. In the first part of text augmentation for LUs and
roles, we experiment with various types of models such as distributional thesauri, non-
contextualizedword embeddings (word2vec, fastText, GloVe), andTransformer-based
contextualized models, such as BERT or XLNet. We perform the intrinsic evaluation
of these induced lexical substitutes using FrameNet gold annotations. Models based
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on Transformers show overall superior performance, however, they do not always out-
perform simpler models (based on static embeddings) unless information about the
target word is suitably injected. However, we observe that non-contextualized models
also show comparable performance on the task of LU expansion. We also show that
combining substitutes of individual models can significantly improve the quality of
final substitutes. Because intrinsic evaluation scores are highly dependent on the gold
dataset and the frame preservation, and cannot be ensured by an automatic evaluation
mechanism because of the incompleteness of gold datasets, we also carried out exper-
iments with manual evaluation on sample datasets to further analyze the usefulness
of our approach. The results show that the manual evaluation framework significantly
outperforms automatic evaluation for lexical substitution. For extrinsic evaluation,
the second part of this work assesses the utility of these lexical substitutes for the
improvement of frame-semantic parsing. We took a small set of frame-annotated sen-
tences and augmented them by replacing corresponding target words with their closest
substitutes, obtained from best-performing models. Our extensive experiments on the
original and augmented set of annotations with two semantic parsers show that our
method is effective for improving the downstream parsing task by training set aug-
mentation, as well as for quickly building FrameNet-like resources for new languages
or subject domains.

Keywords FrameNet · Semantic-frame induction · Semantic-frame parser · Lexical
substitution · BERT · XLNet

1 Introduction

Data augmentation refers to techniques used to enlarge human-authored datasets by
automatically generating more additional instances that are similar to the original
data. In natural language processing (NLP), the augmentation of text is a challeng-
ing task because of the discrete, symbolic nature of text data. However, despite the
challenges, it provides a way to improve machine learning models in situations where
human-annotated data is scarce (Şahin, 2022). In this work, we demonstrate how text
augmentation by themeans of lexical substitution can be used to enrich representations
of semantic frames.

A semantic frame is a linguistic structure used to formally describe themeaning of a
situation, action or event (Fillmore, 1982). A frame annotation for a sentence provides
(i) a set of target words that evoke frames in this sentence, (ii) the respective frame for
each of the targets and (iii) a set of arguments for each of the frames in the sentence.
An example sentence is given in Fig. 1 along with two frame annotations taken from
FrameNet (Baker et al., 1998)—a widely-used publicly available resource of frame
annotations. The example sentence contains two targets: help, which evokes the frame
‘Assistance’ and hope, which evokes the frame ‘Desiring’. The corresponding entries
help.v and hope.v with target word(s) lemmas and a part-of-speech tag are called
lexical units (LUs) or frame evoking elements (FEE) in FrameNet. The arguments
represent semantic roles or frame elements (FEs) that act as participants of the situation
described by the frame.
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Fig. 1 An example sentence with its color-encoded frame annotations taken from FrameNet. The Red color
indicates the lexical unit, and the Blue color indicates the semantic roles. (Color figure online)

Semantic frames have been used in a wide range of applications, such as ques-
tion answering (Shen & Lapata, 2007; Berant & Liang, 2014; Khashabi et al., 2018),
machine translation (Gao & Vogel, 2011; Zhai et al., 2013), and semantic role label-
ing (Do et al., 2017; Swayamdipta et al., 2018). However, their impact is restricted
by the limited availability of annotated resources. Although there are some publicly
available resources like FrameNet (Baker et al., 1998) and PropBank (Palmer et al.,
2005), yet for many languages and domains, no specialized resources exist. Besides,
due to the inherent vagueness of frame definitions, the annotation task is challenging
and requires well-trained annotators or very complex crowd-sourcing setups (Fossati
et al., 2013).

In this work, we suggest a different approach to the problem: augmenting the
FrameNet resource automatically by generating more synthetic examples of existing
frame annotations in context via lexical substitution. This way, we are obtaining addi-
tional lexical representations of semantic frames (i.e. synonyms of words describing
semantic frames). The goal of lexical substitution (McCarthy & Navigli, 2009) is to
replace a given word in a particular context with other words, which are semantically
similar or related to the original word. The concept is similar to set expansion in its
nature; set expansion refers to expanding a small set of seed entities into a larger set
by acquiring new entities that belong to the same semantic class (Wang & Cohen,
2007). We consider that given a small set of seed sentences with their frame annota-
tions, we can expand these annotations (a set of seed sentences) by substituting the
targets and arguments of those sentences and aggregating possible substitutions into
an induced semantic-frame resource. Table 1 shows one such induced example. To
generate these substitutes, we experimented with non-contextualized word embed-
dings, i.e. fastText (Bojanowski et al., 2017), GloVe (Pennington et al., 2014), and
word2vec (Mikolov et al., 2013); distributional thesauri from JoBimText (Biemann &
Riedl, 2013); and compared their results to pre-trained Transformer-based contextu-
alized models such as BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019). To
complete the comparison, we also include the lexical substitution model of Melamud
et al. (2015) that uses dependency-based word and context embeddings and produces
context-sensitive lexical substitutes.
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Table 1 Lexical representations of the Assistance FrameNet frame are retrieved using lexical substitutes
from a single seed sentence with the BERT model

The words corresponding semantic roles and lexical units are highlighted. Underscored are names of frames
and roles

To generate substitutes, we solve two sub-tasks:

– Lexical unit expansion:Given a sentence and its target word, the task is to generate
the frame-meaning-preserving substitutes for this word. This target word can be
a verb or a noun. The gold substitutes are lexical items specified by FrameNet.
We aim at mining their synonyms fitting the semantics of the original FrameNet
frame definition.

– Semantic role expansion:Given a sentence and an argument, the task is to generate
frame-meaning-preserving substitutes for this argument. The gold substitutes are
concrete realizations of frame in text. We aim at mining their synonyms and other
realizations of role-fitting semantics given in the original FrameNet role definition.

Table 1 presents top substitutes produced by BERT for each highlighted word.
These substitutes can replace the highlighted words of the seed sentence to generate
new sentences. This leads to augmenting the original set of sentences without manual
annotations. To assess the quality of these substitutes and their effectiveness for further
augmentation of semantic frame expansion, we performed three types of evaluation:

1. Intrinsic evaluation: we evaluate the quality of the substitutes by comparing them
to the gold standard FrameNet lexicon, while the performance is reported in terms
of precision.

2. Manual evaluation: for a small dataset, we evaluate the quality of the substitutes
using human intuition, as the gold standard dataset can be incomplete.

3. Extrinsic evaluation: we conduct an extensive empirical study using the semantic
parsers of Swayamdipta et al. (2017) and Shi and Lin (2019). We compare the per-
formance of these parsers on a number of small seed datasets and their augmented
versions.

The main contributions of our work are:

– A one-shot method for inducing frame-semantic structures using lexical substi-
tution on frame-annotated sentences.

– A comparative evaluation for variousmodels including simple non-contextualized
word embeddings and Transformer-based models for lexical substitution on the
ground truth from FrameNet.

– We show that combining the output of individual models can substantially improve
the quality of final substitutes in contrast to their individual performance.
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– A manual evaluation assessment of substitutes to compare it to automatic evalu-
ation with FrameNet gold dataset.

– We empirically demonstrate that the dataset augmentation procedure based on the
word substitution is improving the performance of frame-semantic parsers. For
both parsers Swayamdipta et al. (2017) and Shi and Lin (2019), we see statistically
significant improvements in argument identification performance.

The code and datasets are made available online for better reproducibility of our
results.1

The remainder of this article is organized as follows: Sect. 2 provides an overview of
relatedwork for the semantic frame induction task. Section3 describes themodels used
for lexical substitution. Section4 describes the lexical substitution for lexical units and
the semantic role expansion experiments. Section5 describes frame-semantic parsing
experiments. Finally, Sect. 6 and 7 conclude the overall findings of this work and
discuss the possible future directions.

2 Related work

Many data-driven approaches to frame-semantic parsing that take advantage of anno-
tated resources, such as FrameNet, have been proposed in the literature (Das et
al., 2010; Oepen et al., 2016; Yang & Mitchell, 2017; Peng et al., 2018), with
SEMAFOR (Das et al., 2014) being the most widely-known system for extracting
complete frame structures including target identification, frame identification, argu-
ment identification, and argument labeling. Someworks focus only on a single parsing
step, e.g. frame identification (Hermann et al., 2014; Hartmann et al., 2017); Sikos
& Padó 2019, argument labeling with frame identification (Swayamdipta et al., 2017;
Yang & Mitchell, 2017), or just argument labeling (Kshirsagar et al., 2015; Roth &
Lapata, 2015; Swayamdipta et al., 2018), which can be considered as very similar
to PropBank-style (Palmer et al., 2005) semantic role labeling, albeit more chal-
lenging because of the high granularity of semantic roles for frames. FrameNet-like
resources are available only for very few languages and cover only a few domains.
In this article, we venture into the more challenging problem of training a model for
frame parsing on merely a very small amount of annotated data. This is similar to the
idea of Pennacchiotti et al. (2008), which investigates the utility of semantic spaces
and WordNet-based methods to automatically induce new lexical units, evaluating on
FrameNet. Resource-scarceness is the typical case here, as some NLP applications
might require frames not covered by FrameNet, the granularity of available frames
might notmatch the task, or the parser shall be constructed for a low-resource language.

