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Abstract
The goal of hate speech detection is to filter negative online content aiming at cer-
tain groups of people. Due to the easy accessibility and multilinguality of social 
media platforms, it is crucial to protect everyone which requires building hate 
speech detection systems for a wide range of languages. However, the available 
labeled hate speech datasets are limited, making it difficult to build systems for 
many languages. In this paper we focus on cross-lingual transfer learning to sup-
port hate speech detection in low-resource languages, while highlighting label issues 
across application scenarios, such as inconsistent label sets of corpora or differing 
hate speech definitions, which hinder the application of such methods. We leverage 
cross-lingual word embeddings to train our neural network systems on the source 
language and apply them to the target language, which lacks labeled examples, and 
show that good performance can be achieved. We then incorporate unlabeled tar-
get language data for further model improvements by bootstrapping labels using an 
ensemble of different model architectures. Furthermore, we investigate the issue of 
label imbalance in hate speech datasets, since the high ratio of non-hate examples 
compared to hate examples often leads to low model performance. We test simple 
data undersampling and oversampling techniques and show their effectiveness.

Keywords  Hate speech · Cross-lingual transfer learning · Class imbalance · BERT · 
CNN · LSTM

 *	 Irina Bigoulaeva 
	 ibigoula@gmail.com

	 Viktor Hangya 
	 hangyav@cis.lmu.de

	 Alexander Fraser 
	 fraser@cis.lmu.de

1	 Ubiquitous Knowledge Processing Lab (UKP Lab), Department of Computer Science, Technical 
University of Darmstadt, Darmstadt, Germany

2	 Center for Information and Language Processing, LMU Munich, Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10579-023-09637-4&domain=pdf
http://orcid.org/0000-0002-6955-981X
https://orcid.org/0000-0002-5144-3069
https://orcid.org/0000-0003-2187-7621
https://orcid.org/0000-0003-4891-682X


1516	 I. Bigoulaeva et al.

1 3

1  Introduction

Due to the increased digitization of society, the impact of online discourse on eve-
ryday life is becoming more pronounced. A single hateful message shared on social 
media now has the potential to incite violent offline movements, as well as exert a 
negative emotional impact on millions of readers. For this reason, platforms such as 
Twitter and Facebook have created community policies to ensure civil conduct on 
the part of their users. The goal is to filter hate speech, which unlike mere offensive 
or vulgar content, is exclusively designed to attack or denigrate entire groups of peo-
ple and has a damaging effect on communities. But with the sheer amount of posts 
being published, it is becoming difficult for humans to moderate them in a complete 
and timely manner. Different moderators are also not guaranteed to agree on every 
decision, even in the presence of well-defined classification guidelines. Moreover, 
due to their repeated and prolonged exposure to negative content, many moderators 
experience a decline in mental health Vidgen and Derczynski (2020). For these rea-
sons, automatic hate speech detection has become a field of high interest.

In general, the task of classifying hate speech has been acknowledged as dif-
ficult de Gibert et al. (2018). One reason is data scarcity: there are currently few 
public hate speech datasets available, and the majority of them are for English. 
Thus, building systems for lower-resource languages is even more challenging 
Vidgen and Derczynski (2020). An additional difficulty of the task is the need to 
precisely define hate speech. While many people have an intuitive understanding 
of what hate speech is, this does not easily translate to a finite set of character-
istics that can be used as annotation guidelines. Additionally, many hate speech 
datasets deal with specific hate speech subtypes, such as hate speech only against 
refugees, women or certain nationalities, which leads to stark differences between 
the content of their hate speech classes and making the available resources for a 
given set of hate speech subtypes in a low-resource language even scarcer.

It is therefore our aim to examine a cross-lingual setup, in which available hate 
speech resources from a higher-resource language are exploited. We address data 
scarcity in German, a generally high-resource language but a language for which 
there are not yet many hate speech datasets available (only a small number of data-
sets are available compared to English most of which differ in their label sets Vidgen 
and Derczynski (2020)). Our method is applied in a zero-shot setup that assumes 
no annotated training data in German. We develop a cross-lingual transfer learning 
approach based on cross-lingual word embeddings (CLWEs) and neural classifiers 
to provide access to hate speech data in English. We rely on a widely-used English 
dataset de Gibert et  al. (2018) as our source-language data and the German data-
set of the 2018 GermEval Shared Task on the Identification of Offensive Language 
Ruppenhofer et al. (2018) as our target language data in our experiments. As is often 
the case with hate speech datasets, the annotation schemas of these two datasets 
do not fully correspond. Therefore, as we discuss later, we modify their annotation 
using a few simple rules to ensure label compatibility.

In addition to training only on English, we leverage further data to improve our 
systems. Towards this end, we bootstrap on two unlabeled German datasets, one 
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of which we crawled from the web. Using an ensemble of our cross-lingual mod-
els we predict the labels of previously-unseen data and assign labels with major-
ity voting. We then use this bootstrapped data to further fine-tune the English-
trained models. We find that for the majority of our architectures, cross-lingual 
performance after fine-tuning improves scores within the hate speech class as 
well as macro-average scores.

Since the majority of social media content is non-hateful, the datasets’ label dis-
tributions are skewed towards the no-hate label. Such class imbalances often lead 
to training issues, especially in case of small training corpora. For this reason we 
perform a series of additional experiments to test the impact of class ratio on model 
performance. We create several over- and undersampled versions of our training sets 
and compare the models’ performance. Our results suggest that severe class imbal-
ance is indeed a problem, but that the best method to overcome it depends on the 
dataset size.

In sum, our work contributes by addressing three issues in zero-shot cross-lingual 
hate speech detection: (1) hate speech definition incompatibilities across resources, 
(2) data scarcity and (3) class imbalance. Regarding hate speech definition, we select 
compatible datasets and employ manual label modification. Regarding data scarcity, 
we pursue a cross-lingual setup in which we use English labeled data only to detect 
hate speech in German. Furthermore, we show that performance can be improved by 
leveraging unlabeled German sentences. Regarding class imbalance, we show that 
the imbalanced distributions of hate speech datasets can be compensated with sam-
pling techniques, but that the optimal technique to use may depend on dataset size.

Similar methods have been applied in other tasks and have been used in other 
hate speech detection setups; however, to the best of our knowledge, no works on 
hate speech detection apply these methods in a zero-shot, cross-lingual setting.

2 � Previous work

In this section we give an overview of previous work that addresses the three afore-
mentioned issues of hate speech definition, data scarcity, and class imbalance.

2.1 � Hate speech definitions

For as long as hate speech detection has been an area of interest, a multitude of 
terminologies have been associated with it. Schmidt and Wiegand (2017) note that 
the earliest work on the phenomenon did not use the term “hate speech” at all, but 
rather “abusive”, “hostile”, and “flames”. However, despite the vast amount of work 
that has since been done on detecting hate speech, the term still lacks a universally-
accepted definition. In particular, Davidson et  al. (2017) observe that the concept 
of “hate” was previously often conflated with the concept of “offensiveness”, and 
though more recent works tend to treat hate speech as a subtype of generally-offen-
sive language Wiegand et al. (2018b); Gröndahl et al. (2018); Zampieri et al. (2019), 
ambiguities and inconsistencies regarding terminology use are still prevalent. The 
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three datasets of HASOC Majumder et  al. (2019) distinguish between the catego-
ries “Hate Speech” and “Offensive”, the difference being that the former is directed 
against a group while the latter is directed against an individual. On the other hand, 
the GermEval2018 dataset of Wiegand et al. (2018b) employs a hierarchical taxon-
omy, where the label “Offensive” is used as an umbrella term that includes “Abuse”, 
which is characterized as a “particularly strong form of offensive language” and 
bears resemblance to the concept of hate speech. Waseem et  al. (2017b) also use 
the term “abuse” rather than “hate speech” in their analysis of contemporary data-
sets, and underscore the importance of distinguishing the target of abuse, as well 
as whether the abuse is implicit or explicit. This inspired the OLID taxonomy of 
Zampieri et al. (2019), which likewise does not use the term “hate speech” as a cat-
egory label. Instead, the OLID dataset uses the label “Offensive”, which was lik-
ened to the “Offensive” category found in the GermEval2018 dataset Wiegand et al. 
(2018b). However, while the authors of OLID use the term “abuse” in their discus-
sion, and the GermEval dataset contains a category named “Abuse”, these two terms 
are not implied to have similar meanings. Rather, the term “abuse” in the discussion 
of Zampieri et al. (2019) is meant to correspond to the label of “Offensive” in their 
dataset, which in the GermEval2018 dataset would include the label “Abuse” as a 
subset. Regarding the term “hate speech”, although Zampieri et  al. (2019) do not 
use it as a category label, they nevertheless note that the concept fits into their three-
level taxonomy as speech that is (1) offensive, (2) a targeted insult, and (3) targeted 
against a group.

