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Abstract Despite that Robertsonian translocations
(ROBs) are the most common chromosomal rearrange-
ments in humans (1/1000 individuals), an exact
breakpoint and the molecular mechanisms leading to
their formation are still not well known. This is partly
due to the fact that Human Genome Project did not
provide any map or sequence for the acrocentric short
arms. The main aim of our studies was to narrow the
breakpoints in de novo arising and in familial cases of
the most frequently occurring ROBs, using eight, pre-
viously not tested clones derived from 21p. Our results
from PCR and FISH analysis showed that only the
clones CR382285, CR382287, and a small fragment of
CR382332 are retained in the examined ROBs.Moreover,
interphase FISH on monochromosomal hybrids verified

the orientation of studied clones in relation to centromeres
of chromosomes 14 and 21. Given our results, we propose
localization of the breakpoints in or nearby to clone
CR382332. Summarizing, our results allowed to narrow
the region where the breakpoints are localized and
demonstrated that their position could be the same in
all common ROBs.

Keywords Robertsonian translocation . BAC clones .

breakpoint . Translocation formation . Acrocentric
chromosome

Abbreviations
BAC Bacterial artificial chromosome
FISH Fluorescent in situ hybridization
ROB Robertsonian translocation
mcROBs Most common Robertsonian translocations

Introduction

Robertsonian translocations (ROBs) are the most com-
mon chromosomal rearrangements in humans, with an
incidence of approximately 1/1000 individuals (Therman
et al. 1989). They arise through exchanges between the
short arms of acrocentric chromosomes: 13, 14, 15, 21,
and 22. Exchanges within these five chromosomes may
form ten nonhomologous Robertsonian translocations,
but their distribution is highly nonrandom with the
predominance of rob(13;14) (75 %) and rob(14;21)
(10 %) (Therman et al. 1989). These two, most common
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Robertsonian translocations (mcROBs) are the subject
of this work.

The molecular mechanisms leading to mcROBs for-
mation are still not well known, except the observation
that they mainly arise during oogenesis (Shaffer 2002).
It is possible that sequences found on chromosomes 13,
14, and 21 mediate homologous recombination
resulting in these translocations. Moreover, it was
postulated that the order of sequences in 14p are in
opposite orientation than topography of homologous
sequences in 13p and 21p (Therman et al. 1989;
Choo et al. 1988; Shaffer 2002).

Additionally, the exact breakpoints in mcROBs are
not fully recognized because the short arms of acrocen-
tric chromosomes are still poorly understood regions of
the genome. This is due to the fact that in the Human
Genome Project, only coding sequences were mapped,
while noncoding, heterochromatic regions, including
the short arms of chromosomes 13, 14, 15, 21, and 22,
were omitted. Even though, it is known that the p arms
of these chromosomes are divided between three bands:
(i) p11, which contains satellite I-IV (Choo et al. 1990;
Choo et al. 1992; Gosden et al. 1981; Gravholt et al.
1992) and β-satellite sequences (Waye and Willard
1989); (ii) p12 containing the 18S and 28S ribosomal
genes (Worton et al. 1988); and (iii) p13 with β-satellite
DNA (Waye and Willard 1989) (Fig. 1a). Some other
subfamilies of satellite DNA specific to these regions
have been described (Kalitsis et al. 1993) (Choo et al.
1992), (Choo et al. 1990); (Bandyopadhyay et al. 2001b).

The known sequences of satellite DNA have been
used to determine the regions containing the breakpoints
in ROB. To date, it has been established that in
mcROBs, rRNA genes located in band p12 undergo
deletions in all involved chromosomes (Gosden et al.
1979; Gravholt et al. 1992; Han et al. 1994; Mattei et al.
1979; Wolff and Schwartz 1992). Moreover, there are
some indications that the breakpoint might be located
(i) in 14p between pTRS-47 subfamily—adjacent to
the centromere (present in 97 % of the analyzed
mcROB) and pTRS-63, which is more distal (deleted
in mcROBs) (Earle et al. 1992) or (ii) in chromo-
somes 13 and 21 between the satellite I DNA pTRI-6,
and the rRNA genes (Kalitsis et al. 1993). Furthermore,
it was also found that subfamilies of satellite III DNA:
pTRS-63 and pR-2 in some patients and pE-1 and pR-4
in all rob(14;21) are deleted, while the sequences of
pTRS-47, pK-1, pE-2, and pR-1 are retained
(Bandyopadhyay et al. 2001a).

