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Abstract Y-linked Dmy (also called dmrtIbY) in the
teleost fish medaka, W-linked Dm-W in the African
clawed frog (Xenopus laevis), and Z-linked Dmrtl in
the chicken are all sex chromosome-linked Dmrtl
homologues required for sex determination. Dmy and
Dm-W both are Dmrtl palalogues evolved through
Dmrtl duplication, while chicken Dmrtl is a Z-linked
orthologue. The eutherian sex-determining gene, Sry,
evolved from an allelic gene, Sox3. Here we analyzed
the exon—intron structures of the Dmrt! homologues of
several vertebrate species through information from
databases and by determining the transcription initiation
sites in medaka, chicken, Xenopus, and mouse. Interest-
ingly, medaka Dmrt] and Dmy and Xenopus Dm-W and
Dmrtl have a noncoding-type first exon, while mouse
and chicken Dmrtl do not. We next compared the 5'-
flanking sequences of the Dmrt] noncoding and coding
exons 1 of several vertebrate species and found conser-
vation of the presumptive binding sites for some
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transcription factors. Importantly, based on the phylo-
genetic trees for Dmrtl and Sox3 homologues, it was
implied that the sex-determining gene Dmy, Dm-W, and
Sry have a higher substitution rate than thier prototype
genes. Finally, we discuss the evolutionary relationships
between vertebrate sex chromosomes and the sex-
determining genes Dmy/Dm-W and Sry, which evolved
by neofunctionalization of Dmrtl and Sox3, respec-
tively, for sex determining function. We propose a
coevolution model of sex determining gene and sex
chromosome, in which undifferentiated sex chromo-
somes easily allow replacement of a sex-determining
gene with another new one, while specialized sex chro-
mosomes are restricted a particular sex-determining
gene.

Keywords Sex determination - neofunctionalization -
noncoding exon - Dmrtl - Sry - promoter

Abbreviations

DM Doublesex and mab-3

Dmrtl  Doublesex and mab-3 related
transcription factor 1

Dmy Doublesex and mab-3 related gene

Y—the sex-determining gene on the

medaka Y chromosome

Doublesex and mab-3 related gene

W—the sex-determining gene on the

Xenopus W chromosome

FISH  Fluorescence in situ hybridization

HMG  High mobility group

Dm-W
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PGC Primordial germ cell

Sox3 Sry (sex-determining region Y)-box 3

Sry Sex-determining region Y—the
sex-determining gene on the eutherian
Y chromosome

Introduction

Both genotypic and environmental sex-determining
systems exist in vertebrates (Graves 2008). In the
former, heterogametic sex chromosomes determine
the fate of sex, male (XY) or female (ZW). In the
XX/XY-type sex-determining system, the Y-linked
Sry genes of most eutherian mammals and the Dmy
(also known as dmrtibY) gene of the teleost fish
medaka (Oryzias latipes) function as sex-determining
genes that trigger testis formation (Sinclair et al. 1990;
Koopman et al. 1991; Matsuda et al. 2002, 2007,
Nanda et al. 2002). In contrast, the molecular mecha-
nisms of ZZ/ZW-type systems are poorly understood,
although our recent studies have proved that a W-
linked gene Dm-W is a female sex-determining gene in
the African clawed frog (Xenopus laevis) (Yoshimoto et
al. 2008, 2010; Okada et al. 2009; Yoshimoto and Ito
2011). Importantly, a Dmrtl duplication caused the
emergence of Xenopus Dm-W (Yoshimoto et al. 2008),
as well as medaka Dmy (Matsuda et al. 2002; Nanda et
al. 2002). Our findings indicated that DMRT1 and its
paralogous protein DM-W could have mutually oppo-
site roles in sex determination, supporting a novel ZZ/
ZW-type system model in which DM-W dominantly
orients female development by antagonizing DMRT1
(Yoshimoto et al. 2010). Smith et al. (2009) also have
recently reported that the two copies of Z-linked Dmrtl
gene are necessary for male sex determination in the
chicken (Gallus gallus domesticus). The avian Dmrtl
gene may have been located in the Z chromosome to
induce male development by maintaining its two-fold
gene dosage in ZZ males (Nanda et al. 2000; Smith et al.
2009). The Y-linked Dmy in medaka and the W-linked
Dm-W in X. laevis emerged as a Dmrtl positive and
dominant-negative type paralogue during species diver-
gence, respectively (Kondo et al. 2004; Bewick et al.
2011), suggesting that both the sex-determining genes of
the XX/XY and ZZ/ZW systems were generated by neo-
functionalization of Dmrtl (Yoshimoto et al. 2010).
These findings support the idea that a DMRT1-driven
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male-determining system is involved in non-mammalian
vertebrate species (Yoshimoto et al. 2010; Yoshimoto
and Ito 2011). In contrast, the male sex-determining
gene Sry evolved from Sox3 during evolution of euthe-
rian mammals by neofunctionalization and established
an SRY/SOX9-driven male-determining system.