From these datasets alone, it is clear that there are significant nuances and incon-
sistencies regarding the use of hate-related terminology. In addition, there are many 
other terms that are employed in connection to hate speech detection, oftentimes in 
the context of related, but separate tasks. Fortuna and Nunes (2018) offer a compari-
son of nine such terms, such as “cyberbullying”, “discrimination”, “flaming”, “toxic 
language”, and “abusive language”, with explanations of how these concepts differ 
from the concept of hate speech itself.

Hate speech datasets also differ in annotation schema, which is shown in recent 
surveys Vidgen and Derczynski (2020); Poletto et  al. (2021); Pamungkas et  al. 
(2021a). This variety is due to the multifaceted nature of hate speech, as it can be 
directed against individuals or groups, be implicit or explicit, and have varying 
themes such as race, gender, or disability. Quite often, it is seen as advantageous 
to focus on classifying finer-grained categories than to attempt a binary classifica-
tion task, where there might be too much variation Poletto et al. (2021). There are 
datasets whose annotation schemas distinguish between racism and sexism, as well 
as datasets specific to certain target groups. The HatEval dataset Basile et al. (2019) 
gathers 13,000 English and 6600 Spanish tweets where the targets of hate speech are 
either immigrants or women. All tweets with the label “Hateful” must have one of 
these two targets. The dataset of Bretschneider and Peters (2017) views hate speech 
as “offensive statements” that express “fear and aggression”, and collects statements 
of this nature that are directed against foreigners. Meanwhile, hate speech exclu-
sively against refugees and Muslims is the focus of Ross et al. (2016). The dataset 
of Davidson et al. (2017) defines hate speech as a statement that “expresses hatred 
towards a targeted group or is intended to be derogatory, to humiliate or to insult 
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members of the group”. The three datasets of HASOC Majumder et al. (2019) do 
not focus on one particular target and contain a diverse set of sentences labeled as 
“Hate Speech”. The previously-mentioned OLID dataset of Zampieri et al. (2019) 
employs a multi-tiered annotation schema that distinguishes on one level whether or 
not a tweet is “Offensive”, then the type of offensiveness it contains, and finally the 
target of offensiveness.

Tables  1 illustrates the differences in the taxonomies of various datasets and 
the contradictory annotations that can arise as a result.1 First are sentences 1 and 
2, which both direct vulgar language at female politicians. However, Sentence 1 
was given the label “Hateful” in accordance with the annotation principles of the 
HatEval dataset, while Sentence 2 from the dataset of Ross et al. (2016) was given 
a binary “No” label that signifies the absence of hate speech. Sentences 3 and 4 
both direct insults against individuals, however Sentence 3 was annotated as “Hate 
Speech”, while Sentence 4 was not considered to be hate speech. Sentences 5 and 6 
both make statements against the media, which is also a group of people. However, 
while the GermEval dataset’s label for such a sentence is “Abuse”, the Stormfront 
dataset labels such a sentence as “Hate”.

These distinctions in category assignment are not just observable to the human 
reader – they also have an impact on model learning. Gröndahl et  al. (2018) pro-
vide evidence that such blurred distinctions among hate-related categories hinders 
a model’s ability to generalize to other datasets, regardless of architecture. They 
observe that nearly all models in their experiments classify non-offensive speech 
containing vulgar language as hate speech. This underscores the importance of the 
role of the dataset in the success of a hate speech detection system.

While the aforementioned works have either argued for a unified hate speech tax-
onomy or proposed their own definitions, there has been a lack of works focusing 
on mitigating the effects of incompatible taxonomies in the zero-shot cross-lingual 
setup. Our work aims to close this gap.

2.2 � Hate speech data scarcity and cross‑lingual transfer

Not only does the content of hate speech datasets pose a challenge, but also the quan-
tity of available datasets, particularly for non-English languages. A comprehensive 
online catalogue published by Vidgen and Derczynski (2020) shows that, although 
a large number of languages are represented in hate speech datasets, most datasets 
are still in English.2. Considering the above discussed variance issues of hate speech 
definition and label sets, multilingual hate speech detection remains an important 
and relevant task, since social media platforms are multilingual spaces where peo-
ple may easily communicate in their native tongue Pamungkas et al. (2021a). Due 
to the costliness of collecting and annotating new data, it is relevant to consider 
ways of exploiting resources that are already available. As with many low-resource 

1  The data samples in this paper are shown for explanatory purposes and do not represent the views of 
the authors.
2  https://​hates​peech​data.​com.

https://hatespeechdata.com
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NLP tasks, a common method for achieving good performance is to leverage data 
from higher-resource languages. This technique is known as cross-lingual transfer 
learning, and relies on shared representations of languages in order for knowledge 
in a source language to be transferable to the target language. One form of trans-
fer is machine translation, in which the target language data is automatically trans-
lated into the source language before classification. Pamungkas et  al. (2021b) use 
mBERTDevlin et al. (2019) in a training pipeline that utilizes an abusive language 
lexicon and machine translation. However, translation models require the presence 
of parallel data to train and may be prone to producing incorrect translations. There-
fore, we employ cross-lingual word embeddings, which is a more efficient method of 
achieving cross-lingual transfer.

Word embeddings provide a means of representing words numerically, thus 
making important linguistic properties such as semantic similarity accessible to 
machines. Popular methods are founded upon the idea that semantically-similar 
words such as “joyful” and “happy” occur in similar contexts Mikolov et al. (2013b); 
Bojanowski et  al. (2017); Devlin et  al. (2019). In a cross-lingual NLP task, word 
embeddings for both the source and target language are needed which are aligned, 
i.e., the vector of a word in the source language is similar to that of its target-lan-
guage translation. As a result, a source-language sentence is represented with a simi-
lar set of vectors as its translations, thus a model trained on the source language may 
be applied to the target language without any intermediate steps. Various approaches 
were proposed to build CLWEs, such as the methods based on the idea of map-
ping independent monolingual embeddings to a shared vector space Mikolov et al. 
(2013a); Conneau et al. (2018); Artetxe et al. (2018) or the approaches learning such 
spaces jointly Devlin et al. (2019). In our work we rely on both types of approaches. 
More precisely, we use MUSE Conneau et al. (2018) and multilingual BERT Devlin 
et al. (2019) models.

CNNs, RNNs and transformers are the most commonly-used models for hate 
speech detection and offensive language detection in general Waseem et al. (2017a); 
Fišer et  al. (2018); Roberts et  al. (2019); Ruppenhofer et  al. (2018); Struß et  al. 
(2019); Benítez-Andrades et al. (2022); MacAvaney et al. (2019); Pamungkas et al. 
(2021b); Pamungkas et al. (2021a). With regards to the first two architectures, we 
examine two setups that achieved good performance on the 2018 GermEval shared 
task. Xi et  al. (2018) used a CNN following Kim (2014), while a combination of 
CNN and BiLSTMs architectures were used to achieve second-best and best perfor-
mance in the two subtasks respectively Wiedemann et al. (2018).

Transformer-based architectures such as BERT Devlin et  al. (2019) have also 
been successfully applied to the task. A notable example is the 2019 iteration of 
the GermEval shared task, where the teams using fine-tuned BERT consistently 
placed among the top performers Struß et al. (2019). Additionally, several works use 
BERT in zero-shot cross-lingual setups. Pelicon et al. (2021) and Nozza (2021) use 
mBERT, the multilingual version of BERT, without any intermediate steps between 
source-language training and target-language testing. In this work we use mBERT.

Other works propose novel architectures for zero-shot setups. Unlike few-shot 
setups, where some gold labels in the target language are available, a zero-shot 
setup does not utilize any labeled target-language data during training. Stappen et al. 
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(2020) propose a novel attention-based method for a zero-shot setup, training on the 
source language and testing on the target language without any intermediate steps. 
Jiang and Zubiaga (2021) propose a novel architecture using machine translation as 
part of their pipeline. Different from these works, we do not use machine translation 
and we additionally employ data sampling and a bootstrapping step before target-
language testing.