Several unsupervised semantic frame induction methods have been proposed in
the literature. They extract clusters of words from the text, which are then dubbed as
semantic frames. These methods are based on hard or probabilistic (soft) clustering
of input, commonly represented in the form of dependency trees. Lang and Lapata
(2010) perform clustering of verb arguments based on syntactic dependencies. A latent
variable probabilistic model is used in Modi et al. (2012) and Titov and Klementiev

1 https://github.com/uhh-lt/frame-induction-and-parsing.
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(2012). Materna (2012, 2013) also cluster subject-verb-object (SVO) triples with a
similar model based on LDA (Blei et al., 2003). Kawahara et al. (2014) apply the
Chinese Restaurant Process clustering to a collection of verbal predicates and their
argument instances. Ustalov et al. (2018) use tri-clustering on SVO triples to jointly
induce both lexical units and their arguments. The downside of unsupervised frame
induction is the lack of control over the semantics of obtained word clusters and frame
granularity. Due to this, such methods are not widely applied.

Our approach conceptually differs from these frame induction methods. We con-
sider the effort of labeling one or a few sentences with frames as tolerable. This enables
us to guide the construction of the FrameNet resource with the desired properties. Our
experiments show that this minimal supervision can be used to produce the majority of
LUs of semantic frames defined in FrameNet and generate meaningful semantic roles.
However, since our method uses some training data, it is not directly comparable to
these completely unsupervised approaches.

There are few recent works that use pre-trained language models for lexical substi-
tution. Our method takes a direct motivation from the works of Amrami and Goldberg
(2018) and Arefyev et al. (2019a). Amrami and Goldberg (2018) suggest predicting
substitute vectors for target words using pre-trained ELMo (Peters et al., 2018) and
dynamic symmetric patterns. Arefyev et al. (2019a) use the same idea of substitute
vectors for the SemEval 2019 (QasemiZadeh et al., 2019) frame induction task, but
replace ELMo with BERT (Devlin et al., 2019) for improved performance. Zhou et
al. (2019) propose a method for lexical substitution with BERT. A more recent work
by Arefyev et al. (2020) shows that injecting the information about target word into
state-of-the-art language models can significantly improve their performance for lex-
ical substitution. The re-surge of lexical substitution arises from the fact that it has
a wide range of applications in NLP tasks such as word sense induction (Amrami
& Goldberg, 2018; Arefyev et al., 2019b, 2020), paraphrasing or text simplification
(Kriz et al., 2018; Lee &Yeung, 2019). It is also used for quality assessment of seman-
tic distributional models (Buljan et al., 2018). We are—to our knowledge—the first
to employ lexical substitution for the expansion of semantic-frame resources and the
first to show that it improves the performance of frame parsers. This work is a direct
extension of our previous preliminary work (Anwar et al., 2020) with more advanced
lexical substitution methods from Arefyev et al. (2020) and with experiments on the
frame-semantic parsing task for extrinsic evaluation of the proposed approach.

3 Inducing lexical representations of frames

Weexperimentwith two groups of lexical substitutionmodels: non-contextualized and
contextualized models. Regarding non-contextualized models, we report experiments
with static embeddings from word2vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014) and fastText (Bojanowski et al., 2017); further, we utilize distributional
thesauri constructed with JoBimText (Biemann & Riedl, 2013).

For contextualized models, we use two pre-trained Transformer-based models
BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019), as well as the lexical
substitution model of Melamud et al. (2015).
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3.1 Non-contextualizedmodels

In this section, we describe common approaches to represent meaning of individual
words independently of their context.

3.1.1 Non-contextualized word embeddings

Non-contextualized word embeddings are vector representations of words constructed
in a way that words occurring in similar contexts are expected to have similar vectors.
To produce substitutes for a target word, we take 200 nearest neighbors of the target
word according to the cosine similarity measure between non-contextualized embed-
dings. We use the following pre-trained embeddings: fastText trained on the Common
Crawl corpus,2 GloVe trained on the Common Crawl corpus,3 word2vec trained on
Google News.4 The embeddings from all of these models have the dimensionality of
300.

3.1.2 Distributional thesauri

In contrast to the standard word embeddings, distributional thesauri (DT) can capture
word similarities using simple n-gram context features and more complex linguistic
context features (Lin, 1998), e.g. dependency relations. Grammatical features provide
a more refined set of similar terms as compared to bag-of-words-based word embed-
dings, but their representations are sparser. JoBimText (Biemann & Riedl, 2013) is a
framework that offers many DTs constructed using various corpora. Context features
for each word are ranked using the lexicographer’s mutual information (LMI) score
(Kilgarriff et al., 2004) and used to compute word similarity by feature overlap. We
extract 200 nearest neighbors for the target word. In the experiments, we use two
JoBimText DTs: (i) DT built on Wikipedia with n-grams as contexts and (ii) DT built
on the combination of Wikipedia, Gigaword (Parker et al., 2009), ukWaC (Ferraresi
et al., 2008), and LCC (Goldhahn et al., 2012) (59 GB in total) using dependency
relations as context.

3.2 Contextualizedmodels

While non-contextualized models are computationally effective, they cannot handle
polysemous words. This drawback is addressed by context-aware models that can
produce different word representations depending on the context. Therefore, they can
also be used to generate different substitutes for a target word depending on its context.

2 http://fasttext.cc.
3 https://github.com/stanfordnlp/GloVe.
4 https://code.google.com/p/word2vec.
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3.2.1 Melamud’s lexical substitution model

The method proposed by Melamud et al. (2015) uses syntax-based skip-gram
embeddings of Levy and Goldberg (2014) for a word and its context to produce
context-sensitive lexical substitutes, where the context of a word is represented using
its dependency relations. We use the embeddings from Melamud et al. (2015), which
were trained on the ukWaC (Ferraresi et al., 2008) corpus. To find dependency rela-
tions, we use the Stanford Parser (Chen&Manning, 2014) (version 4.0.0) and collapse
dependencies that include prepositions. Top k substitutes are produced only when both
the targetword and someof its contextwords are present in the vocabulary of themodel.

The following cosine-similarity-based measures are proposed in Melamud et al.
(2015) to compute suitability of a substitute s for a given target word t in a given
context C:

add = cos(s, t) + ∑
c∈C cos(s, c)

|C | + 1
, (1)

bal Add = |C | · cos(s, t) + ∑
c∈C cos(s, c)

2 · |C | , (2)

mult = |C |+1

√
cos(s, t)

2
·
∏

c∈C

cos(s, c), (3)

bal Mult = 2·|C |

√
√
√
√ (cos(s, t) + 1)

2

|C|
·
∏

c∈C

cos(s, c) + 1

2
. (4)

Two of these measures (mult and balMult) use the geometric mean to produce high
scores when the target word and the context words are all similar to a substitute word,
whereas the other two (add and balAdd) use arithmetic mean to achieve high scores,
even if some of them are not similar. The balAdd and balMult measures emphasize
more on the similarity of substitutes to the target word.

3.2.2 Pre-trained transformer-based models

Transformer-based models pre-trained on various language modelling objectives can
predict the distribution of substitutes for a target word in a given context. In this work,
we use twoTransformer-basedmodels: BERT (Devlin et al., 2019) andXLNet (Yang et
al., 2019). The BERT model is the encoder part of the Transformer model (Vaswani et
al., 2017) that was pre-trained with the masked language modeling (MLM) objective.
In a nutshell, some randomly selected tokens in the training corpus are replaced by
a special [MASK] token, and the objective is to restore those tokens based on the
remaining left and right context. The XLNet model is an autoregressive language
model pre-trained with the permutation language modelling (PLM) objective. In this
objective, a new random permutation of tokens is generated for each example in
each epoch. The model learns to predict each word given all preceding words in this
permutation. Simple autoregressive models learn to predict words one by one either
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from left to right, or vice versa. In contrast, XLNet learns to predict words in any
order and to take advantage of both left and right context of each word. Pre-trained
Transformer-based models have effectively outperformed the previous state of the art
in many downstream tasks. For our experiments, we use BERT large-cased and XLNet
large-cased as implemented in the HuggingFace library (Wolf et al., 2019).

There are several ways to provide information about the target word to the
Transformer-based substitution models. We use three options: keeping the original
target word in place, using dynamic patterns, and combining conditional probabilities
of substitutes given the context and the target word.

Original input: Although BERT and XLNet were both trained to guess a word they do
not observe from its context, a substitution model can produce better substitutes if it
sees not only the context but also has some information about the target word (Arefyev
et al., 2020). The simplest method to introduce the information about the target word is
just feed the original example without anymasking and get predictions for the position
of the first subword of the target word. In case of XLNet, we generate an attentionmask
resulting in all tokens attending to all other tokens in the content stream. Even though
the contextualized embedding for the target position comes from the query stream, it
still depends on the target word indirectly through the contextualized embeddings of
all other tokens.

Dynamic patterns: Amrami and Goldberg (2018, 2019) use dynamic patterns to inject
information about the target word (T) when generating substitutes with ELMo and
BERT for the word sense induction task. These patterns are similar to the Hearst
patterns (Roller et al., 2018) and are used to replace the target word (T) with some
coordinate structure (e.g. “T and -”) to extract better substitutes. For example, the
sentence “Rob sold his car to Miller”, after applying the pattern “T and -” to the
target word “sold” will be transformed to “Rob sold and - his car to Miller”. Now the
substituteswill be generated for the token “-” instead of the original target word “sold”.
Arefyev et al. (2019a, 2019b, 2020) also use these patterns to generate substitutes
for solving the lexical frame induction and the word sense induction tasks. For our
experiments with BERT, we try patterns “T and -” and “T and T” (where the target
word is duplicated).

