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Abstract
adaptNMT streamlines all processes involved in the development and deployment 
of RNN and Transformer neural translation models. As an open-source applica-
tion, it is designed for both technical and non-technical users who work in the field 
of machine translation. Built upon the widely-adopted OpenNMT ecosystem, the 
application is particularly useful for new entrants to the field since the setup of the 
development environment and creation of train, validation and test splits is greatly 
simplified. Graphing, embedded within the application, illustrates the progress of 
model training, and SentencePiece is used for creating subword segmentation mod-
els. Hyperparameter customization is facilitated through an intuitive user interface, 
and a single-click model development approach has been implemented. Models 
developed by adaptNMT can be evaluated using a range of metrics, and deployed as 
a translation service within the application. To support eco-friendly research in the 
NLP space, a green report also flags the power consumption and kgCO

2
 emissions 

generated during model development. The application is freely available (http://​
github.​com/​adapt​NMT).
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1  Introduction

Explainable Artificial Intelligence (XAI) (Arrieta et al., 2020; Gunning et al., 2019) 
seeks to ensure that the results of AI solutions are easily understood by humans. It 
is against this backdrop that adaptNMT has been developed to afford users a form of 
Explainable Neural Machine Translation (XNMT). The stages involved in a typical 
NMT process are broken down into a series of independent steps including envi-
ronment setup, dataset preparation, training of subword models, parameterizing and 
training of main models, evaluation and deployment. This modular approach has 
created an effective NMT model development process for both technical and less 
technical practitioners in the field. Given the environmental impact of building and 
running of large AI models (Henderson et  al., 2020; Jooste et  al., 2022b;Strubell 
et al., 2019), we also compute carbon emissions in a ‘green report’, primarily as an 
information aid, but hopefully as a way to encourage reusable and sustainable model 
development.

An important part of this research involves developing applications and models 
to address the challenges of language technology. It is hoped that such work will be 
of particular benefit to newcomers to the field of Machine Translation (MT) and in 
particular to those who wish to learn more about NMT.

In order to have a thorough understanding of how NMT models are trained, the 
individual components and the mathematical concepts underpinning both RNN- and 
Transformer-based models are explained and illustrated in this paper. The applica-
tion is built upon OpenNMT (Klein et al., 2017) and subsequently inherits all of its 
features. Unlike many NMT toolkits, a CLI (command line interface) approach is 
not used. The interface is designed and fully implemented in Google Colab.1 For 
an educational setting, and indeed for research practitioners, a Colab cloud-hosted2 
solution is often more intuitive to use. Furthermore, the training of models can be 
viewed and controlled using the Google Colab mobile app which is ideal for builds 
with long run times. GUI controls, also implemented within adaptNMT, enable the 
customization of all key parameters required when training NMT models.

The application can be run in local mode enabling existing infrastructure to be 
utilised, or in hosted mode which allows for rapid scaling of the infrastructure. A 
deploy function allows for the immediate deployment of trained models.

This paper is organized by initially presenting background information on NMT 
and related work on system-building environments in Sect. 2. This is followed by a 
detailed description of the adaptNMT architecture and its key features in Sect. 3. An 
empirical evaluation of models is carried out in Sect. 4. The system is discussed in 
Sect. 5 before drawing conclusions and describing future work in Sect. 6. For new-
comers to the field, we suggest going straight to Sect. 3 to examine the platform’s 
capabilities, and then discovering more about the various components and their sta-
tistical underpinning in Sect. 2. This can be followed by the remaining sections in 
their logical sequence.

1  https://​www.​colab.​resea​rch.​google.​com.
2  https://​www.​cloud.​google.​com.

https://www.colab.research.google.com
https://www.cloud.google.com
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2 � Neural networks for MT

2.1 � Recurrent neural network architectures

Recurrent Neural Networks (RNNs)  (Araabi & Monz, 2020; Sennrich et  al., 
2016a; Sennrich & Zhang, 2019) are often used for the tasks of Natural Language 
Processing (NLP), speech recognition and MT. RNNs, such as Long Short-Term 
Memory (LSTM)  (Hochreiter & Schmidhuber, 1997), were designed to sup-
port sequences of input data. LSTM models use an encoder-decoder architecture 
which enables variable length input sequences to predict variable length output 
sequences. This architecture is the cornerstone of many complex sequence pre-
diction problems such as speech recognition and MT.

RNN models enable previous outputs to be used as inputs through the use of 
hidden states. In the context of MT, such neural networks were ideal due to their 
ability to process inputs of any length. In the initial stages of NMT, the RNN 
encoder-decoder framework was adopted and variable-length source sentences 
were encoded as fixed-length vectors  (Cho et  al., 2014; Sutskever et  al., 2014). 
An improvement upon the basic RNN approach was proposed in Bahdanau et al. 
(2014) which enhanced translation performance of the basic encoder-decoder 
architecture by replacing fixed-length vectors with variable-length vectors. A 
bidirectional RNN was now employed to read input sentences in the forward 
direction to produce forward hidden states while also producing backward hidden 
states by reading input sentences in the reverse direction. This development ena-
bled neural networks to more accurately process long sentences, which previously 
had served as bottlenecks to performance, given their tendency to ‘forget’ words 
in long input sequences which are ‘too far away’ from the current word being 
processed.