Cross-lingual transfer techniques were applied for hate speech detection in Ranas-
inghe and Zampieri (2020) by training transformer-based architectures on English 
data and using the learned weights to initialize models which are trained on target 
language data for improved performance. Similarly, a small number of target lan-
guage samples were concatenated with the source-language training data in Stappen 
et  al. (2020). In Wiegand et  al. (2018a) bilingual word embeddings were used to 
leverage additional source language data by augmenting the available German train-
ing data with English labeled samples. Pamungkas et al. (2021b) use a pipeline that 
involves an abusive language lexicon and machine translation. Mathur et al. (2018) 
utilize a cross-lingual transfer procedure for hate speech detection in Hinglish, a 
code-switched language that uses both Hindi and English words. By first training a 
CNN and an LSTM on an English dataset, then fine-tuning the models on Hinglish, 
better performance was achieved compared to a Hinglish-only model. However, this 
work relied on having labeled data for the target language. In contrast, our approach 
requires no target language annotations.

Kozareva (2006) present a bootstrapping-based approach that annotates new 
data for named entity recognition to improve the performance in low-resource sce-
narios. First a set of classifiers are trained, which are then applied to an unlabeled 
set with majority voting. The extended corpus is used to improve the performance 
by retraining the models from scratch. For hate speech detection, Bigoulaeva et al. 
(2021) combined the bootstrapping procedure of Kozareva (2006) with the fine-tun-
ing procedure of Mathur et al. (2018) by first bootstrapping German-language hate 
speech data then using it to fine-tune CNN and BiLSTM classifiers. This resulted 
in improved performance for both architectures. In this work we follow Bigoulaeva 
et al. (2021), additionally using mBERT alongside the CNN and BiLSTM.

Zia et al. (2022) utilize a similar bootstrapping setup to ours, using the XLM-R 
model to generate target-language labels and then fine-tuning a monolongual tar-
get-language transformer model (either RoBERTa or BERT) on the generated data. 
Different from them, we use CNNs and LSTMs along with mBERT, and use the 
artificially-labeled data to fine-tune the same model that produced it.

Equally important to the consideration of model architecture for cross-lingual 
transfer learning is the choice of datasets. When working with a single hate speech 
dataset, i.e., the scenario where one annotates datasets for their application needs 
therefore both training and testing data is provided from the same data source, the 
problem of compatibility of hate speech definition does not arise. In our cross-lin-
gual setup however, where both a source- and target-language dataset are required, 
the problem of label inconsistencies surfaces and poses the risk of either poor model 
performance or too few resources. Depending on the hate speech definition of the 
target-language requirements, many or all available source-language datasets could 
be incompatible for use alongside it.
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In our experiments, we apply simple rules to make the selected source- and tar-
get-language datasets compatible for the cross-lingual evaluation. The idea behind 
our procedure is the observation that the contents of certain classes can be highly 
similar across different datasets within the same domain. This observation is present 
in many previous works. Fortuna et al. (2020) compare the content of six different 
hate speech datasets to investigate the degree of compatibility between their catego-
ries. Using FastText word embeddings to encode semantic similarity, they represent 
a dataset’s categories as centroid vectors and perform PCA to compare the similarity 
in relation to the categories of other datasets. They find that many categories across 
the six datasets are similar in content, despite carrying different names.

In light of this, a viable solution would be to manually merge similar catego-
ries into one label. Recent work has shown that this is indeed a reliable and sim-
ple method of making certain datasets compatible. Glavaš et  al. (2020) assemble 
a hybrid dataset from three English source datasets that are distinct in domain, 
with the end goal of creating a multidomain and multilingual (through translation) 
abusive language resource. In order to ensure dataset compatibility, they manually 
remap the three-tiered annotation schema of the TRAC dataset Kumar et al. (2018) 
into the binary annotation schema used by two other datasets: Wulczyn et al. (2017); 
Gao and Huang (2017). The TRAC dataset features the labels “non-aggressive”, 
“covertly-aggressive”, and “openly-aggressive”, the latter two of which were rela-
beled as “abusive” and the former of which was labeled as “non-abusive”. Pamung-
kas et al. (2021a) also mention dataset relabeling as a common method for cross-
lingual hate speech detection and that certain classes may not be combined due to 
different class definitions. We note that multilingual datasets with compatible anno-
tation across languages were proposed Majumder et al. (2019); Basile et al. (2019); 
Zampieri et al. (2020), however they do not reflect the real-life scenario where one is 
required to build a system for a given language that is not present in other datasets. 
We address this gap by designing our experiments around this setting.

2.3 � Class imbalance of hate speech datasets

Making source- and target-language datasets compatible, however, does not address 
the important issue of class imbalance. Namely, as Vidgen and Derczynski (2020) 
observe, hate speech is the minority class in most datasets. The dataset of Waseem 
and Hovy (2016) has been observed to consist of 68% non-hate examples Fortuna 
et al. (2020). On the one hand, this simulates a real-life scenario, and Pamungkas 
et al. (2021a) remark that it is important that the class ratio of the test dataset cor-
respond with the training dataset. But on the other hand, an imbalanced class ratio 
leads to an even smaller amount of available positive examples for the detection of 
hate speech, and so the models may not learn about hate speech sufficiently.

We explore simple under- and oversampling techniques with various label ratios 
to show the importance of handling the skewed labeled distribution of hate speech 
datasets.

Johnson and Khoshgoftaar (2019) differentiate between data-level and algo-
rithm-level methods for dealing with class imbalance. The former is concerned with 
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influencing the data distribution directly through over- or undersampling the data 
items. The latter is concerned with adjusting model behavior during training by 
means of cost-sensitive training, selecting certain loss functions, and altering output 
thresholds. Hybrid methods also exist which combine both data-level and algorithm-
level techniques.

Due to their simplicity, we explore over- and undersampling techniques in our 
work. They respectively involve duplicating random samples from the minority 
class and removing random samples from the majority class. Previous research with 
feature-based machine learning models suggests that oversampling delivers slightly 
better performance than undersampling, likely because undersampling removes data 
Mohammed et al. (2020); De Smedt and Jaki (2018). We test the efficacy of over- 
and undersampling hate speech datasets on our neural networks. To our knowledge, 
there are no other works on zero-shot cross-lingual hate speech detection that inves-
tigate the effects of various over- and undersampling ratios.

An additional consideration for oversampling is whether to merely duplicate 
existing data samples from the minority class, or to generate entirely new samples 
by automatic means such as SMOTE Chawla et  al. (2002). The former method is 
simpler, but may cause overfitting due to saturating the minority class with similar 
samples. On the other hand, the latter method generates artificial samples that may 
not share many common features with the real data.

We performed initial experiments with automatic sample generation using the 
SMOTE library but found that this resulted in poor performance. Therefore, for 
oversampling we manually duplicate class samples from the minority class.

3 � Experimental setup

This section introduces the setup of our experiments. First we discuss our chosen 
datasets, showing their class distributions and the degree of overlap in hate speech 
definition. Finally we present our three models based on CNN, BiLSTM, and 
mBERT architectures respectively.

3.1 � Datasets

To ensure the validity of our cross-lingual setup, it was necessary to choose a 
source- and target-language dataset pair such that the hate speech classes of the two 
overlapped. Despite English being a high-resource language, choosing a dataset with 
a narrow-focused hate speech definition would potentially limit the number of Ger-
man datasets that could be used for testing. For this reason we sought out an English 
dataset with a broad hate speech definition, since it would more likely be compatible 
with the available German datasets.

In general, one option for a cross-lingual setup is to use a multilingual dataset 
that contains both English and German data. One such dataset for hate speech 
is OLID. However, this is not compatible with our setup, since our aim is to 
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demonstrate what may be done when one needs to find a separate dataset in the 
source language in order to be able to perform hate speech detection in the target 
language.