+embs: Arefyev et al. (2020) proposed a method that combines the probability of a
potential substitute occurring in a given context P(s|C)with the probability reflecting
distributional similarity of this substitute to the target word P(s|T ):

P(s|C, T ) ∝ P(s|C)P(s|T )

P(s)β
. (5)

The probability P(s|C) is directly estimated by a language model, while P(s|T ) is
calculated by applying the temperature softmax over the inner product of their non-
contextualized embeddings:

P(s|T ) ∝ exp
(vs, vT

τ

)
. (6)

123



S. Anwar et al.

where, vs and vT are embeddings of the corresponding words, and τ is the temperature
hyperparameter used to balance between closeness of substitutes to the target word
and their fitness to the given context. The hyperparameter β can be tuned to promote
or penalize frequent words as substitutes. Prior word probabilities P(s) are obtained
from the wordfreq library.5 The optimal values of τ and β are selected using the
development dataset. In the experiments with XLNet, we selected these values for
lexical unit expansion and semantic roles expansion separately.

3.3 Combination of models

To combine the advantages of several models, we also ensemble the predictions of the
best-performing models. Since different models produce scores that are not directly
comparable, we consider only substitute ranks, i.e. their positions after ordering sub-
stitutes according to their scores obtained from eachmodel.We compute the combined
rank as:

Combined Rank(w) = 1

L

L∑

i=1

ranki (w). (7)

where ranki (w) is the rank of w among the substitutes predicted by the i-th model if
it is predicted by the i-th model, and 1000 otherwise. Each model predicts at most 200
substitutes and the value 1000 is used to penalize the combined rank of a substitute
that is not predicted by all models in the ensemble. The goal of this penalization is to
rank words that are predicted by N models higher than words that are predicted by
N − 1 models.

4 Intrinsic evaluation: augmenting lexical descriptions in FrameNet

In this section, we show how lexical substitution can be used to fill the gaps in a
lexical resource. Namely, given a partially completed descriptions of lexical-semantic
frames from the FrameNet resource, one can reconstruct the missing semantic roles
and lexical units using our approach.

4.1 Experimental setup

4.1.1 Datasets

We use FrameNet (Baker et al., 1998) version 1.7 to generate our evaluation datasets.
The combined data from fulltext and exemplars annotations of FrameNet contains
around 170k sentences with 1014 frames, 7828 types of semantic roles, and 10,340
unique lexical units. Table 2 describes more characteristics of these datasets. The
datasets for evaluation were derived automatically. Semantic roles and lexical units
can consist of single or multiple tokens. For this work, we have only considered
single-token substitution.

5 https://pypi.org/project/wordfreq.
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Table 2 Statistics of evaluation datasets for verb lexical units, noun lexical units, and semantic role expan-
sion tasks derived from FrameNet-1.7

Characteristics Verb lexical unit Noun lexical unit Semantic roles

Number of frames 644 650 1014

Number of LUs/roles 3894 4226 7828

Total number of annotations 82,410 78,384 405,588

Annotations with single-token LU/role 79,584 76,229 191,251

Number of sentences 77,119 67,817 167,636

Number of sentences per frame

Mean 127 118 190

Std 311 285 396

Min 1 1 1

25% 21 10 27

50% 52 34 74

75% 119 93 181

Max 5976 3101 6394

Sentence length in words

Mean 23 25 24

Std 11 11 11

Min 1 1 1

25% 15 18 16

50% 22 24 23

75% 29 31 30

Max 250 250 250

Single-token lexical unit and semantic role expansion: In order to create evaluation
data for the LU expansion tasks, for each sentence containing an annotated LU we
consider other LUs of the corresponding semantic frame as gold substitutes. We keep
only LUs marked as verbs and nouns in FrameNet. FrameNet annotations contain
10 different types of lexical units based on their part-of-speech tags, but verbs and
nouns cover about 79% of annotations. We created two separate datasets for the verb
lexical unit expansion task and the noun lexical unit expansion task. To construct
the evaluation dataset for the semantic role expansion task, for each of the sentences
that contain an annotation of a given semantic role we consider all the single-word
annotations from the rest of the corpus marked with the same role and related to the
same frame as the gold substitutes.

An example frame with its full set of lexical units and two semantic roles is shown
in Fig. 2. It contains some example sentences annotatedwith lexical units and semantic
roles. To illustrate how we generated the evaluation datasets Table 3 shows evaluation
data that could have been generated based on annotations in Fig. 2. However, the
final datasets for experiments have been generated using all data from fulltext and
exemeplars annotations of the FrameNet resource, but not example sentences from the
frame description files. The resulting datasets contain 79,584 records for verb LUs,

123



S. Anwar et al.

Fig. 2 The frame Arrest from FrameNet simplified for illustrative purposes. It contains a frame definition
and an example sentence, as well as names, descriptions and examples for a few semantic roles (FEs), and
finally, a set of lexical units associated with this frame

Table 3 Evaluation data generated from the FrameNet descriptions shown in Fig. 2

Sentence with Target Word Gold Set Substitutes

Since we consider only single-token words, the gold set substitutes in the last row is empty

76,229 for nounLUs, and 191,252 records for role expansion.We use 10%of examples
as the development sets for tuning the hyperparameters τ and β of BERT+embs and
XLNet+embs.

Hyperparameters for +embs: Following Arefyev et al. (2020), we set the default
values of the hyperparameters β = 1 and τ = 0.1. For XLNet+embs we additionally
selected the optimal values of these hyperparameters based on the development subsets
of all three datasets. The following values were selected: β = 0.5 and τ = 0.05 for
the verb lexical unit expansion task, β = − 1 and τ = 0.07 for the noun lexical unit
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expansion task, and β = − 0.5 and τ = 0.15 for the semantic role expansion task.
Negative values of β mean that it is beneficial to promote more frequent words as
substitutes for the latter two tasks.

4.1.2 Evaluation measures

To evaluate the quality of generated substitutes, we use the standard ranking metric
precision at k (p@k), where k represents the number of the highest ranked substitutes
to be considered. While p@k measures the correctness of the first k substitutes, to
evaluate the quality of the entire list of generated substitutes, we use mean average
precision at level k (M AP@k):

M AP@k = 1

N

N∑

i=1

APi@k, (8)

where

APi@k = 1

min(k, Ri )

k∑

l=1

r i
l · pi@l.

Here, N is the total number of examples in the dataset; Ri is a number of possible
correct answers for the i-th example; r i

l equals 1 if the l-th predicted substitute for the
i-th example is correct and 0 otherwise. We present p@k at levels: 1, 5, as well as
M AP@50. Sometimes the post-processing procedure leads to fewer than k substitutes
generated. We consider absence of a substitute for a position as a wrong answer of the
model.

4.1.3 Text pre-processing

For non-contextualized embeddings, we tried generating substitutes for the targetword
both with and without lemmatization and found that lemmatizing the target word has
no positive effect on the model performance. We assume that the grammmatical form
of the target word contains some information about its context, and this can help
generating better substitutes by themodels that do not have direct access to the context.
Thus, we do not use lemmatization for this kind of models. For DTs, lemmatization
produced better results, mainly because corpora were lemmatized before building the
DTs. Therefore,we employ lemmatization in case ofDTmodels. For all contextualized
models, the context is tokenized onwhitespace andwe do not apply any pre-processing
to the original sentences extracted from the FrameNet-annotated corpus.

For BERT, we remove all subwords of the target word except for the first subword
during pre-processing. This results in better substitutes generated, see Table 4 for an
illustration of this effect. For XLNet, we follow Arefyev et al. (2020) and prepend
a fixed prompt, i.e., a ‘warming up’ text fragment, ending with the end-of-document
token as the initial context to each example.
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Table 4 Pre-processing target words with multiple subwords

The target word is bold. In the last row, the model generates better substitutes when subwords ##rich,
##ment are removed

4.1.4 Post-processing of substitutes

Lexical substitutes can contain noisy tokens, such as numbers, individual symbols,
model specific special tokens, e.g. [UNK], or sub-words marked with the ## prefix. In
post-processing, we remove all such non-words from the list of generated substitutes.
Substitutes often contain different forms of the same word, especially when static
word embeddings are employed. Therefore, we lemmatize the generated substitutes
using the Pattern library (Smedt & Daelemans, 2012) and remove duplicated lemmas.
For the verb lexical unit expansion task, we drop all substitutes that are not verbs.
For this purpose, we use a dictionary of verbs composed of verb lexicons taken from
Pattern, WordNet (Miller, 1995), and FreeLing (Padró & Stanilovsky, 2012). For the
noun lexical unit expansion task, we remove stopwords, apply POS tagging, and retain
only nouns in the final output.

4.1.5 Combination of models

For model combinations, we consider the best-performing individual models accord-
ing to the mean average precision from the following categories: non-contextualized
embeddings (nc-emb), distributional thesaurus based models (DT), the contextual-
ized models of Melamud et al. (2015), contextualized models based on pre-trained
Transformer-based models, and the Transformer models with the embeddings of tar-
get words (+embs).