In 2007, Lyle et al. have developed genome map of
acrocentric chromosomes by sequencing of eight new
BAC clones (CR382285, CR382287, CR381572,
CR381535, CR381653, CR382332, CR381570,
CR392039) which were identified by STSs from the
CHORI-507 library (Lyle et al. 2007) and localized in
the p arm of chromosome 21 (Fig. 1b). In 2006, the
sequences of these clones were placed randomly on
chromosome 21 in the Genome Browser database
(GRch36/hg18) (Fig. 1c); in 2009, they were assigned
to 21p11 (Genome Browser and NCBI- GRch37/hg19)
(Fig. 1d, Table S1). Despite that these clones were
described in 2007 and provided opportunity to continue
studies on acrocentric chromosomes, up to now, nobody
has studied their occurrence and configuration in ROBs.

In order to narrow the region of breakpoints, we
decided to use these eight clones from 21p to verify
their presence and location in 20 patients with
rob(13;14) or rob(14;21), which have arisen either
de novo or have been familial.

Materials and methods

Cell lines

The material consisted of the following: (i) 14 lympho-
blastic cell lines and 6 mouse-human or hamster-human
hybrids derived from patients with mcROBs: rob(14;21)
or rob(13;14), (ii) 6 control lymphoblastic cell lines from
normalmale and female, (iii) somaticmonochromosomal
hybrids, (iv) 6 lymphoblastic cell lines from patients’
mothers, (v) 2 hybrids with chromosomes from patients’
mothers, (vi) 2 lymphoblastic cell lines from Polish
patients’ family members without translocation, and (vii)
hamster and mouse fibroblast cell lines. Cell line charac-
teristics and culture conditions are described in Table S2.

Altogether, we analyzed six rob(14;21) arising de novo
and one of unknown origin as well as thirteen rob(13;14)
including the following: de novo (4 cases), paternally
inherited (6 cases), maternally inherited (2 cases), and
unknown origin (1 case). De novo cases were derived
from our long-term collection, while cases with familial
occurrence were originated from one Polish family.

Construction of somatic cell hybrids

Somatic cell hybrids were constructed from patient cell
line, through its fusion with the HPRT-deficient
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hamster-derived cell line RJK88 or mouse cell line A9,
using polyethylene glycol (PEG) (Zoghbi et al. 1989).
The isolated colonies were screened by PCR with poly-
morphic microsatellite markers, mapping to the long
arm of each acrocentric chromosome (D13S1275,
D13S162, D13S175, D14S128, D14S139, D14S283,
D21S1276, D21S188), to identify the hybrid that
retained the chromosomes 13 and 14 or 14 and 21.
FISH analysis with probes for centromere regions of
chromosomes 13 and 21 (D21Z1/D13Z1), and 14 and
22 (D14Z1/D22Z1) was used to distinguish between
the hybrids containing the following: (i) only the
translocation, (ii) free-lying homologous chromosomes
or, (iii) in some cases, both the translocation and one
or more free-lying chromosomes. Translocations were
also determined to be monocentric or dicentric using
the same centromeric FISH probes.

FISH analysis

Standard procedure was used to prepare metaphases
from 20 cell lines with mcROBs, 11 controls with
chromosomes from family members, and 6 normal
controls (3 male and 3 female). Controls served as
the basis for exclusion of polymorphisms and verifi-
cation of probes localization.

At the beginning, the FISH analyses on mcROB
cases were performed with alpha satellite probes
D21Z1/D13Z1, D14Z1/D22Z1 (Kreatech). Then,
FISH was done onmcROBs as well as on controls using
probes prepared from the eight BAC clones: CR382285,
CR382287, CR381572, CR381535, CR381653,
CR382332, CR381670, and CR392039. DNA from
BAC clones were biotin or digoxigenin-labeled by nick
translation. Additionally, clones CR382285, CR381572,

Fig. 1 a The collocation of analogous sequences in short arm of
acrocentric chromosomes. b The order of eight BAC clones in 21p
described by Lyle et. al. c The first occurrence of eight examined
BAC clones in UCSC GENOME BROWSER database assigned

as random in chromosomes 21. d The latest version of UCSC
GENOME BROWSER database, showing the exact localiza-
tion of seven out of eight BAC clones (except CR382332) in
chromosome 21
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and CR382332 were used in interphase FISH on
monochromosomal hybrids containing chromosome 13,
14, or 21 according to Gajecka et al. (Gajecka et al.
2005). These clones were hybridized to interphases in
the presence of alpha satellite probes, specific to centro-
mere region of chromosomes involved in mcROBs in
two combinations: (1) CR381572, CR382332, and alpha
satellite probes and (2) CR381572, CR382285, and alpha
satellite probes. The FISH analyses, both on lymphoblas-
tic cell lines and hybrids, were conducted using standard
procedures (Shaffer et al. 1994).