One such English dataset is found in de Gibert et  al. (2018) who define hate 
speech as “a deliberate attack directed towards a specific group of people motivated 
by aspects of the group’s identity”. This dataset features text scraped from the white-
nationalist forum Stormfront and will be referred to as the Stormfront dataset. Due 
to its broad hate speech definition and its decent size (ca. 10,000 examples), it was 
chosen as the training set for this paper. Table 2 illustrates some ‘Hate’ and ‘noHate’ 
sentences from the Stormfront dataset. Sentence 1 is not an example of hate speech, 
since it has a neutral sentiment and does not ascribe the qualities ‘poor’ and ‘victim-
ized’ to an entire group of people. Sentences 2 and 3 are examples of hate speech 
directed at religious and racial groups, respectively. Sentence 4 is an attack on an 
individual that uses the derogatory term “retard” to ascribe low intelligence, but was 
assigned the ‘noHate’ label since it did not address a group. Finally, Sentence 5 uses 
the profane and derogatory word “bitch” in a non-attacking context.

Our choice for the target dataset was the dataset of German-language tweets 
presented with the 2018 GermEval Shared Task on the Identification of Offen-
sive Language Ruppenhofer et al. (2018). The shared task focused on the detec-
tion of offensive language in general (the coarse-grained task), along with the 
detection of three of its subtypes (the fine-grained task): ‘Insult’, ‘Profanity’, and 
‘Abuse’. Although the dataset does not contain a category that is explicitly desig-
nated ‘hate speech’, the category ‘Abuse’ is nevertheless defined in terms that are 
similar to the hate speech definition of the Stormfront dataset. Namely, a tweet is 
assigned the ‘Abuse’ label if “... the target of judgment is seen as a representa-
tive of a group and it is ascribed negative qualities that are taken to be universal, 
omnipresent and unchangeable characteristics of the group” Ruppenhofer et  al. 
(2018). Importantly, this definition keeps the nature of the target group general 
and is therefore compatible with the hate speech definition in de Gibert et  al. 
(2018). We therefore take this category to be the correspondent of the Stormfront 
dataset’s ‘Hate’ class, despite it carrying the name ‘Abuse’, and use it our test set 

Table 2   Sample hate and non-hate comments from the Stormfront dataset de Gibert et al. (2018)

Sentence Label

1. This film tells the story of a poor victimised African boy (Joseph) who was allowed into 
Ireland

Nohate

2. There are London areas that could be described as nothing less than little islamic repub-
lics

Hate

3. But unfortunately, Maine’s become the dumping ground for Somalis and other African 
trash

Hate

4. It is nothing short of hysterical that you are such a retard you have to TELL us in your 
username that you are educated

Nohate

5. Im sorry about being a bitch.i was just hurt.hope you find your talk with someone. ifyou-
want to talk to someone who is trying to get their degrees pm me on sf or im me on aol 
or yahoo

Nohate
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for the cross-lingual experiments. However, the label scheme of the GermEval 
dataset nevertheless had to be aligned with that of the Stormfront dataset, which 
we discuss in Sect.  3.1.1.

Table 3 shows samples of various classes from the GermEval dataset. Sentence 
1 expresses negative emotions about a specific person being forgotten but does not 
seek to attack or denigrate anyone. Sentence 2 insults a single politician with a nick-
name “Nulltipper” (en. “idiot”) and the lack of a school diploma to ascribe low 
intelligence. Sentence 3 is an example of “Abuse”, since it ascribes acts of murder 
to an entire religious group. Sentence 4 is an example of the “Profanity” category as 
it contains the profane phrase “in den Arsch gekrochen”, while not being verbosely 
critical or attacking. Finally, Sentence 5 is another example of the “Abuse” class, 
since it uses the term “Mohrenkopf”, which typically denotes a kind of candy, as a 
derogatory designation for dark-skinned individuals.

Despite the alignment of annotation categories, domain differences between the 
source- and target-language datasets may pose challenges to cross-lingual transfer. 
In our case, the domain of the Stormfront dataset is a message forum and the domain 
of the GermEval dataset is Twitter. In the former case, messages are often lengthy 
and can be written in a structured, formal style. In the later case of tweets, the mes-
sages have a length limit and are often informal, featuring slang and abbreviations. 
A prevalence of lengthy and formal messages in the Stormfront dataset might there-
fore inhibit a model’s performance on the tweet-based target dataset. From manual 
examination of the Stormfront dataset, however, we found that shorter, informal 
messages similar to the tweet style were the majority, while essay-like posts were 
the minority. Additionally, we filter out lengthy posts as explained in Sect.  4.1.2. 
Although there are some domain differences, it is more important to use datasets 
with compatible hate speech definitions.

Table 3   Sample comments from the GermEval dataset Wiegand et al. (2018b)

Sentence Label

1. @ShakRiet @Heinrich_Krug So ist es....wir haben Maria vergessen... als hätte sie 
nie existiert....schämt euch...! en. That’s how it is... we have forgotten Maria...as 
if she never existed... shame on you...!

Other

2. Martin Schulz ist 2x sitzen geblieben und hat keinen Schulabschluss.
Wie kann denn so ein Nulltipper als Kanzlerkandidat aufgestellt werden?
en. Martin Schulz was held back in school twice and has no diploma.
How can that kind of idiot be held for a chancellor candidate?

Insult

3. Wir sollten den deutschen Kinder und Frauen gedenken die durch den
#Islam ermordet wurden.
en. We should commemorate the German children and women murdered
by #Islam

Abuse

4. @HenHoffgaard @mboe0407 Da die Kirche jeher den Herrschenden in den
Arsch gekrochen ist, inkl. Hitler, wundert es mich nicht
en. Well since the church always kissed the ass of the ruling elite,
including Hitler, this doesn’t surprise me

Profanity

5. @Nacktmagazin @DuHugonotte Und zum Nachtisch einen Mohrenkopf
en. And for dessert a Mohrenkopf (head of a Moor / a kind of candy)

Abuse
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3.1.1 � Annotation discrepancies

Examining the two datasets’ hate speech definitions and labeled hate speech exam-
ples in Tables  2 and 3, it is clear that GermEval’s “Abuse” category corresponds 
with the ‘Hate’ label of the Stormfront dataset. However, the differing annotation 
taxonomies as well as the different names attached to the compatible categories 
pose problems for machine learning models, which will expect consistent annota-
tions between training and testing. Therefore it was necessary to make a few simple 
adjustments to the datasets before beginning our experiments.

The Stormfront dataset’s distinction between ‘Hate’ and ‘noHate’ is an example 
of a binary annotation schema. Additionally the dataset contains a ‘Relation’ label 
for sentences that had to be considered in context with others to acquire a hateful 
meaning, and a ‘Skip’ label for when the sentence was either non-English or not 
meaningful enough to be given either of the binary labels. In contrast, the GermEval 
dataset features a two-tiered annotation schema: each tweet carries a label for the 
coarse-grained task of ‘Offense’ vs ‘Other’ as well as a fine-grained label that speci-
fies the subtype of offensiveness: either ‘Insult’, ‘Profanity’, or ‘Abuse’.

To ensure compatibility between these two datasets, we made modifications to 
their labeling schemas that were motivated by the datasets’ specific class definitions. 
First we simplified the annotation schema of the fine-grained GermEval data into 
a binary schema. As per the discussion in Sect. 3.1, we took GermEval’s ‘Abuse’ 
label to be the counterpart of the Stormfront dataset’s ‘Hate’, since the definition of 
the ‘Abuse’ category was the most compatible with the hate speech definition of de 
Gibert et al. (2018). Analogously we relabeled the GermEval comments belonging 
to the ‘Other’, ‘Insult’, and ‘Profanity’ classes as ‘noHate’, since the respective defi-
nitions of these categories fail to fulfil one or more aspects of the hate speech defi-
nition in de Gibert et al. (2018). An ‘Insult’ in GermEval, for example, is an attack 
on an individual rather than a group; instances of ‘Profanity’ are never attacks; and 
instances of ‘Other’ are always non-hateful. Next, we relabeled all ‘Skip’ and ‘Rela-
tion’ samples from the Stormfront dataset to conform with the binary schema. The 
92 comments that carried the label ‘Skip’, indicating that they were either non-Eng-
lish or not informative, were relabeled as ‘noHate’. The 168 instances of the ‘Rela-
tion’ class were relabeled as ‘Hate’, since these sentences were always hateful when 
placed in context.

After relabeling was completed, we split both datasets into training, development, 
and test sets. From the Stormfront dataset we form our EN-TEST set by selecting 
random ‘Hate’ and ‘noHate’ samples, with a class ratio that roughly reflects the 
data distribution. We kept the size of this dataset small in the interest of preserv-
ing resources for training. Next we draw an equal amount of ‘Hate’ and ‘noHate’ 
samples that did not overlap with EN-TEST for our EN-DEV dataset. The remaining 
samples formed EN-TRAIN.