4.2 Results

4.2.1 Lexical unit expansion task

The results for the lexical unit expansion tasks are presented in Table 5.
Verb lexical unit: In the verb lexical unit expansion task the best performance among

non-contextualizedmodelswas achievedby fastText (p@1 = 0.388and M AP@50 =
0.156), closely followed by word2vec (p@1 = 0.388 and M AP@50 = 0.151).
The DTs considered in our experiments perform worse than the embedding-based
models word2vec and fastText. Among Melamud’s models, the best performance was
achieved by the balAdd (Melamud et al., 2015) with p@1 = 0.393 and M AP@50 =
0.156, whereas the balMult performed slightly worse because balAdd can produce
substitutes even if the context has no similarity to the substitute,which is only useful for
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Table 5 Evaluation of lexical substitutes for lexical unit and semantic role expansion

Here, +embs refers to the default values of the hyperparameters τ and β, whereas +embs (optimal) refers
to the model with these hyperparameters selected on the development sets. The best result in each block
is in bold. The best result in the table is underlined. For combined models, one best model is taken from
each category, for the verbs lexical unit expansion task, DT is DT 59G, nc-embs is fastText; for the nouns
lexical unit expansion task, DT is DT 59G, nc-embs is GloVe; for semantic role expansion task, DT is DT
wiki, nc-embs is GloVe. The Upperbound results present the maximum possible score if all predictions are
considered correct. For this, substitutes were taken randomly from the gold dataset

monosemouswords. Even though simple BERT andXLNetmodels (withoutmasking)
performed comparably, they could not outperform fastText and word2vec. However,
a close examination of some examples shows that contextualized models do make a
difference when the target word is polysemous, see Table 6.

Applying the dynamic patterns helped to improve the performance of BERT.While
BERTwith the pattern “T and -” is substantiallyworse than just using the vanilla BERT
model without masking, the second pattern “T and T” yields the best results for the
BERT models. These experiments confirm that such dynamic patterns can help to
better capture the semantics of a target word and produce better substitutes. BERT
with the pattern “T and T ” outperforms all other models in terms of precision at
k = 1, but distinctively falls behind fastText, balAdd, and balMult (Melamud et al.,
2015) on the higher levels of precision and in terms of the MAP score.
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Using the +embs method proved to be a better approach to target word injec-
tion compared to the dynamic patterns. With this approach both BERT and XLNet
have outperformed all other models. For XLNet, using +embs with the optimal
hyperparameters has achieved the best performance overall with p@1 = 0.504 and
M AP@50 = 0.199. Even the model with the default hyperparameters has obtained
better performance than all other models (p@1 = 0.487 and M AP@50 = 0.189).

For combined models we considered: (1) fastText as nc-emb, (2) DT 59g as DT, (3)
balAdd forMelamudet al. (2015), (4)XLNet, and (5)XLNet+embswith optimal hyper-
parameters. Combining substitutes predicted by individual models has a mix effect
and the combined scores are sensitive to the individual performance of participating
models of the combination. Overall, the highest MAP score is achieved by combining
XLNet+embs with balAdd (Melamud et al., 2015) and DT (M AP = 0.201). For the
combinations that are based on XLNet+embs, the precision scores slightly decrease in
comparison to its individual performance. But, all other combinations obtain higher
precision scores than their individual counterparts. Especially the tri-model combi-
nations based on simple XLNet model closely matched the performance of the best
model of XLNet+embs (M AP = 0.199 and M AP = 0.198).

Table 6 contains example sentences with highlighted target words and top 10 substi-
tutes generated by all models (along with the ground truth FrameNet annotations). The
first example presents a LU that is associated with only one frame and is unambigu-
ous, all models have produced many matching substitutes. The other two examples
present the fact that LUs contain various senses, leading to multiple associated frames
to it. Non-contextualized models except GloVe and fastText have predicted at least
one valid substitute for the first frame Departing, but most of them failed to produce
any substitutes in top 10 for the Causation frame. But BERT and XLNet have suc-
cessfully generated several matching substitutes for both cases. Particularly XLNet
has predicted more matching substitutes than BERT.

Noun lexical unit: Among non-contextualized models, the best performance was
achieved by DT 59g (p@1 = 0.398 and M AP@50 = 0.145). Unlike verbs for
which the embedding-based models outperformed DTs, in case of nouns DTs perform
better than embeddings. The contextualized models of Melamud et al. (2015) also
have significantly lower performance compared to DTs. BERT and XLNet perform
comparably to DTs. Dynamic patterns do not improve BERT’s performance, but the
+embs method improves the results significantly for both BERT and XLNet models.
The XLNet+embs model with the optimal hyperparameters has achieved the best
performance with p@1 = 0.499 and M AP@50 = 0.171.

For combining the following models were taken: (1) GloVe as nc-emb, (2) DT 59g
as DT, (3) balAdd for Melamud et al. (2015), (4) XLNet and (5) XLNet+embs with the
optimal hyperparameters. The highest MAP score was again achieved by combining
XLNet+embs with balAdd (Melamud et al., 2015) and DT (M AP = 0.189). Unlike
verbs, for nouns proper model combinations improve the results compared to the best
individual model. Since the embedding-based models perform worst for nouns, the
combinations with nc-emb have lowest MAP scores among all other combinations.

As mentioned in Sect. 4.1.4, we use the pattern library for lemmatization and POS
tagging for nouns. To investigate the effect of POS tagging on model performance we
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Table 6 Examples for the verb lexical unit expansion task

Matcheswith the gold substitutes are in green. XLNet+embs is the bestmodel with optimal hyperparameters

compare the results producedwith the pattern library and another library lemminflect.6

The former only returns the most suitable POS tag, while the latter returns all possible
POS tags, which may work better for words that can have multiple tags. Table 24
shows the results with lemminflect used for lemmatization and POS tagger. We can
see that all embedding-based models have improved significantly. This shows that

6 https://github.com/bjascob/LemmInflect.

123

https://github.com/bjascob/LemmInflect


S. Anwar et al.

correct POS tagging is crucial for nouns, otherwise you may drop good candidates in
the final output.

4.2.2 Semantic role expansion task

The evaluation results for the semantic role expansion task are presented in Table
5. For role expansion experiments, the non-contextualized models and Melamud et
al. (2015) models are outperformed by BERT and XLNet with a significant margin
with p@1 = 0.471 and M AP@50 = 0.118 for BERT and p@1 = 0.513 and
M AP@50 = 0.144 for XLNet. The DTs performed substantially better than word
embedding models and also comparably to the models of Melamud et al. (2015).
A better score is achieved by the DT trained on Wikipedia. But the performance of
static word embeddings has dropped, especially the performance of fastText is worst
compared to all models, in contrast to the previous experiment where it was found to be
the best model. In contrast to previous experiments, the performance of the Melamud
et al. (2015) models is also dropped significantly in comparison to BERT and XLNet.

XLNet has performed better than BERT in all settings with p@1 = 0.513 and
M AP@50 = 0.144 for the simplemodelwithoutmasking andwith p@1 = 0.522 and
M AP@50 = 0.159with+embsmethod anddefault hyperparameters.Whereas select-
ing optimal hyperparameters further improved its performance with p@1 = 0.542
and M AP@50 = 0.161 making it the best overall model. The dynamic patterns
did not help to improve the performance of the BERT model for this particular task,
most probably because these patterns are not suitable for the semantic role extrac-
tion task. Although without +embs method, BERT and XLNet were outperformed by
several non-contextualized models in the task of LU expansion, in this experiment,
they obtained superior performance compared to all these models. This fact reflects
the importance of the context for making reasonable substitutions of words that bear
semantic roles. Another reason lies in the fact that their fixed size vocabulary covers
more frequent words like verbs than nouns for role arguments.

Combining substitutes predicted by multiple models helps to substantially improve
the scores for those which performed worst as single, but shows mixed effect for
combinations where one model was significantly better than others. For semantic role
expansion task, models we considered are (1) GloVe as nc-emb, (2) DT wiki as DT, (3)
balAdd forMelamud et al. (2015), (4)XLNet and (5)XLNet+embswith optimal hyper-
parameters. The highest MAP score was achieved by combining XLNet+embs with
balAdd (Melamud et al., 2015) and DT, but highest precision was achieved by com-
bination of balAdd with XLNet (p@1 = 0.574) and XLNet+embs (p@1 = 0.563).
Both of these combinations got best precision scores for smaller values of k in compar-
ison to the single best model of XLNet+embs with optimal hyperparameters, which
scored highest MAP score (M AP = 0.161). Overall, with p@1 approaching 55%
and p@5 approaching 47% and given that our gold standard is necessarily incomplete,
this paves the way to fully-automatic expansion for semantic role resources.

Table 7 contains three example sentences with highlighted arguments for seman-
tic roles and top 10 substitutes generated by all models (along with the ground truth
FrameNet annotations). The first example demonstrates several valid matching sub-
stitutes, because vehicle is the most common sense of “car”. Whereas, the other two
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examples present an argument “bank” with multiple associated semantic roles. Again,
BERT and XLNet were able to distinguish both senses of “bank” and produced several
valid substitutes.

For roles, we also produce results with stopwords removal to see how it affects the
performance. The results are reported in Table 25. In comparison of these scores to
Table 5, we can see that for non-contextualized models and the models of Melamud
et al. (2015), there is no meaningful difference in scores, which suggests that these
models actually rarely produce such words in their output. For Transformer-based
models, results have improved substantially. Since these models predict a word given
on its context, there is a high likelihood that based on the position of words and their
context, some bad candidate words are produced. Since these models have further
improved, this has a slightly negative effect on the combinations, and the difference in
their scores from individual models is increased. Overall, XLNet+embs model yields
the highest scores (p@1 = 0.581 and M AP@50 = 0.176).