DNA extraction and PCR analysis

DNA from cell lines was isolated using proteinase K
and phenol-chloroform extraction. Primers, based on
sequences derived from eight BAC clones, were
designed using Primers 3 software (http://bioinfo.ut.ee/
primer3-0.4.0/). PCR reactions were performed using
Taq DNA polymerase (Fermentas). Most primers had
various PCR conditions with the main differences
concerning the annealing time (45–90 s) and the
annealing temperature (Table S3). The clones and
primers are shown in Table 1 and Table S1, respectively.

Results

FISH analysis

FISH analyses using alpha satellite probes D21Z1/
D13Z1 and D14Z1/D22Z1 have revealed the dicentric
nature of all studied mcROBs (data not shown). These
outcomes for the de novo cases were previously
published (Han et al. 1994).

The results with eight studied BAC clones on normal
metaphases derived from three males and three females
are shown in Table 1 and Fig. 2.

The metaphase FISH on rob(13;14) or rob(14;21)
indicates that only clones CR382285, CR382287, and
CR381572 are present in Robertsonian translocations
(Fig. 3). The same time, clones CR381535, CR381653,
and CR382332 were absent (Fig. 3). Very weak
hybridization signals for clones CR381670 and
CR392039 were present (Table 2), which could be
explained by cross hybridization with homologous
sequences. Whereas FISH results on mcROB’s mothers
and familymembers demonstrate presence of all analyzed

BAC clones on acrocentric chromosomes involved in
translocation formation (Fig. 3).

Additionally, the interphase FISH results determined
the centromere-telomere orientation of BAC clones
CR381572 and CR382332 on 14p and 21p as follows:
centromere, CR381572, CR382332, and telomere
(Fig. 4). Unfortunately, this analysis did not give any
unambiguous answer about orientation of CR382285 in
relation to CR381572 and centromeres of chromosomes
13, 14, and 21.

PCR results

In order to confirm FISH results, PCR analyses were
conducted. Because of polymorphic character of ana-
lyzed sequences, only DNA from four somatic hybrids
containing rob(14;21) were used. DNA from patients
could give false positive results due to content of
remaining chromosomes. DNA frommonochromosomal
hybrids with normal human chromosome 13−15, 21, 22,
4, 9, Y, mouse cell line A9, hamster cell line RJK88, and
hybrids with chromosomes from mothers of children
with de novo translocations (1-Ma and 1-Mb) were
applied as controls. The molecular analysis demon-
strated occurrence of PCR products for clones
CR382285, CR382287, CR381572, and a small frag-
ment of CR382332 in all somatic cell hybrids con-
taining mcROB (cases 1, 2, 3, and 4). Additionally,
PCR did not amplify products for clones CR381535,
CR381653, CR381670, and CR392039 in one hybrid
containing rob(14;21) as the only human acrocentric
chromosome (hybrid 1, Table 3).

Discussion

Robertsonian translocations are the most common chro-
mosomal rearrangements in humans, where short arms
of acrocentric chromosomes are involved in their for-
mation. Although the carriers of ROB have a normal
phenotype, they very often have problems with unbal-
anced gametes formation through nondisjunction
resulting in possibility of delivering chromosomally
abnormal offspring. Despite that the ROB are very
common, their molecular formation mechanism and
breakpoint are still not well known.

The main aim of these studies was to narrow the
region containing the breakpoints in de novo and in
familial cases of the most frequently appearing
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rob(13;14) and rob(14;21). Our analysis was based
on the BAC clones, first described by Lyle et al.
who demonstrated the following order in 21p (from
centromere to telomere): CR382287, CR382285,
CR382332, CR381653, CR381535, CR392039,
CR381670, and CR381572 (Lyle et al. 2007).
Since 2009, the sequences of these clones (without
CR382332) have been available in databases (UCSC
Genome Bioinformatics, http://genome.ucsc.edu/;
NCBI, http://www.ncbi.nlm.nih.gov/index.html) but
their occurrence has been never studied in ROBs
before.