For the split-up of our GermEval dataset, we follow the work of Wiedemann et al. 
(2018). The GermEval shared task data comes with an official train and test dataset, 
the latter of which we keep and name DE-TEST. For our train/dev split, we transfer 
the last 809 samples from the provided training set to a new development set named 
DE-DEV for hyperparameter tuning. The remaining samples formed our DE-TRAIN 
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dataset, which will be used only in the bootstrapping experiments. Table 4 shows the 
class distribution of the resulting datasets. These will form the basis of our experi-
ments. See Tables 5 and 6 to compare to the original, unmodified versions of the 
datasets.

3.1.2 � Addressing class imbalance

After the relabeling and train/dev splitting process was complete, we addressed the 
imbalanced class distributions of the training datasets. Examining Table 4, it is clear 
that there is a greater abundance of ‘noHate’ compared to ‘Hate’. This reflects the 
real-life pattern of hate speech occurring less commonly than regular text. But this 
poses difficulties for machine learning models, which need plenty of data from both 
classes in order to be able to generalize Madukwe et al. (2020); Vidgen and Derc-
zynski (2020).

Previous research suggests that over- and undersampling the data yields good 
model performance De Smedt and Jaki (2018), thus we also experiment with these 
techniques by testing various class balance ratios. Since we found oversampling to 
a balanced class ratio to be the most effective, we manually duplicate the ‘Hate’ 
examples from EN-TRAIN to produce EN-OS[1:1]. The balanced 1:1 class ratio 
represents the best-case scenario where neither class is in the minority. The resulting 
dataset is shown in Table 7. For more details about our datasampling experiments 
we refer to Sect. 4.2.

Table 4   Class distributions of 
the English and German datasets 
after relabeling and train/dev 
splitting

Nohate Hate Ratio (approx.)

EN-TRAIN 9018 1281 7:1
EN-DEV 134 20 7:1
EN-TEST 427 63 7:1
DE-TRAIN 3345 855 4:1
DE-DEV 642 167 4:1
DE-TEST 2759 773 4:1

Table 5   Original Stormfront 
dataset before relabeling and 
train/dev splitting

Nohate Hate Relation Skip

Stormfront 9488 1196 168 92

Table 6   Original GermEval datasets before relabeling and dev splitting from the training set. These were 
the datasets provided to the shared task participants

Other Abuse Insult Prof.

GermEval train 3321 1022 595 71
GermEval test 2330 773 381 48
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3.2 � Models

In our experiments we focus on evaluating neural network architectures, using 
monolingual models that have been popularly applied to the task in the past. Our 
first model is a CNN classifier following Kim (2014) depicted in Fig. 1. This model 
accepts an embedding layer as an input and feeds it into a convolution layer with 
a variable number of filters. Global max-pooling is performed on the convolution 
output, and the result is passed through a dense layer. The input word embeddings 
can either be randomly-initialized, pre-loaded from an outside source, or fine-tuned 
during training. We used our pre-trained CLWEs as described below, and did not 

Table 7   The unmodified 
EN-TRAIN dataset and its 
balanced oversampled version: 
EN-OS[1:1]

Nohate Hate Ratio (approx.)

EN-TRAIN 9018 1281 7:1
EN-OS[1:1] 9018 9018 1:1

Fig. 1   CNN model architecture with multiple convolutional filters with size k 
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update them during training. For the remaining model hyperparameters, we used the 
default values.3

To produce our CLWEs, monolingual embeddings were first trained using Fast-
Text SkipGram Bojanowski et al. (2017) over English and German NewsCrawl cor-
pora Bojar et al. (2015) which contain text dating from 2007 to 2013 and were pre-
processed with Moses tools Koehn et  al. (2007). The resulting embeddings were 
mapped with MUSE Conneau et al. (2018). We used the default parameters of the 
above mentioned tools.

Our second model is based on the neural model of one of the participants of the 
2018 GermEval Shared Task Wiedemann et  al. (2018), with some modifications 
for compatibility with our cross-lingual setup. In our version as shown in Fig. 2, an 
input layer of our CLWEs was fed into a BiLSTM layer of 100 units. The output of 
this BiLSTM layer was then fed into a convolution layer with three feature maps of 
200 units each, with respective kernel sizes of 3, 4, and 5. Global max-pooling was 
applied after each convolution, and the output of this step was fed to a dense layer of 
100 units.

Our third architecture is multilingual BERT, which was pre-trained on Wikipe-
dia data from 104 languages Devlin et al. (2019). This architecture has the advan-
tage of not needing CLWEs as a resource and can be tuned and tested on a source 
and target language directly. For the sake of consistency in discussions about the 
other two architectures, we will henceforth refer to the process of tuning mBERT as 
“training”.

4 � Results

We conduct our cross-lingual experiments by training the three architectures from 
Sect.  3.2 on English and testing on German. We use our EN-OS[1:1] dataset for 
training. Since the testing language was German, hyperparameters such as epoch 
count, learning rate, and class weights were optimized on DE-DEV. In addition to 
the per-class scores, we calculate the macro-average F1 score, as this metric was 
used by the GermEval shared task.

Table  8 shows the performance of these models when tested on DE-TEST. 
All three models manage to transfer their knowledge of ‘noHate’ from English 
to German, with the CNN and mBERT in particular achieving classwise ‘Hate’ 
scores greater than 50 points: 67.44 recall for the CNN and 52.29 precision for 
mBERT, respectively. Scores were significantly higher in the ‘noHate’ class: 
The CNN achieved 78.82 precision and mBERT achieved scores above 60. The 
BiLSTM had the highest performance in ‘noHate’, with precision, recall, and F1 
scores all above 75. This is notable since we did not use German-language data 
at any point. The macro-average scores of the CNN and BiLSTM were relatively 
tied, however the BiLSTM achieved a macro-average F1 score that was nearly as 
high as that of mBERT. mBERT’s macro-average scores were the highest among 

3  https://​github.​com/​yoonk​im/​CNN_​sente​nce/​blob/​master.

https://github.com/yoonkim/CNN_sentence/blob/master
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Fig. 2   BiLSTM model with convolutional layers on top

Table 8   Model performance on DE-TEST after training on EN-OS[1:1]

Model Accuracy Nohate Hate Macro-Avg

P R F1 P R F1 P R F1

CNN 40.91 78.82 33.56 47.07 21.94 67.44 33.11 50.38 50.50 40.09
BiLSTM 70.44 77.80 86.99 82.14 19.69 11.38 14.43 48.74 49.19 48.28
mBERT 66.39 67.83 93.30 78.55 52.29 14.23 22.37 60.06 53.77 50.46
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the three models. These results show that cross-lingual training with neural net-
works is a viable option even when no target-language data is available. These 
three models will form the ensemble used in Sect. 4.1.

Table  9 shows the hyperparameters that gave optimal performance on 
EN-OS[1:1]. We observed that mBERT preferred small batch sizes, its scores 
slightly dropping as batch size was increased. The CNN and BiLSTM in con-
trast preferred much larger batch sizes and learning rates and exhibited poorer 
performance when the batch size was lowered. Class weight ratios implemented 
into the loss function were a relevant parameter for the CNN, which required 
a slightly greater weight for the ‘noHate’ class. Despite this measure the CNN 
exhibited severe overfitting behavior, becoming skewed towards predicting only 
one of the two class labels, which is why it achieved higher ‘Hate’ F1 score 
(with high recall and low precision) but lower ‘noHate’ score compared to the 
other two models. Notably this pattern persisted despite class weight and learn-
ing rate tuning. Training on a single epoch with a large batch size yielded opti-
mal performance. We refer to the bootstrapping experiments in the following 
section for further discussion about the CNN performance.

4.1 � Bootstrapping

Although cross-lingual transfer learning techniques are applicable to zero-shot 
hate speech detection, the discussed data scarcity issues, such as low amount 
of positive hate speech labeled examples, hinder the performance. To mitigate 
these issues, this phase of cross-lingual experiments is centered around data aug-
mentation and fine-tuning. For this we relied on two target language unlabeled 
datasets which we labeled automatically using an ensemble-based approach fol-
lowing Bigoulaeva et al. (2021). Our relabeling ensemble consisted of the three 
neural models in Table 8. We test these models on two sources of German data: 
the DE-TRAIN dataset (See Table 4) and the DE-NEW dataset to be detailed in 
Sect. 4.1.2. For each of the two datasets, we applied all three of our models and 
assigned a final label to each sentence based on majority voting.