More importantly, Bahdanau et  al. (2014) introduced the concept of ‘atten-
tion’ to the basic RNN architecture, similar in spirit and intention to ‘alignments’ 
in the forerunner to NMT, Statistical MT (Och & Ney, 2003). In attention-aug-
mented NMT, the system could now pay special heed to the most relevant other 
source-sentence words and use them as contextual clues when considering how 
best to select the most appropriate target words(s) for translationally ambiguous 
words in the same string.

2.2 � Transformer architecture

Following the introduction of the attention mechanism, a natural line of investi-
gation was to see whether attention could do most of the heavy lifting of transla-
tion by itself. Accordingly, Vaswani et al. (2017) proposed that “attention is all 
you need” in their ‘Transformer architecture’, which has achieved state-of-the-art 
(SOTA) performance on many NLP benchmarks by relying solely on an atten-
tion mechanism, removing recurrence and convolution, while allowing the use of 
much simpler feed-forward neural networks.
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This approach follows an encoder-decoder structure, and allows models to 
develop a long memory which is particularly useful in the area of language trans-
lation. The task of the encoder is to map an input sequence to a sequence of con-
tinuous representations, which is then passed to a decoder to generate an output 
sequence by using the output of the encoder together with the decoder output 
from the previous time step. Both the encoder and decoder each consist of a stack 
of 6 identical layers, whose structure is illustrated in Fig. 1. In the encoder, each 
layer is composed of two sub-layers: a multi-head self-attention mechanism and a 
fully connected feed-forward network. In the case of the decoder, there are three 
sub-layers: one which takes the previous output of the decoder stack, another 
which implements a multi-head self-attention mechanism, and the final layer 
which implements a fully connected feed-forward network.

2.3 � Attention

As illustrated in Fig. 2, the attention function can be described as mapping a query 
and a set of key-value pairs to an output, where the query, keys, values, and output 
are all vectors. The output is computed as a weighted sum of the values, where the 

Fig. 1   The Transformer 
architecture using an encoder-
decoder (Vaswani et al., 2017). 
The encoder maps an input 
sequence to the decoder. The 
decoder generates a new output 
by combining the encoder 
output with the decoder output 
from the previous step



1675

1 3

adaptNMT: an open‑source, language‑agnostic development…

weight assigned to each value is computed by a compatibility function of the query 
with the corresponding key, as shown in Eq. (1).

The query, keys and values used as inputs to the the attention mechanism are dif-
ferent projections of the same input sentence (‘self-attention’) and capture the rela-
tionships between the different words of the same sentence.

Both a scaled dot-product attention and a multi-head attention are used in the 
Transformer architecture. With scaled dot-product attention, a dot product is ini-
tially computed for each query q with all of the keys k. Subsequently, each result is 
divided by 

√
dk and a Softmax function is applied. The process leads to the weights 

which are used to scale the values, v.
The Softmax function allows us to perform multiclass classification which makes 

it a good choice in the final layer of neural network-based classifiers. The function 
forces the outputs of the neural network to a total sum to 1, which can be viewed 
as a probability distribution across multiple classes. Therefore, Softmax is the ideal 
choice as the output activation function, given that NMT is essentially a multiclass 
classification problem where the output classes represent the words within the 
vocabulary.

Computations performed by scaled dot-product attention can be efficiently 
applied on the entire set of queries simultaneously. To achieve this, the matrices, Q, 
K and V, are supplied as inputs to the attention function:

2.4 � NMT

While much research effort concentrates on creating new SOTA NMT models, 
excellent descriptions of the technology are also available within the literature for 
those starting out in the field, or for those with a less technical background (Forcada, 
2017; Way, 2019).

(1)attention(Q,K,V) = softmax(QKT∕
√
dk)V

Fig. 2   Multi-Head Attention 
in the Decoder (Vaswani et al., 
2017). In the decoder, a multi-
head layer receives queries from 
the previous decoder sublayer, 
and the keys and values from the 
encoder output. The decoder can 
now attend to all words in the 
input sequence
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The availability of large parallel corpora has enabled NMT to develop high-per-
forming MT models. Breakthrough performance improvements in the area of MT 
have been achieved through research efforts focusing on NMT  (Bahdanau et  al., 
2014) but the advent of the Transformer architecture has greatly improved MT per-
formance. Consequently, SOTA performance has been attained on multiple language 
pairs (Bojar et al., 2017, 2018; Lankford et al., 2021b, 2022a, 2022b).

Similar to many deep-learning approaches, NMT development is underpinned by 
the mathematics of probability. At a fundamental level, the goal is to predict the 
probabilistic distribution P(y|x) given a dataset D, where x represents the source 
input sentence and y represents the target output sentence.

Supervised training of an NMT model develops the model weights by compar-
ing the predicted P(y|x) with the correct y sentences of the training dataset, DTrain . 
In evaluating the performance of an NMT model, automatic evaluation results are 
determined when the predicted P(y|x) sentences are compared with the correct y 
sentences of the test dataset, DTest.

In adopting a deep learning paradigm, MT inherits the mathematical first princi-
ples which are inherent to this approach. To understand these principles, the manner 
in which neural networks model a conditional distribution is outlined. Furthermore, 
the encoder-decoder mechanism used for training NMT models is presented in the 
modelling subsection, and model optimization using training objectives is outlined 
in the learning subsection. Finally, the mathematics of how translated sentences are 
generated is explored in the inference subsection.

2.4.1 � Modelling

In NMT, sentence-level translation is modelled using input and output sentences as 
sequences. Using this approach, an NMT model implements a sequence-to-sequence 
model with a given source sentence, x = (x1,… , xs) generating a target sentence 
y = (y1,… , yt).