Firstly in our studies, we verified the presence of
these eight clones in normal male and female using
FISH. Our results indicate that these sequences are
present not only on short arm of chromosome 21 but
also (i) on short arms of other acrocentric chromosomes,
(ii) in pericentromeric regions of others chromosomes
(1, 2, 3, 4, and 9). Additionally, in q arm of chromosome
4q28 two clones: CR382285 and CR382287were found
(Table 1). These findings are consistent with the results
received in silico, which demonstrated a lot of dupli-
cations throughout the human genome (Jarmuz-
Szymczak 2011; Lyle et al. 2007). However, FISH
results presented by Lyle et al. showed less hybridi-
zation signals on human metaphases (Lyle et al.
2007) than were found in our study. It could be
explained by stringency of FISH experiments and/or
polymorphism of these sequences. In addition, we
observed some differences in the hybridization pattern
between individuals (Table 1). For instance, in one
control, hybridization signals of CR382287 probe

were stronger on chromosome 9 and 14p as com-
pared to the remaining chromosomes, while in others,
the signals were almost the same on each chromo-
some (Table 1). In addition, clone CR381670 demon-
strated the polymorphism on chromosome 9 in two
controls (Table 1, Fig. 2a–b). We also noticed the
absence of clones CR382285 and CR382287 on one
chromosome 14 and 15, respectively (Table 1, Fig. 2c).
Because of these variances observed in healthy controls,
we had to exclude polymorphisms in our patients. First
of all, we verified whether the lack of clones CR382332,
CR381535, CR381653, CR381670, and CR392039
observed in translocation carriers had not been the
result of polymorphism in studied families. For this
purpose, as the controls for the FISH analysis, meta-
phase chromosomes from mothers of de novo
mcROB carriers as well as a male and a female
with normal karyotypes from family segregating
mcROB were used. The FISH results with all exam-
ined clones demonstrated the presence of all studied
BAC clones on chromosomes participating in the
family members of mcROBs (Fig. 3).

Due to exclusion of occurrence the polymorphism in
studied cases and their families, we were able to

Fig. 2 The FISH results present the differences in the hybridiza-
tion pattern between individuals: presence of clone CR381670 on
chromosome nine in one male control (a), absence of clone

CR381670 in second (b). The occurrence polymorphism of clones
CR382285 and CR382287 (c)

Fig. 3 The FISH results on mcROBs {(a) rob(14;21) and (c and f)
rob(13;14)} and mcROB’s mother (b) and family member (d and e)
demonstrate presence of analyzed BAC clones on acrocentric
chromosomes involved in translocation formation. The results of
FISH analysis: case 20 with CR382287 and CR381535 (g), and
with CR381670 and CR381653 (h). A red telomere probe for
chromosome 14

�
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indicate, based on FISH and PCR results, that clones
CR382285, CR382287, and CR381572 are present in
analyzed mcROB both arising de novo and in familial
cases. Contrary to FISH results, the small fragment
(about 2 kb) of CR382332 was detected by PCR in
mcROBs. It may be explained by the size of this
fragment, which is too small to be detected by
FISH analysis. Results of both analyses for others
clones demonstrated their absence in mcROBs.
Even though we observed PCR product of clones
CR381535, CR381653, CR381670, and CR392039
in three (cases 2, 3, 4) of four hybrids containing
mcROB, we had to exclude presence of these clones in
Robertsonian translocation because they were absent in
case 1. The occurrence of PCR products in these three
hybrids (2,3,4) is explained by the content of additional
human chromosomes in which these sequences’ frag-
ments are also present. It should be noticed that only the
hybrid derived from case 1 did not contain other human
chromosomes except rob(14;21) (Table 2).