4.2.3 Effect of gold set size

The results reported in Table 5 are generated using whole datasets, without doing any
filtering on the size of the gold sets. We have reported MAP at k = 50. but there are
many instances in these datasets where the size of the gold set is really small. The
average size is 22 for verbs, 27 for nouns, and 73 for roles. Whereas the minimum size
is 1 for all three. For smaller sets, it is really hard to predict the candidates, especially
if the gold members consist of rare words. In a number of situations, even if these
members are produced by the model, they may not be ranked higher in the list of
potential substitutes. Figure3 shows the performance of the XLNet+embs model for
all three datasets, where they were filtered against the minimum number of values in
gold sets. We use a minimum size of 5, 10, and 15. It shows that precision at all values
of k increases if we filter smaller sets, but not by a large margin. This suggests that
the ranking of candidates needs to be further investigated.

4.3 Examples of induced lexical semantic frame representations

This section contains a qualitative analysis of lexical expansion examples of few
semantic frames for all lexical substitution models, along with the ground truth from
FrameNet. Each example sentence represents a specific frame and a single target
word labeled either as a lexical unit or a semantic role. For each model, top 10 final
substitutes are given. Examples of semantic roles expansion are presented in Table 7.
Examples of lexical units expansions are presented in Table 6. Each table contains
examples of ambiguous and unambiguous words to compare the substitutes in each
use case.

In summary, it is evident that for non-ambiguous words, most models produce
several valid substitutes, but for ambiguous polysemous words most of the non-
contextualized models either were unable to produce any valid substitutes or they
produced a few good substitutes for one sense only. In contrast, contextualized mod-
els produce valid substitutes in most situations. A deeper analysis of these examples
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Fig. 3 Precision@k curve for XLNet+embs (optimal) model for all three datasets of verbs, nouns, and roles.
Here, mgs means minimum gold set size

provides some key insights into the intrinsic evaluation framework. Like, it can be
noted that some substitutes may seem to be semantically valid but may not be present
in the FrameNet lexicon and hence not marked as true. Similarly, a substitute can
actually be a wrong fit, although it is present in the FrameNet lexicon, because it may
change the meaning of the sentence or make it grammatically incorrect. We will dive
deeper into this issue in the following section.

4.4 Manual evaluation of lexical substitutes

4.4.1 Problems with automatic evaluation of lexical substitutes

As discussed in Sect. 4.3, automatic evaluation of lexical substitutes using the current
gold datasets faces two problems related to FrameNet coverage and semantics of
substitute and its context.

Scenario A—substitute fits the context, but is not present in the gold dataset: A sub-
stitute may be a good candidate to replace the target word within the context, but is
considered as wrong because of not being present in the gold dataset. FrameNet pro-
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Table 7 Examples for the semantic role expansion task

Green color indicates matches with the gold annotations. Here, XLNet+embs is the best model with optimal
hyperparameters
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Table 8 Examples of substitutes for scenario A, the substitutes that are marked as right by the annotator,
but not present in the gold dataset are highlighted

vides a gold dataset of all lexical units for each frame. Normally, we can expect that if
these lexical units are verb predicates, then probably the set would be more complete
than those of noun predicates. As in the case of noun predicates, they usually do not
have a strictly closed set of suitable variants and thus it is highly likely that a given
substitute may not be covered in the gold dataset (which also happens with verbs,
albeit to a lesser extent since the number of verbs is generally lower than the number
of nouns). Similarly, this is aggravated in the case of semantic roles, as theoretically
the roles can have countless valid arguments and that works for semantic parsing but
becomes an issue for augmentation tasks if a gold dataset shall be used for evalua-
tion. As for our experiments, the gold dataset for roles is extracted from the available
sentence annotation, it cannot be considered as a proper gold set for evaluation. See
Table 8 for more explanation, for the given sentences and the list of substitutes, there
are multiple correct answers that are not present in the gold dataset.

Scenario B—substitute is present in the gold dataset, but does not fit the context: A
given substitute is present in the gold dataset, but may not fit the given context or
change the context meaning altogether. See Table 9, for examples of such substitutes.
The second example describes a situation where a body part is involved, but not all
body parts can be folded as per the context. In the last example, the target word is a
semantic role of type Speaker, which can be a pronoun or a person’s name. But not
all pronouns can fit this context.
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Table 9 Examples of substitutes for scenario B, the substitutes that are present in the gold dataset but do
not fit the context are highlighted

Table 10 Examples with their target words highlighted and the list of top 10 final substitutes

Against each use-case, given is the list of substitutes marked as true by the annotator. For each seed sentence,
its target word is color-highlighted

123



S. Anwar et al.

Table 11 Statistics of three datasets for manual evaluation sampled randomly from datasets used in auto-
matic evaluation

Characteristics Verb lexical unit Noun lexical unit Semantic roles

Number of frames 41 43 44

Number of lexical units/roles 50 50 47

Number of annotations 50 50 50

Number of sentences 50 50 50

4.4.2 Evaluation framework

Tomanually analyse the appropriateness of a given substitute in the scenarios discussed
in Sect. 4.4.1, we define the following rules to evaluate:

– It does not fit the context. The objective is to maintain the sentence’s meaning. This
use-case will also drop the substitute, which can make the sentence grammatically
incorrect.

– It does fit the context, not the frame. The sentence is still meaningful but does not
preserve the frame meaning. We use the formal descriptions of frames to decide if
a sentence represents the frame. Additionally, for semantic roles, we also consider
the semantic role definition. Because frame description alone is not sufficient to
evaluate semantic roles.

– It does fit both the context and the frame. The ideal scenario to replace the target
word would be these substitutes, as the main motivation of this work is to preserve
the original frame.

Table 10 contains examples for each use case. It also includes the list of substitutes
matched with the gold dataset.

4.4.3 Datasets and substitution model

We randomly sampled 50 annotations for each type of target word (verb, noun, and
semantic role). Table 11 shows statistics of these datasets. Each annotated instance
is evaluated for top 10 substitutes. In summary, the annotator has to evaluate 500
substitutes for each dataset. For the substitutionmodel, we choose the best-performing
single model i.e. XLNet+embs.

4.4.4 Results

Table 12 shows the results for all datasets against each evaluation use-case. For all
datasets, there is a significant improvement in the use-case where the substitute fits
both the context and the frame, and precision has improved consistently for all values
of k. Precision values for the use-case of does NOT fit context support our first problem
for automatic evaluation, that even though the substitute can be present in the gold
dataset, it does not fit the context and hence should be ignored. For example, in
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Table 12 Manual evaluation of lexical substitutes for sampled datasets of 500 annotations (50 contexts, 10
substitutions)

The substitutes were produced using XLNet+embs model with optimal hyperparameters

Table 10, the substitute body does not make sense to replace the original word skin,
but it is present in the gold dataset. For those substitutes that fit the context, there
can still be some scenarios where they do not preserve the frame. For example, see
Table 10, the substitutes blood, fur, cloth do fit the context very well, but since they do
not maintain the frame for not being a body part, they cannot be accepted as correct.
Not surprisingly, the numerical scores are higher than in the automatic evaluation as
the manual judgements are not prone to incompleteness of lexical-semantic resources.

5 Extrinsic evaluation: frame-semantic parsing with lexically
expanded FrameNet

To evaluate the quality of automatically constructed frame structures, we conducted
extensive experiments using two frame-semantic parsers. Our goal was to determine
whether these induced frame structures could improve parsing performance in situ-
ations where annotated data is scarce. We select a small sample from the FrameNet
dataset with original annotations as a seed dataset. Then we augment it by incorporat-
ing new sentences constructed using our lexical substitution approach, while keeping
the annotations same, which results in a larger training dataset. We compare the per-
formance of the parsers trained on the augmented dataset and on the seed dataset. We
do not change the test and development (dev) sets.

5.1 Experimental setup

In this section, we describe the choice of models for lexical substitution, details of the
semantic parsers used in our experiments, and the procedure for the construction of
training datasets, including the pre and post-processing steps.

5.1.1 Lexical substitution models

For extrinsic evaluation, we select two substitution models with the best performance
in the intrinsic evaluation (Table 5). The first model is XLNet+embs with optimal
hyperparameters, which demonstrates the best results for both tasks of the lexical
unit expansion and the semantic role expansion. The second model is BERT without
dynamic patterns and the +embs method extension. We choose to use the standard
BERT model without any extensions in order to determine whether performance dif-
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ferences observed in intrinsic evaluation of these two models would also be reflected
in a presumably less sensitive extrinsic evaluation.

5.1.2 Frame-semantic parsers

We conduct experiments with: (1) open-SESAME (SEmi-markov Softmax-margin
ArguMEnt)—a neural network-based frame-semantic parser by Swayamdipta et al.
(2017), and (2) a BERT-based parser for relation extraction and semantic role labeling
inspired by Shi and Lin (2019).