For each bootstrapping dataset we take the three models from Table 8, which 
had originally been trained on EN-OS[1:1], and resumed their training on the 
bootstrapping dataset, using altered hyperparameter settings as needed to opti-
mize performance. We then test the performance of the fine-tuned models on 
DE-TEST.

Table 9   Optimal 
hyperparameters for training 
on EN-OS[1:1]. The first two 
columns represent class weights, 
which were not implemented for 
mBERT

Nohate Hate Dropout Learn rate Batch sze Epochs

CNN 0.6 0.4 0.7 10−4 50 1
BiLSTM 0.5 0.5 0.2 30−3 40 30
mBERT – – 0.2 10−5 5 10
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4.1.1 � Bootstrapping on DE‑TRAIN

In this first phase of the bootstrapping experiments, we apply our ensemble to the 
DE-TRAIN dataset and collect the majority-vote classification results into a new 
dataset called DE-REL*. We simulate DE-TRAIN as an unlabeled dataset, since it 
was not used for training of our models.

Table 10 shows the confusion matrix for the labels of DE-REL*. It is clear that 
this dataset consists predominantly of ‘noHate’ examples, with a severely imbal-
anced ratio of 43:1. 573 true ‘Hate’ examples were mistakenly labeled by the ensem-
ble as ‘noHate’, while 42 true ‘noHate’ examples were mistakenly labeled as ‘Hate’. 
Proportionally more classification errors were made in the ‘Hate’ class, reflecting 
the models’ higher precision, recall, and F1 scores in ‘noHate’ as can be seen from 
Table 8.

The Labels of DE-REL* 
Table  14 provides a closer look at some correctly- and incorrectly-classified 

examples from DE-REL*, as compared to the original gold labels of DE-TRAIN. 
Sentence 1 was correctly labeled by the ensemble as ‘Hate’, as it attributes nega-
tive qualities such as violence to a religious group. Sentence 2 was also correctly 
classified as hate speech, as it expresses approval of prejudiced actions towards peo-
ple with brown skin. Sentence 3 was correctly recognized as ‘noHate’, although it 
contains a potentially contentious word ‘Hetze’ (en. ‘hate, agitation’), which often 
occurs in contexts of hate speech. This indicates that the ensemble has some knowl-
edge of hate speech features that go beyond lexical cues. Finally, Sentence 4 was 
falsely labeled by the ensemble as ‘noHate’. This was likely a challenging example 
for the ensemble due to it being a form of gender-related hate speech that is not 
abundantly encountered on a white supremacy forum.

Performance

Table 10   Confusion matrix of the ensemble-relabeled DE-REL* compared to the original annotations in 
DE-TRAIN. Gold and predicted labels are shown in the rows and columns respectively

Nohate Hate

Nohate 2688 42
Hate 573 34
Total 3261 76

Table 11   Model performance on DE-TEST after training on EN-OS and fine-tuning on DE-REL*

Model Accuracy Nohate Hate Macro-Avg

P R F1 P R F1 P R F1

CNN 78.11 78.11 100.00 87.71 0.00 0.00 0.00 39.06 50.00 43.86
BiLSTM 67.89 77.72 82.57 80.07 19.97 15.52 17.47 48.84 49.05 48.77
mBERT 66.70 68.07 93.30 78.71 53.85 15.14 23.64 60.96 54.22 51.17
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Table 11 shows the English-trained models’ performance on DE-TEST after fine-
tuning on DE-REL*. Both mBERT and the BiLSTM improve their performance 
in several areas. The BiLSTM’s classwise recall and F1 for ‘Hate’ increased by 4.14 
points and 3.04 points, respectively. Its macro-average F1 increased by 0.49. mBERT’s 
classwise ‘Hate’ improvements were more modest, its precision increasing by 1.56 
points and its F1 by 1.27. Additionally its macro-average F1 increased by 0.71. The 
BiLSTM’s greater improvements could be due to the model having had too little train-
ing data before, while mBERT had already become mostly saturated by the English 
training data.

The only model to perform worse after fine-tuning was the CNN, which during 
training outputted either only ‘Hate’ or only ‘noHate’ predictions. The latter is associ-
ated with higher macro-average performance since ‘noHate’ is the majority class of 
DE-TEST. This result is likely due to poor initial training of the CNN. Recalling from 
Sect. 4, the CNN was trained on EN-OS[1:1] for only one epoch, as it exhibited over-
fitting behavior otherwise. We included this model in our bootstrapping ensemble, as 
its sufficiently-varied predictions on DE-TEST after training on EN-OS[1:1] initially 
suggested that the model was not broken. It is likely however that this initial training 
was suboptimal and that the single epoch of training was not enough for the CNN to 
sufficiently learn from its training data.

Table 12 shows the hyperparameter settings that were used for fine-tuning on DE-
REL*. We observed that tuning the class weights for the CNN as well as the dropout 
had no effect on the overfitting performance. The BiLSTM however achieved balanced 
performance with similar hyperparameter settings to those of the CNN. mBERT pre-
ferred a smaller batch size and improved performance when fine-tuned for more epochs 
than the other architectures.

Regarding our CNN, the likely reason for its poor fine-tuning performance is poor 
initial training on EN-OS[1:1]. Since EN-OS[1:1] is balanced, and the CNN’s scores 
on DE-TEST in Table 8 were comparable to the other models, a likely conclusion is 
that its poor fine-tuning performance was caused by the bootstrapping datasets. Recent 
works have suggested that fine-tuning models on the bootstrapping labels they them-
selves produced can amplify these models’ preexisting biases towards certain labels 
Wei et al. (2021); Wang et al. (2022). A direction for further investigations would be 
to explore this angle, including why the BiLSTM and mBERT architectures were less 
susceptible to becoming biased during fine-tuning.

Table 12   Optimal 
hyperparameters for fine-tuning 
on DE-REL*. The first two 
columns represent class weights, 
which were not implemented for 
mBERT

Nohate Hate Dropout Learn rate Batch size Epochs

CNN 0.01 0.99 0.2 10−6 30 1
BiLSTM 0.1 0.9 0.7 10−6 50 2
mBERT – – 0.5 10−5 10 10
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4.1.2 � Bootstrapping on German stormfront data

In the second bootstrapping experiment, we use the DE-NEW dataset collected by 
Bigoulaeva et al. (2021), which was crawled from a German-language thread within 
the Stormfront forum.4 This dataset was originally collected for a zero-shot transfer 
learning experiment, therefore there was no annotation process conducted to assign 
gold labels to the data samples. Since we likewise deal with a zero-shot setup in this 
work, we do not annotate DE-NEW with gold labels.

At the time of crawling, the source thread had around 5500 posts5. These con-
sisted predominantly of comments written in German, although many were written 
in English. To account for the typical prevalence of lengthy posts in a forum set-
ting, Bigoulaeva et  al. (2021) considered each paragraph distinguished by a new-
line to be a separate text sample. Before the data could be used for training, some 
manual preprocessing was performed to ensure compatibility with the format of a 
tweet. Table 13 shows what texts were kept and removed. Additionally, the follow-
ing errors in the texts were manually corrected and kept:

•	 ‘tut mir’ and ‘leid’ → ‘tut mir leid’
•	 ‘d aß’ → ‘daß’

As a result of this preprocessing, DE-NEW contains 6,586 text samples, all 
or nearly all written in German. This dataset was used as the training set during 
fine-tuning.

Table 15 shows the class distribution of DE-NEW compared to DE-REL*. DE-
NEW is the larger, but interestingly the ensemble’s relabeling resulted in both data-
sets having similar class ratios. This could indicate that the stylistic differences 
between the Twitter-based text of DE-REL* and the forum-based text of DE-NEW 
were not a hindering factor for the ensemble.

The Labels of DE-NEW
Since we had no gold labels of DE-NEW to evaluate our ensemble’s classifica-

tions, we manually examined several examples and judged them strictly according 
to the points of the hate speech definition in de Gibert et al. (2018). Table 14 shows 
five classifications made by the ensemble.