Here, to clarify the molecular evolution of the sex-
determining genes Dmy, Dm-W, and Sry, and their pro-
totype genes Dmrtl and Sox3 in vertebrates (Matsuda et
al. 2002; Yoshimoto et al. 2008; Foster and Graves
1994), we compared the gene structures, presumptive
promoter regions, and/or substitution rates among
Dmrt]l and Sox3 family members in various species.
Finally, we discuss the relationships between sex-
determining genes and sex chromosomes during verte-
brate evolution.

Materials and methods
Animal care and use

The Institutional Animal Care and Use Committee of
Kitasato University approved all experimental proce-
dures involving O. latipes, X. laevis, G. gallus, and
Mus musculus.

RNA ligase-mediated rapid amplification of cDNA 5’
ends (RLM-5'RACE)

Total RNA was isolated using an RNeasy mini kit
(Qiagen) from the gonads of M. musculus (C5S7BL/
6), G. gallus, X. laevis, and O. latipes (Carbio). The
Dmrtl orthologue transcription initiation sites were
determined using RNA obtained with the FirstChoice
RLM-RACE kit (Ambion). Primers used for PCR
were those supplied with the kit, and Dmrtl-specific
primers were as follows: M. musculus Dmrtl, 5'-AAT
CAGGCTGCACTTCTTGC -3’ and 5'-
ACTTCTTGCTTCCAGAACCC-3"; G. gallus Dmrtl,
5'-CACTTCTTGCACTGGCAGTC-3" and 5'-
ACATGCAGAACCGCTTGTGC-3"; X. laevis
Dmrtla, 5'-ATAACCCGTTGTCTCTCTGC-3' and
5'-TCCATGATTTCTGCATCGGG-3"; O. latipes
Dmrtl, 5'-TTCCAGCGGCAGAAGCGCTTG-3' and
5'-GGCCTTTCAGCGGAGACACG-3". The former
primer set was used for first-round PCR, the latter
for the second round. Products of the second round
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were inserted into pBluescript-KS (+) (Agilent Tech-
nologies) and sequenced.

Comparative analysis of genomic sequences

Comparisons of the 5'-flanking regions of DmrtI ortho-
logues and paralogues were performed with mVISTA
using the alignment program AVID (http://genome.lbl.
gov/vista/index.shtml), which is suitable for globally
aligning DNA sequences with its accuracy and ability
to detect weak homologies. The Dmrtl 5'-flanking
sequences of eight species (Homo sapiens, M. musculus,
Canis lupus familiaris, Monodelphis domestica, Orni-
thorhynchus anatinus, G. gallus, Anolis carolinensis,
Xenopus (Silurana) tropicalis) were obtained from the
UCSC Genome Browser (http://genome.brc.mcw.edu).
The 5'-flanking sequences of X. laevis Dm-W, O. latipes
(Carbio) Dmrti, and Dmy were obtained from GenBank
(AB365520, AP006154, and AP006152, restrictively;
http://www.ncbi.nlm.nih.gov/genbank/). About 3 kbp
5'-flanking region of X. laevis Dmrtla was isolated
and sequenced, which was deposited in the GenBank/
EBI Data Bank under accession number AB678700. We
compared the 5'-flanking regions from the transcription
start sites of M. musculus Dmrtl, G. gallus Dmrtl, X.
tropicalis Dmrtl, O. latipes (Carbio) Dmrtl, or O. lat-
ipes (Carbio) Dmy, and Dmrtl sequences of H. sapiens,
C. familiaris, M. domestica, O. anatinus, or A. caroli-
nensis to the 3’ end of the next upstream gene, kankl.
About 3 kbp sequences upstream of the transcription
start sites of X. laevis Dmrtloe and Dm-W were also
compared.