In effect, such a sequence-to-sequence NMT model acts as a conditional language 
model. The decoder within the model predicts the next word of the target sentence y, 
while such predictions are conditioned on the source sentence x.

By applying the chain rule, a model’s prediction (i.e. translation y of length T) 
maximizes the probability P(y|x) identified in Eqs. (2) and (3):

Prior to Transformer, encoder-decoder models that incorporate RNNs were the most 
common method of representing text sequences in NMT. RNNs are networks which 
accumulate information composed of similar units repeated over time. In NMT, a 
primary function of the RNN encoder is that it encodes text, i.e. it turns text into a 
numeric representation. Neurons within an RNN are illustrated in Fig. 3.

(2)P(y|x) =P(y1|x)P(y2|y1, x)P(y3|y1, y2, x)P(yT |y1,… , yT−1, x)

(3)P(y|x) =
T∏

t=1

P(yt|y1,… , yT−1, x)
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Decoders unfold the vector representing the sequence state and return text. An 
important distinction between an encoder and a decoder is illustrated in Fig.  4, 
where it can be seen that both the encoder hidden state and the output from the pre-
vious decoding state are required by the decoder.

To kick-start processing of the decoder, a special token <start>   is used since 
there is no previous output. The calculations carried out by the encoder are summa-
rized in Eq. (4):

Fig. 3   Neurons within an RNN. At the input side, the neuron’s input at time t is a function of the encoded 
word (i.e. input vector x

t
 ) and a hidden state vector h

t−1 which contains the previous sequence. The out-
put generated by the neuron is represented by the vector O

t

Fig. 4   Encoder-decoder architecture. The encoder encodes the entire input sequence into a fixed-length 
context vector, c, by processing input time steps. The function of the decoder is to read this context vec-
tor while stepping through output time steps



1678	 S. Lankford et al.

1 3

The RNNENC function is iteratively applied over the input sequence to generate the 
final encoder state, hs which is fed to the decoder. The complete source sentence is 
effectively represented by hs . The decoder within the model predicts the next word 
of the target sentence y, while such predictions are conditional on the source sen-
tence x.

The RNN decoder, RNNDEC , creates a state vector st by compressing the decoding 
history y0,… , yt−1 which is described in Eq. (5). The distribution of target tokens is 
predicted by a classification layer which typically uses the Softmax activation function.

2.4.2 � Learning

It is possible to optimize models using different types of training objectives, although 
maximum log-likelihood (MLE) is the most commonly used method. Given a set of 
training examples D = {(xs, ys)}S

s=1
 , the MLE is maximised according to Eqs. (6) and 

(7).

The gradient of L with respect to � is calculated using back-propagation (Rumelhart 
et al., 1986) as an automatic differentiation algorithm for calculating gradients of the 
neural network weights, where � is the set of model parameters.

Many NMT approaches implement Stochastic Gradient Descent (SGD) as the opti-
mization algorithm for minimising the loss of the predictive model with regard to the 
training data. For reasons of computational efficiency, SGD typically computes the loss 
function and gradients on a minibatch of the training set. The standard SGD optimizer 
updates parameters of an NMT model according to Equation (8), where the learning 
rate is specified by �:

There are several alternatives to using SGD for optimization, among which the 
ADAM optimizer has proven popular due to a reduction in training times (Kingma 
& Ba, 2014).

2.4.3 � Inference

In the context of NMT, inference should ideally find the target translated sentence 
y from the source x which maximizes the model prediction P(y|x;�) . However, in 

(4)ht = RNNENC(xt, ht−1)

(5)st = RNNDEC(yt−1, st−1)

(6)𝜽̂MLE = argmax
�

{L(�)}

(7)L(�) =

S∑

s=1

logP(ys|xs);�)

(8)� ← � − �▽L(�)
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practice it is often difficult to find the translation with the highest probability due 
to the impractically large search space. Accordingly, to find a good but not neces-
sarily the very ‘best’ (i.e. that with the highest probability given the model) transla-
tion, NMT usually relies instead on local search algorithms such as greedy search or 
beam search (cf. Fig. 5). Translations are carried out by default using beam search, 
although the option exists to switch to greedy search if needed. This approach is 
consistent with many other NMT tools since beam search is a classic local search 
algorithm. Using a pre-defined beam width parameter K, the beam search algorithm 
keeps only the top-K possible translations as potential candidates. With each itera-
tion, a new potential translation is formed by combining each candidate word with a 
new word. New candidate translations compete with each other using log probability 
values to obtain the new top-K most probable results. This process is continued until 
the end of the translation process, and the 1-best translation is output.

2.5 � Subword models

Translation by its very nature requires an open vocabulary, but restricted (e.g. 30, 
50, or 70k) vocabularies are typically used for reasons of computational efficiency. 
However, the use of subword models aims to address this fixed vocabulary prob-
lem associated with NMT. The problem manifests itself in how previously unseen 
‘out-of-vocabulary’ (OOV) words are handled. In such cases, a single ‘UNK’ (for 
‘unknown’) token is used to ‘recognize’ the OOV word. Encoding rare and unknown 
words into sequences of subword units significantly reduces the problem and has 
thus given rise to a number of subword algorithms.