Open-SESAME parser (Swayamdipta et al., 2017):TheOpen-SESAMEparser decom-
poses the task of frame-semantic parsing into three sub-tasks and implements an
independently trained model for each sub-task: (1) ArgId model: to identify and label
semantic arguments, (2) FrameId: to identify frames using gold targets, and (3) Tar-
getId: to identify target predicates using lexical units of FrameNet (this model is not
discussed in the original publication). The objective of the argument identification
model is to identify argument spans and their labels. It uses a softmax-margin seg-
mental recurrent neural network as a baseline syntax-free model and adds several
modifications to further improve the performance. In particular, it adds some sort of
syntax information and syntactic scaffolding. For our experiments, we only used the
baseline syntax-free model. The model accepts as input a sentence in form of a token
sequence, token part-of-speech tags, a target span, and an associated lexical unit with
its frame and outputs a list of possible labeled segments with their start and end posi-
tions in the input sentence. The labels are either semantic roles or “null”. The ArgId
model only handles non-overlapping segments, and segmentation is only produced for
the input frame and its target. The maximum length of a span to be considered can be
specified as a hyperparameter. The frame identification model is a syntax-free bidi-
rectional LSTM that takes the same input as the argument identification model except
the frame and identifies the frame evoked by the target. It can not predict frames for
targets that are not present in the FrameNet lexicon. The target identification model is
also based on bidirectional LSTM. It takes as input a sequence of tokens from a given
sentence, their part-of-speech tags, and lemmas and for each token, it outputs a binary
label indicating whether it is a target or not. The list of possible targets is available
through the FrameNet lexicon of lexical units. In our experiments, we use the official,
publicly available implementation of the Open-SESAME parser.7

BERT parser (Shi & Lin, 2019): The BERT-based parser semantic parser is origi-
nally designed for PropBank-style arguments and unlike open-SESAME, it does not
perform the target and sense (frame) identification as separate independent tasks. For
argument identification and labeling, it can perform sense disambiguation for targets
before argument identification (end-to-end). Therefore, it can work with only sentence
and the target predicate while keeping the target frame as optional input. For the target
sense disambiguation task, it takes a sentence as input and formulates the task as a
sequence labeling problem, where each token is assigned a label. The target token is
assigned the sense (frame) label and all remaining tokens are assigned either label

7 https://github.com/swabhs/open-sesame.
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‘X’ (non-target tokens) or ‘O’ (sub-tokens of any non-target token). This sequence
of tokens is passed through the BERT encoder to obtain contextualized embeddings.
The predicate tokens are distinguished by concatenating these contextual embedding
to ‘predicate indicator’ embeddings before making a final prediction using a one-
hidden-layer multi layer perceptron (MLP). For argument identification and labeling
task, it takes as input a pair of sentence and its target predicate, arguments spans
are predicted as BIO (Beginning, Inside, Outside) labels for all tokens. The target
predicate is paired with the sentence and passed through the BERT encoder to make
the sentence embeddings target-aware. These contextualized sentence embeddings are
concatenated with ‘predicate indicator’ embeddings and passed to one-layer BiLSTM
to obtain hidden states of each token to make the final prediction. The hidden state of
the predicate token is concatenated to the hidden state of each token and passed to the
MLP to get the probability distribution over the label set. We use the implementation
provided by the AllenNLP library8 and conduct experiments both with and without
gold frames.

Note that the open-SESAMEparser does not leverage pre-training, but it uses syntax
information (part-of-speech tags) for parsing. In contrast, a BERT-based parser (Shi &
Lin, 2019) takes advantage of pre-training, while avoids using any syntax information.
We consider it is interesting to investigate the effect of lexical expansion for such two
conceptually different semantic parsers.

5.1.3 Seed datasets

We use scripts from the open-SESAME parser Swayamdipta et al. (2017) to split full-
text annotations of FrameNet-1.7 into train, test, and dev splits. The test set is similar
to previous studies (Das et al., 2014). It contains 16 documents, while 8 documents
are used for the dev set. The statistics for all three splits are given in Table 13. For our
experiments, we generate two sets of splits: (a) with verbs as lexical units; (b) with
nouns as lexical units. To do comparative experiments after lexical expansion, all other
train datasets were sampled from the train set of these two datasets while keeping their
respective test and dev sets same. Seed training datasets were constructed by randomly
sampling one frame annotation per sentence. This strategy provides the train dataset
for verbs with 2746 annotations in total with 7 annotations per frame on average,
and for nouns, it provides 9293 annotations in total with 8 annotations per frame on
average.

5.1.4 Dataset expansions

Each annotation of the seed dataset was augmented using three types of words simul-
taneously. The first two types are based on FrameNet annotations of the sentence
tokens:

– lexical unit: a single-token lexical-unit, that can be either verb or a noun
– role: all single-token roles.

8 https://docs.allennlp.org/models/main/models/structured_prediction/models/srl_bert/.
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Table 13 Statistics for data splits for FrameNet-1.7 fulltext annotations and the seed datasets

Data split # of annotations # of sentences # of frames # of lexical units

FN-1.7 Fulltext Swayamdipta et al. (2017)

Train 19,391 3353 753 2996

Test 6714 1247 574 1678

Dev 2272 326 368 785

Verbs

Train 5739 2746 428 923

Test 1904 922 314 485

Dev 686 292 190 271

AnnotationPerSentence-Verbs

Train 2746 2746 362 684

Nouns

Train 9293 2996 464 1536

Test 2981 1003 311 847

Dev 1063 293 198 377

AnnotationPerSentence-Nouns

Train 2996 2996 354 926

The third word type is based on a POS tag of the sentence tokens:

– noun: any word that is a noun or a part of a noun phrase but is neither a lexical
unit or a single-token role. The reason to select such nouns for expansion comes
from the semantics of roles, as major portion of a sentence is usually covered with
semantic roles, which can be mostly multi-token and this ends up with a very few
words to be substituted as a single-token roles. This configurationwill substitute all
noun tokens except those already been substituted as roles. To determine whether
a word is a noun, we used predicted part-of-speech tags generated during the pre-
processing phase of the parser. We augmented only a fraction of sentence tokens
as nouns. For this purpose, we experimented with values in the range of [10, 30,
and 50]% of sentence tokens.

For all train datasets, each annotation of the seed dataset was augmented with two
more annotations (k = 2) unless mentioned otherwise, to get an approximately three
times larger augmented training dataset. See Tables 14 and 15 for statistics of the
augmented train datasets under various configurations using BERT as a substitution
model. We constructed datasets with expansion of only single word types like either
lexical unit or role or noun and then with all combined. For all three word types, the
order of expansion is always the lexical unit, followed by role and then noun. This
ensures that one specific word is augmented only once even if it belongs to multiple
word types.
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Table 14 Statistics of the train datasets augmented from seed dataset AnnotationPerSentence-Verbs, for
different configurations

Overall 362 frames were involved. Base model is BERT

Table 15 Statistics of the train datasets augmented from the seed dataset AnnotationPerSentence-Nouns,
for different configurations

Overall 354 frames were involved. Base model is BERT

5.1.5 Post-processing

The list of substitutes produced by the lexical substitution model was post-processed
before the final augmentation. Some of these post-processing steps are common to all
word types such as removal of noisy words, duplicates, and seed words. While the
specific ones for each word type are as follows:

– lexical unit: substitutes for lexical-unit were filtered as per their gold annotations
(frame parser can not predict a frame for a target not present in the FrameNet
lexicon). Final substitutes were lemmatized and then inflected to match the tense
form of the substituted lexical unit.We use the lemminflect9 library as an inflection
engine.

– role: substitutes for roles were also filtered as per their gold annotations and also
for a basic list of stop-words.

– noun: substitutes for nouns were filtered for a basic list of stop-words including
digits and the minimum length of two characters. Final filtering was done based on
part-of-speech tags to retain only nouns. Thefinal listwas lemmatized and inflected
to match the singular or plural form of the substituted noun. For lemmatization
and part-of-speech tagging, we used the NLTK library.

After substituting all target words, the augmented sentence was again parsed for
part-of-speech tags. Tables 14 and 15 provides the total number of annotations for

9 https://pypi.org/project/lemminflect/.
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Table 16 Examples of expansions using the configuration of lexical unit-roles-nouns-50pc forXLNet+embs
and BERT as lexical substitution models

The shaded row indicates the seed sentence from the AnnotationPerSentence-Verbs dataset

different configurations for both seed datasets of verbs and nouns. As expected, the
datasets augmentedwith just lexical units and roles are the smallest, because for lexical
units, the list of final substitutes can be empty if no substitute matches with the gold
set of the annotated frame, and for roles, single-token roles may not be present in a
sentence. The datasets where all nouns were augmented are larger in comparison to all
other configurations.A few examples of sentences taken fromAnnotationPerSentence-
Verbs, and augmented using one of these configurations are given in Table 16.