Sentence 5 was correctly identified as ‘Hate’, as it is derogatory towards fami-
lies of mixed races, employing dehumanizing comparisons and attributing low 
intelligence. Sentence 6 was also correctly identified as ‘Hate’. Although the tar-
get group is unclear, the group is also described with dehumanizing language and 
is portrayed as being dirty and unintelligent. Sentence 7 is a neutral descriptive 
statement that does not attack the group of Turkish people, and was correctly rec-
ognized as ‘noHate’. Similarly, Example 8 is a neutral descriptive account, despite 

4  Due to privacy concerns, the authors do not make the DE-NEW dataset public but can provide it indi-
vidually upon request.
5  The website was crawled using the Python Scrapy library.
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discussing a figure of controversy and using terminology (shown in bold) that would 
likely be associated with hateful discourse: “nationalsozialistischen Völkermord” 
(en. National-Socialist/Nazi genocide), and “Holocaust-Leugner” (en. Holocaust-
denier). Together with Sentence 7, this again shows that the ensemble learned more 
complex features of hate speech than lexical cues (See Sect. 4.1.1).

Sentence 9 was another challenge for the ensemble. It was labeled as ‘Hate’ 
despite not having any telling signs of hate speech, likely due to discourse about 
privilege, power and riches having occurred elsewhere in the Stormfront data in 
more hateful contexts. This would lead the models of the ensemble to recognize that 
these groups are typically ones to be attacked. Nevertheless we judged this sentence 
to be an example of ‘noHate’, since when the sentence is considered in isolation it 
does not attack or dehumanize the groups in question.

Performance Table 16 shows the models’ performance on DE-TEST after training 
on EN-OS and fine-tuning on DE-NEW. As in the first fine-tuning experiment, the 
BiLSTM and mBERT improved their scores over the original versions trained on 
EN-OS[1:1]. This time the BiLSTM’s classwise ‘Hate’ scores improved to a lesser 
degree, with its precision increasing by 0.55 points and its classwise recall and F1 
score dropping slightly. Nevertheless this precision value was higher than after fine-
tuning on DE-REL*. All three of its macro-average measures improved as well and 
were also higher than in the first fine-tuning round (See Table 11). mBERT expe-
rienced a slight decrease in macro-average and classwise ‘Hate’ scores. The only 
‘Hate’ score to improve was precision, which increased by 0.30 points. Classwise 
recall and F1 in ‘noHate’ increased while the precision decreased.

This lesser degree of improvement in ‘Hate’ compared to the first fine-tuning 
experiment could have been caused by DE-NEW’s slightly larger ratio of ‘noHate’ 
to ‘Hate’ as compared to DE-REL* in Table 15.

Additionally, the slight domain difference (see Sect.  3.1) compared to the test 
data could further explain these results. As in the previous bootstrapping experi-
ments, the CNN model worsened after fine-tuning, likely due to poor initial training.

Table 17 shows the hyperparameter settings that were used for fine-tuning on DE-
NEW. As before, tuning these hyperparameters did not mitigate the CNN’s over-
fitting performance. The BiLSTM improved with a smaller batch size than in the 

Table 13   Preprocessing steps for the DE-NEW dataset

Removed Kept

1. Non-German text 1. Quotes or news article snippets 
under 1000 characters.

2. Bullet-point lists
3. Quotes from books, articles, etc. over 1000 

characters
2. Mixed English/German sentences

4. Extremely short lines: names, one-word 
responses, timestamps, letter salutations

3. Multi-line interview dialogue, with 
each line considered as a distinct 
text sample.

5. Lines or sentences that were cut off without 
any clear continuation

4. Mixed English/German sentences 
and Anglicisms
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previous fine-tuning experiment as well as with a lower learning rate and higher 
dropout. mBERT’s improvements in this fine-tuning experiment were also corre-
lated with different hyperparameters, in this case a small batch size, a lower learning 
rate, and a reduced epoch count. The reason for this behavior could be the differing 
class ratios between DE-REL* and DE-NEW.

4.2 � Data sampling experiments

In this section we conduct a deeper analysis of ways to deal with imbalanced hate 
speech datasets. Our goal is to investigate whether over- or undersampling is the bet-
ter choice and at which class ratio. To keep the focus on the individual datasets, we 
perform our experiments monolingually, testing on the same language as for train-
ing. We tune hyperparameters on the corresponding development sets.

We observe from Table 4 that DE-TRAIN not only has a different class ratio 
than EN-TRAIN but is also much smaller. Therefore to perform as little duplica-
tion as possible we select a set of class ratios for sampling that are based around 
the ratios of these unmodified datasets. The ratios we sample are 7:1 (as in EN-
TRAIN), 2:1 (an imbalanced scenario to a lesser degree) and 1:1 (the balanced 
scenario). The sampled datasets are named with their language code initials 
appended with either ‘US’ if produced by undersampling or ‘OS’ if produced by 
oversampling. To match the 7:1 ratio of ‘noHate’ to ‘Hate’ in EN-TRAIN we pro-
duce an oversampled version of DE-TRAIN called DE-OS[7:1] with a 7:1 class 

Table 15   Class distributions of 
the two bootstrapped datasets

Nohate Hate Ratio (approx.)

DE-NEW 6437 142 45:1
DE-REL* 3261 76 43:1

Table 16   Model performance on DE-TEST after training on EN-OS[1:1] and fine-tuning on DE-NEW

Model Accuracy Nohate Hate Macro-Avg

P R F1 P R F1 P R F1

CNN 78.11 78.11 100.00 87.71 0.00 0.00 0.00 39.06 50.00 43.86
BiLSTM 71.04 77.89 87.86 82.58 20.24 11.00 14.25 49.07 49.43 48.41
mBERT 66.31 67.27 95.28 78.86 52.59 10.15 17.02 59.93 52.71 47.94

Table 17   Optimal 
hyperparameters for fine-tuning 
on DE-NEW. The first two 
columns represent class weights, 
which were not implemented for 
mBERT

Nohate Hate Dropout Learn rate Batch size Epochs

CNN 0.01 0.99 0.9 10−4 2 1
BiLSTM 0.1 0.9 0.9 10−7 20 1
mBERT – – 0.6 10−7 1 5
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ratio. Next we produce EN-US[2:1] and DE-US[2:1] by removing appropriate 
amounts of ‘noHate’ examples from EN-TRAIN and DE-TRAIN, respectively. 
We create EN-US[1:1] and DE-US[1:1], which were produced by removing 
‘noHate’ examples until their number matched the number of ‘Hate’ examples 
in their respective datasets. Finally, EN-OS[1:1] and DE-OS[1:1] was produced 
by duplicating the ‘Hate’ examples until they match the number of ‘noHate’ 
examples. Table 18 shows label statistics of the resulting datasets for English and 
German.

The results of our experiments for the CNN, the BiLSTM and mBERT architec-
tures are presented respectively in Tables 19, 20 and 21. The CNN achieved its high-
est classwise ‘Hate’ scores with EN-OS[1:1] and EN-US[1:1]. Among the German 
datasets, the CNN achieved its best ‘Hate’ F1 on the two balanced datasets and on 
DE-US[2:1]. Classwise ‘Hate’ performance on DE-OS[7:1] was significantly lower. 
In particular, the CNN achieved noticeably lower ‘Hate’ recall on this dataset than 
on DE-US[2:1] and DE-US[1:1], despite the ‘Hate’ precision scores being similar. 
Since the total amount of ‘Hate’ samples in these three datasets was the same (see 
Table 18), the class imbalance of DE-OS[7:1]is the likeliest explanation.

The BiLSTM achieved its highest ‘Hate’ F1 on EN-OS[1:1], and its highest Ger-
man ‘Hate’ F1 scores on DE-US[1:1] and DE-OS[1:1]. The two German datasets 
with imbalanced distributions yielded a slightly poorer performance in the ‘Hate’ 
class, similar to what was observed with the CNN. It is additionally worth noting 
that although the BiLSTM achieved similar ‘Hate’ F1 scores on DE-US[2:1] and 
DE-OS[7:1], its ‘noHate’ precision and recall on the latter dataset were lower than 
those from the former. This indicates that for DE-OS[7:1] the BiLSTM could only 
achieve good performance in the minority class by overfitting to it. Taken together 
with our observations from the CNN, this illustrates the detrimental effect of an 
imbalanced class ratio within small corpora.

mBERT had the best overall performance among the three architectures. Similar 
to the trend shown by the previous models, it achieved its highest macro-average 
F1 score on EN-OS[1:1], as well as its highest ‘Hate’ and ‘noHate’ scores. This 
benefit could have been due to the larger size of EN-OS[1:1] compared to the other 
corpora. The fact that scores for each class ratio also tended to be higher with the 
English datasets points to the model’s strength with English training data, despite 

Table 18   English and German 
training datasets used in our 
monolingual experiments. 
Sampled datasets were 
produced from EN-TRAIN and 
DE-TRAIN respectively. (See 
Table 4 for data on DE-TRAIN)

Nohate Hate Ratio (approx.)