Optimally, this will be performed via morphological processing (Passban et al., 
2018), but good quality wide-coverage morphological analysers are not always avail-
able. Therefore it is common practice to use methods such as Byte Pair Encoding 
(BPE) (Gage, 1994) to break down rare and previously unseen words into subword 

Fig. 5   Beam search algorithm 
(Yang et al., 2020)
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models in order to significantly improve translation performance (Kudo, 2018; Sen-
nrich et al., 2016b).

Designed for NMT, SentencePiece  (Kudo & Richardson, 2018), is a language-
independent subword tokenizer that provides an open-source C++ and a Python 
implementation for subword units. An attractive feature of the tokenizer is that Sen-
tencePiece trains subword models directly from raw sentences.

2.6 � NMT tools

Kreutzer et  al. (2019) describe their Joey NMT platform3 as a minimalist NMT 
toolkit, based on PyTorch, which is designed especially for newcomers to the field. 
Joey NMT provides many popular NMT features in a simple code base enabling 
novice users to easily adapt the system to their particular requirements. The toolkit 
supports both RNN and Transformer architectures.

Given that adaptNMT is essentially an IPython wrapper layered on top of Open-
NMT, it inherits all of OpenNMT’s features and continues to benefit from the work 
which goes into developing and maintaining its code base. adaptNMT offers a 
higher level of abstraction over OpenNMT where the focus is much more on usabil-
ity, especially to newcomers to the field. Accordingly, it provides for easy and rapid 
deployment by enabling new features such as greater pre-processing, as well as GUI 
control over model building. It also contains green features in line with the current 
research drive towards smaller models with lower carbon footprints (cf. Sects. 4.4 

Table 1   Key features differentiating adaptNMT from Joey NMT

Key features

AdaptNMT is built upon OpenNMT and subsequently inherits all of its features

The interface is designed and fully implemented in Google Colab
Colab is easier to follow for practitioners since each step can be executed individually. The approach is 

ideal in education since progression of the pipeline is demonstrated
Training of models can be viewed and controlled using Colab Android or Apple apps
adaptNMT can be run in local mode enabling existing infrastructure to be utilised or in hosted mode 

which allows rapid scaling of the infrastructure
Colab Pro+ provides individual researchers, or even small teams, the capacity to build large models on 

an excellent infrastructure with very little resources
GUI controls can split a corpus into train, validation and test datasets
GUI controls are available for hyperparameter customization in NMT training
A green report outlines the country-specific kgCO

2
 generated when training a model

Autonotification notifies the user on completion of training
 A deploy function enables the immediate deployment of trained models
The functionality of serverNMT is not available within Joey NMT

3  https://​github.​com/​joeyn​mt/​joeyn​mt

https://github.com/joeynmt/joeynmt
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and 5). Such features make adaptNMT suitable for both educational and research 
environments. The key features differentiating adaptNMT from Joey NMT are out-
lined in Table 1.

Other popular frameworks for NMT system-building include FAIRSEQ4  (Ott 
et al., 2019), an open-source sequence modelling toolkit based on PyTorch, that ena-
bles researchers to train models for translation, summarization and language model-
ling. Marian5  (Junczys-Dowmunt et  al., 2018), developed using C++, is an NMT 
framework based on dynamic computation graphs. OpenNMT6 (Klein et al., 2017) 
is an open-source NMT framework that has been widely adopted in the research 
community. The toolkit covers the entire MT workflow from the preparation of data 
to live inference.

2.7 � Hyperparameter optimization

Hyperparameters are employed in order to customize machine learning models such 
as translation models. It has been shown that machine learning performance may be 
improved through hyperparameter optimization (HPO) rather than just using default 
settings (Sanders & Giraud-Carrier, 2017).

The principal methods of HPO are Grid Search  (Montgomery, 2019) and Ran-
dom Search  (Bergstra & Bengio, 2012). Grid search is an exhaustive technique 
which evaluates all parameter permutations. However, as the number of features 
grows, the amount of data permutations grows exponentially making optimization 
expensive in the context of developing translation models which require long build 
times. Accordingly, an effective, less computationally intensive alternative is to use 
random search which samples random configurations.

3 � Architecture of adaptNMT

Having described the individual components of RNN- and Transformer-based NMT 
systems, we now present the adaptNMT tool itself, in which these components can 
be configured by the user. A high-level view of the system architecture of the plat-
form is presented in Fig. 6. Developed as an IPython notebook, the application uses 
the Pytorch implementation of OpenNMT for training models with SentencePiece 
used for training subword models. By using a Jupyter notebook, the application 
may be easily shared with others in the MT community. Furthermore, the difficul-
ties involved in setting up the correct development environment have largely been 
removed since all required packages are downloaded on-the-fly as the application 
runs.

There are options to run the system on local infrastructure or to run it as a Colab 
instance using Google Cloud. Translation models are developed using parallel text 

4  https://​github.​com/​faceb​ookre​search/​fairs​eq.
5  https://​marian-​nmt.​github.​io.
6  https://​openn​mt.​net.

https://github.com/facebookresearch/fairseq
https://marian-nmt.github.io
https://opennmt.net
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corpora of the source and target languages. A Tensorboard visualization provides a 
real-time graphical view of model training. The primary use-cases for the system 
are model building and a translation service, one or both of which can be selected 
at run-time. As illustrated in the system diagram in Fig. 6, generating an ensemble 
output while translating has also been facilitated. Models may also be deployed to a 
pre-configured location.