5.2 Examples of augmented sentences

Table 16 shows few examples of augmentation results along with original seed sen-
tences. Here, the seed dataset was AnnotationPerSentence-Verbs. Each sentence is
highlighted for all three word types, i.e. target words and phrases for their correspond-
ing word types, which are lexical unit, roles and nouns. As mentioned previously, only
single-token roles are augmented. We do augmentations for the seed sentence using
two top substitutes from the final list after post-processing steps. These augmented
examples were produced using the configuration of lexical unit-roles-nouns-50pc. In
some cases, the quality of substitutes for roles and nouns is less reliable as per the
overall semantics of the sentence, especially for roles as their gold dataset is limited
to FrameNet annotations, and unlike lexical units elements of these gold datasets can
be semantically very different from each other. For example, predicting pronouns to
substitute nouns. But substitutes for lexical units and nouns are plausible in most cases
and preserve the meaning of the sentence.
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Table 17 The performance of Swayamdipta et al. (2017) the frame-semantic parser for the target identi-
fication model in terms of the F1 score: TargetId – Verbs

5.3 Results with the ppen-SESAME parser

Hyperparameters: Optimal hyperparameters for the argument identification model
are presented in Swayamdipta et al. (2017). However, the hyperparameters for the
frame and target identification model are omitted. In our experiments, we used the
default values for everything defined in the source code of the parser, except for the
maximum number of epochs. For target and frame identification, we use 100 epochs
with an early stopping patience of 25 epochs. For argument identification, we use 10
epochs with an early stopping patience of 3 epochs. We use these default values to
get the total number of training steps for seed datasets. The augmented datasets are
three-time larger than the seed datasets; we used the same number of training steps for
them as per the corresponding seed dataset and model to keep the training time similar
for all of them. For the seed datasets of AnnotationPerSentence-Verbs, this would
give 274,600 steps for the target and frame identification models and 27,460 steps for
the argument identification models. For the seed datasets of AnnotationPerSentence-
Nouns, this would give 299,600 steps for the target and frame identification models
and 29,960 steps for the argument identification models. This will reduce the bias in
model performance because of the larger size and more training iterations. The final
model was selected as per the best F1 score on the dev dataset during training. To
compensate for variance in model performance due to random weight initialization,
all experiments were run 10 times and their mean and standard deviation on F1 score
is reported for both BERT and XLNet+embs. In addition to these measures, we also
calculate p values for the paired student t-test to determine the statistical significance
of performance differences betweenmodels trained on augmented datasets andmodels
trained on the seed datasets. The null hypothesis assumes that both models performed
similarly and any difference in their mean performance is not supported statistically.
P values are compared against 99% confidence; a p value below 0.01 supports the
alternative hypothesis and indicates that both models performed differently and this
difference is statistically significant.

Tables 17 and 18 summarize results for the target identificationmodel and Tables 19
and 20 summarize the performance of frame identification models for training
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Table 18 The performance of Swayamdipta et al. (2017) the frame-semantic parser for the target identi-
fication model in terms of the F1 score: TargetId – Nouns

Table 19 The performance of Swayamdipta et al. (2017) the frame-semantic parser for the frame identi-
fication model in terms of the F1 score: FrameId – Verbs

Table 20 The performance of the frame-semantic parser by Swayamdipta et al. (2017) for the frame
identification model in terms of the F1 score: FrameId – Nouns

datasets reported in Tables 14 and 15 respectively. For AnnotationPerSentence-Nouns
dataset, the TargetId model managed to improve in multiple settings for BERT,
getting the highest gain where 30% of nouns were expanded (F1 = 41.96). For
AnnotationPerSentence-Verbs dataset, it also scored better in multiple settings, get-
ting the highest gain where 50% of nouns were expanded (F1 = 61.67). However, this
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Table 21 The performance of the frame-semantic parser by Swayamdipta et al. (2017) for argument
identification and labeling in terms of the F1 score: ArgId – Verbs

difference in the mean scores of the models is not statistically significant (p > 0.01).
We assume that the base dataset already contains sufficient examples per target on
average and further expansions do not help it, but rather decreased its performance in
some cases. The high standard deviation also shows that the original hyperparameters
such as learning rate and dropout rate are less optimal for these datasets and need to
be tuned before drawing final conclusions. For the FrameId model, the performance
did not improve for all datasets augmented from AnnotationPerSentence-Verbs. In the
case of datasets augmented fromAnnotationPerSentence-Nouns, it is better inmultiple
cases for both BERT and XLNet+embs, but not statistically significant. The datasets,
where the lexical unit is not augmented, managed to perform better than those where
it was augmented. In the latter case F1 decreased. That is most probably because
augmented datasets only added new targets but with the same frame, because no new
frame is added to the train, this affects negatively as new targets get just one example
of the frame for them. This drop in performance is statistically significant. Contrary to
target identification, the standard deviation also remained on the lower side (less than
1.5) for all models, which also hints that hyperparameters are good enough to yield
robustness in results.

The results for the ArgId model are reported in Tables 21 and 22. The F1 of the
model on the augmented datasets is improved for many of the configurations. For
the verbs dataset, the highest F1 score is achieved for the dataset where expansion
configurations are lexical unit-roles-nouns-30pc for BERT (F1 = 50.00) and nouns-
30pc for XLNet+embs (F1 = 49.47). For the nouns dataset, the highest F1 score is
achieved for the dataset where expansion configurations are lexical unit-roles-nouns-
50pc for BERT (F1 = 65.10) and lexical unit-roles-nouns-50pc for XLNet+embs (F1 =
65.31). The difference in the performance of models for the augmented datasets is also
supported statistically with p values lower than 0.01, particularly in the datasets where
all three types of words were augmented. Overall expansion configuration comprising
nouns performed better as they got more diversified sentences for training than other
configurations.

The negative results for target and frame identification indicate that using data
augmentation to generate more training data is not always useful and it depends on
the nature of the data and task itself. Since, we sample data per sentence, that is
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Table 22 The performance of the frame-semantic parser by Swayamdipta et al. (2017) for argument
identification and labeling in terms of the F1 score: ArgId – Nouns

more suitable for arguments identification, as each sentence occurred once in the seed
dataset, it does not seems to be a useful strategy for frame and target identification as
they already had enough average number of annotations per instance (see Tables 14,
15). But data would have been sampled as per frame and target then augmentations
would have helped and that we actually observed in our initial set of experiments.
That different sampling strategy for these tasks does benefit from data augmentation
during frame parsing. Dementieva et al. (2020) also reported similar findings for the
task of propaganda detection. Similar to our choice of different words, Dementieva et
al. (2020) augmented nouns, adjectives, adverbs, and verbs using GloVe, fastText, and
BERT as substitution models to generate more training sentences. Their experiments
withmany different settings showed a slight shift in the precision and recall scorewhile
the F1 score did not improve except very slightly in two cases. Another work from
Fenogenova (2021) used the fine-tuned mT5 (Xue et al., 2021) model for paraphrasing
to generate augmented data for the tasks of sentiment analysis, textual entailment, and
question-answering in the Russian language. They also reported similar findings with
all three tasks where the performance of the model remained nearly similar with both
the original and the augmented training datasets.

5.3.1 Effect of train dataset size over model performance

To further validate the performance of all models against any bias in the seed dataset
construction and to see the effect of the seed dataset size on model performance,
we trained the two best models on multiple seed datasets. All seed datasets were
constructed by randomly sampling the N percentage of training examples from the
verbs and nouns dataset. We selected the values of N as 10, 20, 30, 40, 50, and
100%. Each seed dataset was further augmented into two datasets using BERT and
XLNet+embs as lexical substitution models. Two best expansion configurations are
selected that are lexical unit-roles-nouns-50pc and nouns-50pc. Models trained on the
seed datasets use the same number of epochs as discussed in Sect. 5.3. To train each
model on augmented datasets, the number of training steps were determined as per the
size of their corresponding seed dataset and the model. As per previous experiments,
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Fig. 4 Evaluation of lexical expansion for the ArgId model over increasing size of the seed training dataset.
The shaded region represents the standard deviation based on 10 runs of the model. The x-axis is in log
scale. Source dataset: Verbs

Fig. 5 Evaluation of lexical expansion for the ArgId model over increasing size of the seed training dataset.
The shaded region represents standard deviation based on 10 runs of the model. The x-axis is in log scale.
Source dataset: Nouns

each experiment was run 10 times with different random seeds to get the mean and
standard deviation for the curve.

The learning curves are shown in Figs. 4 and 5. Both augmented datasets have
consistently improved the model performance over their seed datasets and on average
obtained 2–3% gain in F1 . For datasets sampled from verbs, the difference in model
performance for the seed and augmented datasets remained consistent and statistically
significant for sample sizes larger than 10%, and it is true for bothmodels regardless of
the expansion configurations. But for datasets sampled from nouns, only the expansion
configuration lexical unit-roles-nouns-50pc shows more consistent performance for
all sample sizes. This difference in the performance of this configuration can also be
observed in Table 22where the expansion configurations with lexical unit-roles-nouns
have consistently outperformed the oneswhere only nounswas expanded.Whereas for
verbs, overall both types of configurations have performed better. This also provides
interesting insight into the behavior of verb and noun predicates to choose optimal
expansion configurations for each. We can conclude that as opposed to targets and
frames, semantic roles are a more diversified set of words and hence proved to be an
ideal candidate to augment when data is insufficient.

123



S. Anwar et al.

5.4 Results with the BERT-based parser

HyperparametersAs thismodel is originally designed towork for verb type predicates,
so we only report results for the verbs-based datasets here. For seed datasets, themodel
was trained for 50 epochs, while for augmented datasets, it was trained for 17 epochs
to have the same number of training steps for both the seed and augmented datasets.
We used BERT large cased with the batch size of 8 and the learning rate of 2e−5. All
models were run 10 times to get mean and standard deviation values.

For the BERT-based parser, we present the learning curve and used both BERT and
XLNet+embs lexical substitution models for augmented datasets for comparison. The
learning curves for both models are shown in Fig. 6. From the top, the first row shows
the performance with gold frames and the second row shows the performance without
gold frames. It can be confirmed by the curves that lexical expansion is indeed helpful
to obtain performance gain when the number of annotations is insufficient. However,
the performance gain starts to diminish when moving to the right of the x-axis where
the seed dataset size increases, this is also supported by p values that are consistently
less than 0.01 for the sample sizes of 10 to 30. The gain in performance shows similar
patterns in both situations with or without gold frame information. Whereas using
gold frames information obtained significantly higher scores with F1 going above 70.0
for all models and datasets in comparison to using predicted frames where it remains
close to 65.0). These scores are significantly higher than the open-SESAME parser for
the same datasets and show the advantage of using pre-trained Transformer models to
learn the syntax and semantics of the sentence in comparison to using syntactic features
such as part-of-speech tags. While there is no clear candidate when it comes to the
comparison of lexical substitution models, both BERT and XLNet+embs performed
similarly.