EN-TRAIN 9018 1281 7:1
EN-US[2:1] 2562 1281 2:1
EN-US[1:1] 1281 1281 1:1
EN-OS[1:1] 9018 9018 1:1
DE-OS[7:1] 5985 855 7:1
DE-US[2:1] 1710 855 2:1
DE-US[1:1] 855 855 1:1
DE-OS[1:1] 3345 3345 1:1
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Table 19   Monolingual CNN performance after training on the various sampled datasets

Trainset Accuracy Nohate Hate Macro-Avg

P R F1 P R F1 P R F1

DE-OS[7:1] 74.48 81.65 86.96 84.22 38.48 29.44 33.36 60.06 58.2 58.79
DE-US[2:1] 71.25 85.38 76.36 80.62 38.21 52.78 44.33 61.8 64.57 62.47
DE-US[1:1] 69.19 85.55 72.98 78.77 36.26 55.5 43.86 60.9 64.24 61.31
DE-OS[1:1] 77.6 83.78 88.54 86.1 47.95 38.13 42.48 65.87 63.33 64.29
EN-TRAIN[7:1] 58.49 77.95 66.00 71.48 19.47 30.58 23.79 48.71 48.29 47.64
EN-US[2:1] 59.02 77.41 67.78 72.27 18.08 26.45 21.48 47.75 47.11 46.88
EN-US[1:1] 78.16 97.06 77.28 86.05 35.33 84.13 49.77 66.2 80.71 67.91
EN-OS[1:1] 87.35 95.97 89.23 92.48 50.54 74.6 60.26 73.25 81.92 76.37

Table 20   Monolingual BiLSTM performance after training on the various sampled datasets

Trainset Accuracy Nohate Hate Macro-Avg

P R F1 P R F1 P R F1

DE-OS[7:1] 24.97 74.65 8.26 14.87 20.19 89.22 32.93 47.42 48.74 23.90
DE-US[2:1] 72.59 81.21 84.45 82.8 35.29 30.27 32.59 58.25 57.36 57.7
DE-US[1:1] 61.89 81.87 65.78 72.95 28.21 47.99 35.54 55.04 56.89 54.24
DE-OS[1:1] 72.71 81.81 83.65 82.72 36.57 33.64 35.04 59.19 58.64 58.88
EN-TRAIN[7:1] 67.96 95.61 66.28 78.28 25.77 79.37 38.91 60.69 72.82 58.6
EN-US[2:1] 81.02 92.39 85.25 88.67 34.38 52.38 41.51 63.38 68.81 65.09
EN-US[1:1] 63.88 97.71 59.95 74.31 25.0 90.48 39.18 61.35 75.21 56.74
EN-OS[1:1] 79.59 93.37 82.44 87.56 33.63 60.32 43.18 63.5 71.38 65.37

Table 21   Monolingual mBERT performance after training on the various sampled datasets

Trainset Accuracy Nohate Hate Macro-Avg

P R F1 P R F1 P R F1

DE-OS[7:1] 75.00 77.54 87.42 82.19 67.62 50.92 58.09 72.58 69.17 70.14
DE-US[2:1] 73.50 81.14 77.94 79.51 60.28 64.89 62.50 70.71 71.42 71.00
DE-US[1:1] 71.72 82.61 72.36 77.14 56.81 70.47 62.90 69.71 71.41 70.02
DE-OS[1:1] 74.15 81.93 78.03 79.93 61.01 66.64 63.70 71.47 72.33 71.81
EN-TRAIN[7:1] 84.94 86.11 96.44 90.99 76.12 42.15 54.26 81.12 69.3 72.62
EN-US[2:1] 84.06 92.84 86.44 89.53 59.87 75.21 66.67 76.35 80.83 78.10
EN-US[1:1] 78.11 89.93 81.33 85.41 48.78 66.12 56.14 69.35 73.72 70.78
EN-OS[1:1] 99.12 100.00 98.89 99.44 96.03 100.00 97.98 98.02 99.44 98.71
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its multilinguality. Classwise performance on the [7:1] and [2:1] datasets is slightly 
stronger in the ‘noHate’ class than in ‘Hate’, reflecting the datasets’ skew towards 
‘noHate’.

Among the [1:1] datasets, mBERT’s classwise ‘Hate’ scores and macro-average 
F1 scores tended to be higher for the oversampled versions of a particular language 
than for the undersampled versions. For example, mBERT achieved a ‘Hate’ F1 of 
63.7 on DE-OS[1:1] compared to 62.9 on DE-US[1:1]. The oversampled dataset 
also yielded better ‘noHate’ recall and F1, as well as better macro-average scores. 
The same pattern is observed with EN-US[1:1] and EN-OS[1:1], with the latter 
dataset giving significantly better scores in every category.

In addition, despite DE-OS[1:1] and EN-OS[1:1] having identical class ratios, 
mBERT’s much higher scores with the latter training set point to this architecture’s 
need for a large amount of data. However, the transformer’s significantly higher 
‘Hate’ scores show that it is generally better able to cope with smaller dataset sizes 
than the BiLSTM and CNN. Among the three architectures examined, mBERT 
was the most successful at maintaining good minority-class performance on our 
relatively small corpora, making this architecture the better choice for low-resource 
setups.

Although all three architectures achieved their best English ‘Hate’ F1 scores 
on the oversampled, balanced EN-OS[1:1], only mBERT had the same success 
in German with DE-OS[1:1]. The CNN’s German ‘Hate’ F1 was the highest with 
DE-US[2:1], while the BiLSTM’s was with DE-US[1:1]. This indicates that having 
a balanced class distribution is not the sole deciding factor for good minority-class 
performance, at least for small corpora. Among the [1:1] German datasets, the use 
of oversampling or undersampling did not play a deciding role for ‘Hate’ F1 perfor-
mance. The difference between the ‘Hate’ F1 scores of EN-OS[1:1] and EN-US[1:1] 
was much higher, suggesting that oversampling the minority class might be a bet-
ter option than undersampling the majority if the majority class is significantly 
larger. Additionally, our experiments indicate that the duplicated examples present 
in the oversampled datasets did not pose a significant problem for our models. More 
research will have to be done to confirm these conclusions, as well as to shed light 
on the exact interplay between class distribution and dataset size on minority class 
performance.

5 � Conclusion

Building automatic hate speech detection systems for low-resource languages is 
difficult due to the small amount of available datasets. Our goal in this paper was 
to investigate whether cross-lingual transfer learning could be used to mitigate the 
problem of data scarcity and additionally to highlight the problems related to data 
annotations: incompatible label definitions and class imbalance. We chose an Eng-
lish dataset with a broad hate speech definition for training and a similar German 
corpus for testing. Although the datasets were similar, we had to simplify the com-
plex annotation schema of the target language dataset into the binary schema of 
the source dataset to make them compatible for the cross-lingual experiments. Our 
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results showed that cross-lingual transfer learning is indeed an effective tool for hate 
speech detection in low-resource languages. Additionally, we assembled two cor-
pora of previously-unseen, unlabeled target language data and applied an ensemble 
of trained classifiers to them. We showed that fine-tuning on these automatically-
labeled examples improved classification performance, particularly within the hate 
speech class. However, our results also show that models can be sensitive to hyper-
parameters, thus care has to be taken when selecting them. Additionally we investi-
gated the issue of class imbalance in hate speech datasets. We produce several over- 
and undersampled datasets based on our English and German corpora, using class 
ratios that reflect the original datasets’ ratios. We test the efficacy of oversampling 
compared to undersampling and conclude that both may possess advantages for 
specific dataset scenarios. Our goal for the future is to apply cross-lingual transfer 
learning to other language pairs with greater syntactic differences than German and 
English. In addition, since the differences of labeling schemas across various hate 
speech datasets could prevent the application of transfer learning methods, we aim 
to develop a method that can effectively combine datasets with different labeling 
schemas without the need for label modifications. Finally, since cultural differences 
become relevant in cross-lingual setups, we aim to examine their effect on model 
performance more thoroughly.
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