3.1 � adaptNMT

The application may be run as an IPython Jupyter notebook or as a Google Colab 
application. Given the ease of integrating large Google drive storage into Colab, the 
application has been used exclusively as a Google Colab application for our own 
experiments, some of which are described in Sect. 4. The key features of the note-
book are illustrated in Fig. 7.

3.1.1 � Initialization and logging

Initialization enables connection to Google Drive to run experiments, automatic 
installation of Python, OpenNMT, SentencePiece, Pytorch and other applications. 

Fig. 6   Proposed architecture for adaptNMT: a language-agnostic NMT development environment. The 
system is designed to run either in the cloud or using local infrastructure. Models are trained using par-
allel corpora. Visualization and extensive logging enable real-time monitoring. Models are developed 
using vanilla RNN-based NMT, Transformer-based approaches or (soon) transfer learning using a fine-
tuning approach. Translation and evaluation can be carried out using either single models or ensembles
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Fig. 7   adaptNMT and serverNMT. a Overview of adaptNMT. Key areasinclude initialization, pre-pro-
cessing, environment setup, visualization, auto and custom NMT, training of subword model, training 
of main model, evaluation and deployment (cf. Sect. 3.1). b Overview of serverNMT. Highlightedcells 
include initialization, environmentsetup, Anvil server, API functions, translation, model building, adapt-
NMT and running the server (cf. Sect. 3.2)
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The visualization section enables real-time graphing of model development. All 
log files are stored and can be viewed to inspect training convergence, the mod-
el’s training and validation accuracy, changes in learning rates and cross entropy.

3.1.2 � Modes of operation

There are two modes of operation: local or cloud. In local mode, the application 
is run so that models are built using the user’s local GPU resources. The option 
to use cloud mode enables users to develop models using Google’s GPU clus-
ters. For shorter training times, the unpaid Colab option is adequate. However, 
for a small monthly subscription, the Google Colab Pro option is worthwhile 
since users have access to improved GPU and compute resources. Nevertheless, 
there are also environmental and running costs to consider (cf. Sects.   4.4 and 
5), although the Google Cloud is run on a platform which uses 100% renewables 
(Lacoste et al., 2019). It is also a very cost-effective option for those working in 
the domain of low-resource languages since developing smaller models require 
shorter training times. However, users requiring long training times and very high 
compute resources will need to use their own hardware and run the application in 
local mode unless they have access to large budgets.

3.1.3 � Customization of models

The system has been developed to allow users to select variations to the underly-
ing model architecture. A vanilla RNN or Transformer approach may be selected 
to develop the NMT model. The customization mode enables users to specify the 
exact parameters required for the chosen approach. One of the features, Auto-
Build, enables a user to build an NMT model in three simple steps: (i) upload 
source and target files, (ii) select RNN or Transformer, and (iii) click AutoBuild.

3.1.4 � Use of subword segmentation

The type of optimizer to be used for learning can be specified, and users may also 
choose to employ different types of subword models when building the system. The 
subword model functionality allows the user to choose whether or not to use a sub-
word model. Currently, the user specifies the vocabulary size and chooses either a 
SentencePiece unigram or a SentencePiece BPE subword model (cf. Sect.  2.5).

A user may upload a dataset which includes the train, validation and test splits 
for both source and target languages. In cases where a user has not already cre-
ated the required splits for model training, single source and target files may be 
uploaded. The splits needed to create the train, validation and test files are then 
automatically generated according to the user-specified split ratio. Given that build-
ing NMT models typically demands long training times, an automatic notification 
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feature is incorporated that informs the user by email when model training has been 
completed.

3.1.5 � Translation and evaluation

In addition to supporting training of models, the application also allows for transla-
tion and evaluation of model performance. Translation using pre-built models is also 
parameterized. Users specify the name of the model as a hyperparameter which is 
then subsequently used to translate and evaluate the test files. The option for creating 
an ensemble output is also catered for, and users simply name the models which are 
to be used in generating the ensemble output.

Once the system has been built, the model to be used for translating the test set 
may be selected. To evaluate the quality of translation, humans usually provide the 
best insight, but they may not always be available, do not always agree, and are 
expensive to recruit for experiments. Accordingly, automatic evaluation metrics are 
typically used, especially by developers monitoring incremental progress of systems 
(cf. Way (2018) for more on the pros and cons of human and automatic evaluation).

Several automatic evaluation metrics provided by SacreBleu7Post (2018) are 
used: BLEU Papineni et  al. (2002), TER Snover et  al. (2006) and ChrF Popović 
(2015). Translation quality can also be evaluated using Meteor Denkowski and Lavie 
(2014) and F1 score Melamed et al. (2003). Note that BLEU, ChrF, Meteor and F1 
are precision-based metrics, so higher scores are better, whereas TER is an error-
based metric and lower scores indicate better translation quality. Evaluation options 
available include standard (truecase) and lowercase BLEU scores, a sentence-level 
BLEU score option, ChrF1 and ChrF3.

There are three levels of logging for model development, training and experimen-
tal results. A references section outlines resources which are relevant to developing, 
using and understanding adaptNMT. Validation during training is currently con-
ducted using model accuracy and perplexity (PPL).

3.2 � serverNMT

A server application, serverNMT, was also developed and implemented as an IPy-
thon notebook. It can be configured to run either as a translation server or as a build 
server. A secure connection, implemented from serverNMT, can be made to web-
sites hosting embedded web apps. At the core of serverNMT, there are two embed-
ded Python web apps, one for translation services and another for developing mod-
els, both of which use the anvil.works platform.8

As a build server, serverNMT enables a window to the underlying cloud infra-
structure in which NMT models can be trained. A web app hosted on another system 
may connect to this infrastructure made available by serverNMT.