For nouns, the extensive set of experiments could not produce similar results as for
verbs. Therewere no improvements in the performance for the augmented datasets, and
where it showed improvements, results were not consistent and the variance between
multiple runs of the model was excessive.

6 Conclusion

In this work, we performed a study of text augmentation methods for semantic frame
processing based on (i) non-contextualized distributional models such as word2vec
and syntax-based distributional thesauri, and (ii) contextualized lexical substitution
methods based on neural language models, such as BERT and XLNet. We tested these
methods in two extensive experimental setups.

In the first set of experiments, we perform generation of lexical representations of
semantic frames. We demonstrated that a single frame annotated example can be used
to bootstrap a fully-fledged lexical representation of the FrameNet-style linguistic
structures. Non-contextualized models proved to be strong baselines, but failed to
produce good substitutes for polysemous words (same word but different semantic
frame), whereas contextualized models of BERT and XLNet produced competitive
substitutes, especially when information about the target word is injected effectively.
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Fig. 6 Evaluation of lexical expansion for the BERT-based semantic role parser for the ArgId model over
increasing size of the seed training dataset. The first row shows the performance using gold frames and the
second row shows the combined performance where the first step is to predict the frames and then do the
argument identification. The shaded region represents the standard deviation based on 10 runs of the model.
The x-axis is in log scale. Source dataset: Verbs

Additionally, our experiments show that sometimes, combining individual models to
generate lexical substitutes significantly helps to improve their individual performance.

Since automatic evaluation of lexical substitution is sensitive to completeness of the
lexical resource itself, to further analyse the effectiveness of our method, we also did
manual evaluation of these substitutes on small datasets to show that on the one hand,
suitable lexical substitutes are sometimes absent from the gold datasets, while on the
other hand, the present substitutes are not always good candidates for the purpose of
lexical substitution since they can alter the sentence semantics.

In our second set of experiments, we deal with two neural FrameNet parsers by
Swayamdipta et al. (2017) and Shi and Lin (2019). Namely, we demonstrate that text
augmentation can be used to build more training samples from a few seed sentences,
and these new frame representations help to improve the performance of semantic
parsers for the semantic role identification and labeling tasks. These experiments
suggest that expansion of roles (usually represented with nouns and noun phrases)
and otherwise occurring nouns in the text significantly improves the performance of
semantic parsing, while an expansion on verbs—which is an arguably harder task, as
verbs does not have as many close co-hyponyms and synonyms—does not improve
parsing results.
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Overall, our results suggest that: (i) augmentation of lexical units can be of great
use for expansion of lexical representation of semantic frames, and for (ii) building
semantic parsers, which perform role identification in text, especially in situations
where the number of training texts is small.

7 Future work

Going forward,we can expect further improvements from large foundationmodels like
T5 (Raffel et al., 2020), BART (Lewis et al., 2020), FlanT5 (Longpre et al., 2023) and
other pre-trained seq2seq transformers, especially those pre-trained on multiple word
masking tasks helping to restore multiword expressions accurately. Experimenting
with further contextualized lexical substitution methods, such as nPIC/PIC (Roller &
Erk, 2016), may yield improvements in combined methods.

While large pre-trained language models are increasingly getting better at perform-
ing tasks in an end-to-end fashion, this is seemingly removing the need for explicitly
expanding lexical-semantic resources for natural language understanding and gener-
ation tasks. However, there are still fields where lexical resources—with examples
and their sources—are key to answering research questions or productive work, e.g.
for the study of the structure of semantics, for the creation of dictionaries, as well as
e.g. for controlled experiments in psycholinguistics and other fields. With our auto-
matic expansion approach, we provide a method to aid the quicker development of
these lexical resources in such situations, especially for under-resourced languages
and domains.
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Appendix 1: Effect of model size and masking on transformer-based
models

As reported in Sect. 3.2.2, we used only large-cased variants of BERT and XLNet
models without masking to reduce complexity of model choices in our experimental
setup. Here, we compare their performance for all variants with and without masking
to get an insight if there can be a single best configuration for all three datasets.
Results are reported in Table 23. In case of BERT, the best configuration differs for
all three tasks. For verbs-LU expansion task, large-cased variant without masking
consistently outperformed all other variants in terms of P@k and MAP score. Larger
variants seems to be better overall and masking has throughout negative affect in all
variants. For nouns-LU expansion task, similar to verbs, the masking has negative
affect overall, but in case of model size the effect is not consistent between cased and
uncased variants. Overall the base-cased model without masking has performed best.
Although the difference between the large and base model is not significant. For roles,
it is shown that masking the target word has actually positive affect on all variants of
BERT. But in comparison to LU expansion task for verbs and nouns, this difference in
performance is more apparent inMAP scores than p@k scores. In terms of p@k score,
base-cased with masking has performed best and in terms of MAP score the large-
uncased model with masking has outperformed all other variants. For XLNet variants,
results remained consistent and the large model without masking has performed best
for all three datasets both in terms of p@k andMAP scores. For our final experiments,
we just choose only one variant large-cased without masking to keep it simple.

Table 23 Comparisons of BERT and XLNet models for their sizes and masking affects
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Appendix 2: Effect of pre-processing pipeline

Table 24 Evaluation of lexical substitutes for noun lexical units, with lemminflect library in post processing

This library provides more robust way of POS tagging for words that can have multiple tags
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Table 25 Evaluation of lexical substitutes for semantic roles, with stopword filtering
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Urešová, Z. (2016). Towards comparability of linguistic graph Banks for semantic parsing. In Pro-
ceedings of the tenth international conference on language resources and evaluation (LREC’16) (pp.
3991–3995). European Language Resources Association (ELRA). https://aclanthology.org/L16-1630

Padró, L., & Stanilovsky, E. (2012). FreeLing 3.0: Towards wider multilinguality. In Proceedings of the
eighth international conference on language resources and evaluation (LREC’12) (pp. 2473–2479).
EuropeanLanguageResourcesAssociation (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/
pdf/430_Paper.pdf

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1), 71–106.

Parker, R., Graff, T. D., Kong, J., Chen, K., &Maeda, K. (2009).English gigaword fourth edition. Linguistic
Data Consortium LDC2009T13. Web Download.

Peng, H., Thomson, S., Swayamdipta, S., & Smith, N. A. (2018). Learning joint semantic parsers from
disjoint data. In Proceedings of the 2018 conference of the North American chapter of the association
for computational linguistics: Human language technologies (Vol. 1 (Long Papers), pp. 1492–1502).
Association for Computational Linguistics. https://www.aclweb.org/anthology/N18-1135

Pennacchiotti, M., De Cao, D., Basili, R., Croce, D., & Roth, M. (2008). Automatic induction of FrameNet
lexical units. InProceedings of the 2008 conference on empirical methods in natural language process-
ing (pp. 457–465). Association for Computational Linguistics. https://www.aclweb.org/anthology/
D08-1048

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp.
1532–1543). Association for Computational Linguistics. https://www.aclweb.org/anthology/D14-
1162

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep
contextualized word representations. In Proceedings of the 2018 conference of the North American
chapter of the association for computational linguistics: Human language technologies (Vol. 1 (Long
Papers), pp. 2227–2237). Association for Computational Linguistics. https://aclweb.org/anthology/
N18-1202

123

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2301.13688
http://www.aclweb.org/anthology/N13-1051
http://www.aclweb.org/anthology/N13-1051
https://www.aclweb.org/anthology/W15-1501
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://www.aclweb.org/anthology/W12-1901
https://aclanthology.org/L16-1630
http://www.lrec-conf.org/proceedings/lrec2012/pdf/430_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/430_Paper.pdf
https://www.aclweb.org/anthology/N18-1135
https://www.aclweb.org/anthology/D08-1048
https://www.aclweb.org/anthology/D08-1048
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://aclweb.org/anthology/N18-1202
https://aclweb.org/anthology/N18-1202


Text augmentation for semantic frame induction and parsing

QasemiZadeh, B., Petruck, M. R. L., Stodden, R., Kallmeyer, L., & Candito, M. (2019). SemEval-2019
task 2: Unsupervised lexical frame induction. In Proceedings of the 13th international workshop on
semantic evaluation (pp. 16–30). Association for Computational Linguistics. https://www.aclweb.org/
anthology/S19-2003

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020).
Exploring the limits of transfer learningwith a unified text-to-text transformer. The Journal of Machine
Learning Research, 21, 140:1-140:67.

Roller, S., & Erk, K. (2016). PIC a different word: A simple model for lexical substitution in context. In
Proceedings of the 2016 conference of the North American chapter of the association for compu-
tational linguistics: Human language technologies (pp. 1121–1126). Association for Computational
Linguistics. https://www.aclweb.org/anthology/N16-1131

Roller, S., Kiela, D., & Nickel, M. (2018). Hearst patterns revisited: Automatic hypernym detection from
large text corpora. In Proceedings of the 56th annual meeting of the association for computational
linguistics (Volume 2: Short Papers pp. 358–363). Association for Computational Linguistics. https://
www.aclweb.org/anthology/P18-2057

Roth,M.,&Lapata,M. (2015). Context-aware frame-semantic role labeling.Transactions of the Association
for Computational Linguistics, 3, 449–460.
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