The exact mechanism of Robertsonian translocation
formation is still not known. However, it seems that the
recombination between the repeated sequences of satel-
lite III DNA or other repeated sequences occurring in

the short arms of acrocentric chromosomes is probably
involved. Moreover, factors such as a high frequency of
de novo translocations formation in the population
(Page and Shaffer 1997), non-random participation of
certain acrocentric chromosomes in ROBs (Therman
et al. 1989), and the formation of the majority of trans-
locations during oogenesis (Page and Shaffer 1997)
support the hypothesis that there must be a specific
mechanism leading to the formation of rob(13;14) and
rob(14; 21) (Page et al. 1996). Furthermore, it is very
likely that sequences located on chromosomes 13, 14,
and 21 that mediate homologous recombination eventu-
ally lead to the formation of these translocations (Choo
et al. 1988; Therman et al. 1989). Consequently, it has
been proposed (Choo et al. 1988; Shaffer 2002;
Therman et al. 1989) that the chromosome 14 (i) shares
homologous sequences with the short arms of chro-
mosomes 13 and 21 and (ii) these sequences are
arranged in the opposite orientation on chromosome
14 that has been proposed (Shaffer 2002). Moreover,
these assumptions indicate that the formation of
rob(13;14) and rob(14;21) is favored, but rob(13;21)
is not, as assisted by the relatively low incidence of
rob(13;21) in population (Shaffer 2002).

Fig. 4 The interphase FISH results show centromere-telomere orientation of BAC clones CR381572 and CR382332 on 14p and 21p
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Based on our results showing the presence of these
eight clones also on p arm of chromosomes 13, 14, and
21, as well as the hypothesis that the sequences on 14p
are arranged in the opposite orientation than the
homologous sequences present on 13p and 21p, the
breakpoint could be placed between the fragment of
CR382332 and clone CR381572 (Fig. 5a). In order
to verify the above hypothesis, we conducted inter-
phase FISH on monochromosomal hybrids contained
chromosome 13, 14, or 21. This analysis determined
the orientation of analyzed clones, in relation to the
centromere. Because of the highly repetitive sequences of
the most analyzed clones and occurrence of clone
CR382287 fragment in hamster genome, we selected 3
BAC clones, namely CR382285, CR381572, and
CR382332. These clones were hybridized to interphases
in the presence of alpha satellite probes, specific to cen-
tromere region of chromosomes involved in mcROBs in

two combinations (1) CR381572, CR382332, and alpha
satellite probes and (2) CR381572, CR382285, and alpha
satellite probes, but only FISH using CR381572 and
CR382332 gave the unambiguous results. For all analyzed
chromosomes, we observed the following probes order:
centromere—CR381572—CR382332—telomere,
whereas for clones CR381572 andCR382285, we noticed
a lot of cells with undetermined order. According to these
results, we can assume that the hypothesis is incorrect.
Another aspect of our results is that they indicate different
orientation and order of analyzed clones than presented by
Lyle et al. (2007) and hg19/GRCh37 human Genome
Browser. First of all, it means that clone CR381572 is
localized proximal to centromere of chromosome 14 and
21, whereas CR382332 is distal (Fig. 4). Admittedly, we
are not able to align all eight clones, but our results
demonstrate that the group of four clones CR381535,
CR381653, CR381670, and CR392039 are distal to

Fig. 5 Hypothetical breakpoints (the dotted line) in rob(14;21),
clones marked in green are present (based on FISH results) in
mcROBs, while clones marked in red are absent. The breakpoints
according to Lyle results and the hypothesis about opposite

orientation of sequences on 14p than on 21p (a). Our PCR and
FISH results indicate that the breakpoints are in/nearby to clone
CR382332 in both (b) or only in one (c–d) chromosome involved
in rob(14;21)
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centromere and absent in mcROBs, while the clones
CR382285, CR382287, and CR381572 are proximal to
the centromeres of investigated chromosomes and they are
present in mcROB. For the reason that fragment of clone
CR382332was amplified in PCRwhereas no FISH signal
was detected, we presume that the region of breakpoint
could be placed in or nearby to clone CR382332 in both
(Fig. 5b) or only in one (Fig. 5c–d) chromosome involved
in mcROB.

Determination of the breakpoint exact location in the
rob(13;14) and rob(14;21) remains the difficult task
because of extensive variation size of polymorphic se-
quences in the p arm of acrocentric chromosomes and
the lack of mapping data of these regions. Although the
Human Genome Project covers only euchromatin re-
gions, we were able to localize these translocations’
breakpoint in the same sequence fragment in all studied
mcROB. Moreover, our study using eight clones, iden-
tified by Lyle, aiming for narrowing the breakpoints in
mcROB, is the first after these sequences appeared in
databases. The presented results provide additionally the
most precise accessible information about sequences
in short arms of acrocentric chromosomes and pos-
sible breakpoint region in mcROB which will be
helpful both in further studies and in understanding
the mechanism of their formation.
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