7  https://​github.​com/​mjpost/​sacre​bleu.
8  https://​anvil.​works.

https://github.com/mjpost/sacrebleu
https://anvil.works
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Using an Anvil server embedded within serverNMT, the application continuously 
waits for communication to web apps and effectively enables a cloud infrastructure 
for NMT. Written as a REST server, it acts as an API for serving previously built 
models and facilities the integration of translation models with other systems.

Table 2   Hyperparameter 
optimization for transformer 
models

Optimal parameters are highlighted in bold (Lankford et al., 2021b)

Hyperparameter Values

Learning rate 0.1, 0.01, 0.001, 2
Batch size 1024, 2048, 4096, 8192
Attention heads 2, 4, 8
Number of layers 5, 6
Feed-forward dimension 2048
Embedding dimension 128, 256, 512
Label smoothing 0.1, 0.3
Dropout 0.1, 0.3
Attention dropout 0.1
Average Decay 0, 0.0001

Table 3   EN-GA train, validation 
and test dataset distributions

The baseline gaHealth system was augmented with an 8k Covid 
dataset provided by LoResMT2021

Team System Train 
(k)

Validation Test

adapt covid_extended 13 502 500
adapt combined_domains 65 502 500
IIITT en2ga-b 8 502 500
UCF en2ga-a 8 502 500
gaHealth en2ga 24 502 500
gaHealth en2ga* 24 502 338

Table 4   GA-EN train, validation 
and test dataset distributions

The baseline gaHealth system was augmented with an 8k Covid 
dataset provided by LoResMT2021. All overlaps were removed from 
the gaHealth corpus prior to training the gaHealth ga2en model

Team System Train (k) Validation Test

IIITT ga2en-b 8 502 250
UCF ga2en-b 8 502 250
gaHealth ga2en 24 502 250
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4 � Empirical evaluation

Having described the theoretical background and the tool itself, we now evaluate the 
effectiveness of the adaptNMT approach by training models for English-Irish (EN-
GA) and Irish-English (GA-EN) translation in the health domain using the gaHealth 
(Lankford et al., 2022a) corpus.9 All experiments involved concatenating source and 
target corpora to create a shared vocabulary and a shared SentencePiece subword 
model. To benchmark the performance of our models, the EN-GA and GA-EN test 
datasets from the LoResMT2021 Shared Task10 (Ojha et al., 2021) were used. These 
test datasets enabled the evaluation of the gaHealth models since the shared task 
focused on an application of the health domain, namely the translation of Covid-
related data. Furthermore, using an official test dataset from a shared task enables 
the direct comparison of our models’ performance with models entered by other 
teams, as well as future implementations.

The hyperparameters used for developing the models are outlined in Table 2. The 
details of the train, validation and test sets used by our NMT models are outlined 
in Tables 3 and 4. In all cases, 502 lines were used from the LoResMT2021 valida-
tion dataset whereas the test dataset used 502 lines for EN-GA translation and 250 
lines for GA-EN translation. Both were independent health-specific Covid test sets 
which were provided by LoResMT2021. There was one exception; due to a data 
overlap between the test and train datasets, a reduced test set was used when testing 
the gaHealth en2ga* system.

The results from the IIITT (Puranik et al., 2021) and UCF (Chen & Fazio, 2021) 
teams are included in Tables 5 and 6 so the performance of the gaHealth models can 
be easily compared with the findings of the participating LoResMT2021 systems. 
IIITT fine-tuned an Opus MT model11 (Tiedemann & Thottingal, 2020) on the train-
ing dataset. UCF used transfer learning (Zoph et al., 2016), unigram and subword 
segmentation methods for EN-GA and GA-EN translation.

4.1 � Infrastructure

Rapid prototype development was enabled through a Google Colab Pro subscrip-
tion using NVIDIA Tesla P100 PCIe 16GB graphic cards and up to 27GB of mem-
ory when available  (Bisong, 2019). All gaHealth MT models were trained using 
adaptNMT.

4.2 � Metrics

Automated metrics were used to determine the translation quality. In order to 
compare against our previous work, the performance of models is measured 

9  https://​github.​com/​seamu​sl/​gaHea​lth.
10  https://​github.​com/​lores​mt/​lores​mt-​2021.
11  https://​github.​com/​Helsi​nki-​NLP/​Opus-​MT.

https://github.com/seamusl/gaHealth
https://github.com/loresmt/loresmt-2021
https://github.com/Helsinki-NLP/Opus-MT
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using three evaluation metrics, namely BLEU, TER and ChrF. These metrics 
indicate the accuracy of the translations derived from our NMT systems.

Case-insensitive BLEU scores at the corpus level are reported. Model train-
ing was stopped after 40k training steps or once an early stopping criterion of no 
improvement in validation accuracy for four consecutive iterations was recorded.

PPL is often used to evaluate language models within NLP. It measures the 
effectiveness of a probability model in predicting a sample. As a metric for 
translation performance, it is important to keep low scores so that the number of 
alternative translations is reduced.

Fig. 8   adapt covid_extended system: training EN-GA model with 13k lines consisting of the ADAPT 5k 
corpus and an 8k LoResMT2021 Covid corpus. The graph on the left illustrates OpenNMT accuracy and 
the graph on the right demonstrates perplexity

Table 5   EN-GA gaHealth 
system compared with 
LoResMT 2021 EN-GA systems

Bold hightlights them as the winning scores

Team System BLEU ↑ TER ↓ ChrF3 ↑

UCF en2ga-b 13.5 0.756 0.37
IIITT en2ga-b 25.8 0.629 0.53
adapt combined 32.8 0.590 0.57
gaHealth en2ga 33.3 0.604 0.56
adapt covid_extended 36.0 0.531 0.60
gaHealth en2ga* 37.6 0.577 0.57

Table 6   GA-EN gaHealth 
systems compared with 
LoResMT 2021 GA-EN systems

Bold hightlights them as the winning scores

Team System BLEU ↑ TER ↓ ChrF3 ↑

UCF ga2en-b 21.3 0.711 0.45
IIITT ga2en-b 34.6 0.586 0.61
gaHealth ga2en 57.6 0.385 0.71
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4.3 � Results: automatic evaluation

The experimental results from LoResMT 2021 are summarized in Tables 5 and 6. 
In the LoResMT2021 Shared Task, the highest-performing EN-GA system was sub-
mitted by the ADAPT team (Lankford et al., 2021a). The system uses an extended 
Covid dataset, which is a combination of the 2021 MT Summit Covid baseline and 
a custom ADAPT Covid dataset. The model, developed within adaptNMT, uses a 
Transformer architecture with 2 heads. It performs well across all key translation 
metrics (BLEU: 36.0, TER: 0.531 and ChrF3: 0.6).The training of this EN-GA 
model is illustrated in Fig. 8.The model achieved a maximum validation accuracy of 
30.0% and perplexity of 354 after 30k steps.

The results from the LoResMT2021 Shared Task were further improved by 
developing models using a bespoke health dataset, gaHealth. Table  5 shows an 
improvement of 1.6 BLEU points, a relative improvement of almost 4.5%, although 
TER and ChrF3 scores are a little worse. Validation accuracy and PPL in training 
the gaHealth models with adaptNMT are illustrated in Figs.  9 and 10. Figure  8 

Fig. 9   gaHealth en2ga* system: training EN-GA model with combined 16k gaHealth corpus and 8k 
LoResMT2021 Covid corpus. The graph on the left illustrates OpenNMT accuracy and the graph on the 
right demonstrates perplexity

Fig. 10   gaHealth ga2en system: training GA-EN model with combined 16k gaHealth corpus and 8k 
LoResMT2021 Covid corpus. The graph on the left illustrates OpenNMT accuracy and the graph on the 
right demonstrates perplexity
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illustrates model training using the covid_extended dataset, also developed using 
adaptNMT. In training the gaHealth en2ga* system, as highlighted in Fig.  9, the 
EN-GA model was trained with the combined 16k gaHealth and 8k LoResMT2021 
corpora. The model’s validation accuracy of 38.5% and perplexity of 113 achieved a 
BLEU score of 37.6 when evaluated with the test data.

The training of the GA-EN gaHealth ga2en system with the combined 16k 
gaHealth corpus and 8k LoResMT2021 Covid corpus is shown in Fig.  10. This 
model achieves a validation accuracy of 39.5% and perplexity of 116 which results 
in a BLEU score of 57.6. This is significantly better (by 20 BLEU points) than for 
the reverse direction, as it is well-known that translating into a morphologically-rich 
language like Irish is always more difficult compared to when the same language 
acts as the source. This is confirmed by comparing the results for the UCF (13.5 vs. 
21.3 BLEU) and IIITT (25.8 vs. 34.6) systems in Tables 5 and 6.

Rapid convergence was observed while training the gaHealth models such that 
little accuracy improvement occurs after 30k steps, 10K fewer than for the reverse 
direction. Only marginal gains were achieved after this point and it actually declined 
in the case of the system trained using the covid_extended dataset, as the left-hand 
graph in Fig. 8 shows.

Of the models developed by the ADAPT team, the worst-performing model uses 
a larger 65k dataset. This is not surprising given that the dataset is from a generic 
domain of which only 20% is health related. The performance of this higher-
resourced 65k line model lags behind the augmented gaHealth model which was 
developed using just 24k lines.

For translation in the GA-EN direction, the best-performing model for the 
LoResMT2021 Shared Task was developed by IIITT with a BLEU of 34.6, a TER 
of 0.586 and ChrF3 of 0.6. Accordingly, this serves as the baseline score by which 
our GA-EN model, developed using the gaHealth corpus, can be benchmarked. 
The performance of the gaHealth model offers an improvement across all metrics 
with a BLEU score of 57.6, a TER of 0.385 and a ChrF3 result of 0.71. In particu-
lar, the 66% relative improvement in BLEU score against the IIITT system is very 
significant.

Table 7   Stochastic differences 
between EN-GA systems

System BLEU ↑ TER ↓ ChrF3 ↑

adaptNMT 37.6 0.577 0.570
myNMT 36.4 0.622 0.56

Table 8   Stochastic differences 
between EN-GA systems

System BLEU ↑ TER ↓ ChrF3 ↑

adaptNMT 57.6 0.385 0.71
myNMT 56.6 0.399 0.703
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4.4 � Environmental impact

We were motivated by the findings of Strubell et al. (2019) and Bender et al. (2021) 
to track the energy consumption required to train our models. Prototype model 
development used Colab Pro, which as part of Google Cloud is carbon neutral 
(Lacoste et al., 2019). However, longer running Transformer experiments were con-
ducted on local servers using 324 gCO2 per kWh12. (SEAI, 2020). The net result was 
just under 10 kgCO2 created for a full run of model development. Models developed 
during this study will be reused for ensemble experiments in the future so that work 
will have a life beyond this paper.

4.5 � Stochastic nuances

To evaluate the translation performance of an IPython-based application such as 
adaptNMT, a comparison with a Python script version of the same application, 
myNMT.py, was conducted. We built translation models in the EN-GA and the 
GA-EN directions using this script. The models developed with adaptNMT were 
trained on Google Colab using a 12GB Tesla K80 GPU, whereas the myNMT mod-
els were trained on a local machine using a 12GB Gigabyte 3060 graphics card. The 
results from evaluating these models are presented in Tables 7 and 8.

Despite setting the same random seed, it is clear from Tables 7 and 8 that the 
translation performance of the adaptNMT models is better by 1.2 BLEU points 
(3.3% relative improvement) in the EN-GA direction and 1.0 BLEU point (1.8% rel-
ative improvement) in the GA-EN direction.

Given the stochastic nature of machine learning, training models on different sys-
tems can give yield different results even with the same train, validation and test 
data. The performance differences can be attributed to the stochastic nature of the 
learning algorithm and evaluation procedure. Furthermore the platforms had differ-
ent underlying system architectures which is another source of stochastic error.

5 � Discussion

The mathematical first principles governing NMT development were presented to 
demonstrate the mechanics of what happens during model training. Several param-
eters in Eqs. (2)–(8) are configurable within the adaptNMT application.

The environmental impact of technology, and the measurement of its effects, has 
gained a lot of prominence in recent years (Henderson et  al., 2020). Indeed, this 
may be viewed as a natural response to truly massive NLP models which have been 
developed by large multinational corporations. In particular, HPO of NMT models 
can be particularly demanding if hyperparameter fine-tuning is conducted across a 
broad search space. As part of their work on NMT architectures, the Google Brain 

12  https://​www.​seai.​ie/​publi​catio​ns/​Energy-​in-​Irela​nd-​2020.​pdf.

https://www.seai.ie/publications/Energy-in-Ireland-2020.pdf
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team required more than 250,000 GPU hours for NMT HPO (Britz et  al., 2017). 
Training of these models was conducted using Tesla K40m and Tesla K80 GPUs 
with maximum power consumption between 235W and 300W, giving rise to poten-
tially in excess of 60 MWh of energy usage. Even though the Google Cloud is car-
bon neutral, one must consider the opportunity cost of this energy usage.

A plethora of tools to evaluate the carbon footprint of NLP (Bannour et al., 2021) 
has subsequently been developed and the concept of sustainable NLP has become 
an important research track in its own right at many high profile conferences such as 
the EACL 2021 Green and Sustainable NLP track.13 In light of such developments, 
a ‘green report’ was incorporated into adaptNMT whereby the kgCO2 generated dur-
ing model development is logged. This is very much in line with the industry trend 
of quantifying the impact of NLP on the environment; indeed, Jooste et al. (2022a) 
have demonstrated that high-performing MT systems can be built with much lower 
footprints, which not only reduce emissions, but also in the post-deployment phase 
deliver savings of almost 50% in energy costs for a real translation company.

To evaluate system performance in translating health data in the EN-GA direction, 
we used the adaptNMT application to develop an MT model for the LoResMT2021 
Shared Task. The application was subsequently used to develop an MT model for 
translating in the GA-EN direction. In both cases, high-performing models achiev-
ing SOTA scores were achieved by using adaptNMT to develop Transformer models 
capable of generating high-quality output.

The danger of relying on increasingly large language models has been well-
documented in the literature. Such discussion focuses not just on the environmen-
tal impact but also highlights the impact of in-built bias and the inherent risks that 
large models pose for low-resource languages (Bender et al., 2021). Using an easily-
understood framework such as adaptNMT, the benefits of developing high-perform-
ing NMT models with smaller in-domain datasets should not be overlooked.

6 � Conclusion and future work

We introduced adaptNMT, an application for NMT which manages the complete 
workflow of model development, evaluation and deployment. The performance of 
the application was demonstrated in the context of generating an EN-GA translation 
model which ranked 1st in the LoResMT2021 shared task, and validated against a 
standalone reimplementation of both EN-GA and GA-EN systems outside the tool, 
where no drop-off in performance was seen.

With regard to future work, development will focus more on tracking environ-
mental costs and integrating new transfer learning methods. Modern zero-shot and 
few-shot approaches, adopted by GPT3 (Brown et al., 2020) and Facebook LASER 
(Artetxe & Schwenk, 2019) frameworks, will be integrated. Whereas the existing 
adaptNMT application focuses on customizing NMT models, a separate application 

13  https://​2021.​eacl.​org/​news/​green-​and-​susta​inable-​nlp

https://2021.eacl.org/news/green-and-sustainable-nlp
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adaptLLM will be developed to fine-tune large language models, in particular those 
that focus on low-resource language pairs such as NLLB (Costa-jussà et al., 2022).

The green report embedded within the application is our first implementation of 
a sustainable NLP feature within adaptNMT. It is planned to develop this feature 
further to include an improved UI and user recommendations about how to develop 
greener models. As an open-source project, we hope the community will add to its 
development by contributing new ideas and improvements.
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