Construction of molecular phylogenetic trees
and substitution rate calculations

Phylogenetic analyses were performed using integrated
tool MEGA 5 (Tamura et al. 2011). The nucleotide
sequences used for the analyses were obtained from
the GenBank/EBI Data Bank as follows. O. latipes
(HNI) Dmrtl, AY157712; O. latipes (HNI) Dmy,
AY12924; O. latipes (Carbio) Dmrtl, AF319994; O.
latipes (Carbio) Dmy, AY129240; O. latipes (YZ)
Dmrtl, AY442916 and AY524417; O. latipes (YZ)
Dmy, AY448017; Oryzias marmoratus Dmrtl,
AY521023; X. laevis Dmrtl 3, AB252635; X. laevis
Dm-W, NM001114842; Xenopus andrei Dmrtl 31,
HQ220773; X. andrei Dmrtl 32, HQ220774; X. andrei
Dm-W, HQ220853; Xenopus itombwensis Dmrt1 (1,

HQ220748; X. itombwensis Dmrtl 32, HQ220749; X.
itombwensis Dm-W, HQ220850; Bufo marinus Dmrtl,
FI697175; H. sapiens SOX3, NM005634; H. sapiens
SRY, NM003140; Pan troglodytes Sox3, AC149044; P.
troglodytes Sry, NM001008988; Nomascus leucogenys
Sox3, XM003272598; N. leucogenys Sry, HM757941;
Macaca mulatta Sox3, NM001193752; M. mulatta Sry,
NMO001032836; Ornithorhynchus anatinus Sox3,
XP001511549. DNA sequences were aligned using the
MUSCLE (Edgar 2004) and gaps (insertions/deletions)
were removed. Phylogenetic trees for the DNA binding
(DM or HMG) domain regions, the non-DNA binding
(non-DM or non-HMG) domain regions, and their com-
bined regions were constructed using a maximum likeli-
hood method after selecting the substitution model that
best fitted the data using MODELTEST (Bayesian
information criterion). Nucleotide numbers used: medaka
DM domain, 111 bp; medaka non-DM domain,
672 bp; Xenopus DM domain, 105 bp; Xenopus
non-DM region, 35 bp; Sox3 or Sry HMG domain,
216 bp; Sox3 non-HMG region, 1124 bp; and Sry non-
HMG region, 225 bp. The bootstrap consensus tree
inferred from 500 replicates was generated. Branches
corresponding to partitions reproduced in less than
60% bootstrap replicates were collapsed. The tree is
drawn to scale, with branch lengths measured in the
number of substitutions per site (indicated next to the
branches). The substitution rates of sex-determining
genes and their paralogues from each divergence were
calculated using the phylogenetic tree branch lengths.
Tajima's nonparametric relative-rate test (Tajima 1993)
was performed for testing the molecular evolutionary
clock hypothesis.

Results

Xenopus and medaka Dmrt] homologues possess
a noncoding first exon

We previously showed that both the Xenopus tropica-
lis (also called Silurana tropicalis) Dmrtl and X. lae-
vis Dm-W genes have a noncoding exon 1 (Yoshimoto
et al. 2006, 2008), as does medaka Dmy (Matsuda et
al. 2002). To confirm the existence of the noncoding
exon | and analyze the 5'-flanking sequences contain-
ing the promoter regions in the X. laevis Dmrtlca and
medaka Dmrtl genes, we determined their transcrip-
tion initiation sites by performing rapid amplification
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ofthe 5" end using X. /aevis and medaka testis RNAs and
by cloning the products into a plasmid (see “Materials
and methods™). X. laevis is an allotetraploid species
(Hughes and Hughes 1993) and has two Dmrtl genes,
Dmrtla and G, while Xenopus (Silurana) tropicalis is a
diploid (Evans 2008). Because we were not able to
obtain the genomic sequence corresponding to the
Dmrtl 3 gene, we did not confirm the existence of the
noncoding exon 1 of the 3 gene. The comparison
between the obtained sequences and the genomic
sequence revealed that both X. laevis Dmrtlo and
medaka Dmrt] had a noncoding exon 1, consisting of
140 and 115 bases, respectively (Fig. 1). These findings
suggest that authentic DmrtI homologues in teleost fish
and amphibians have a noncoding exon 1.

The Dmrtl noncoding exon 1 degenerated
during vertebrate evolution

We next examined whether or not the exon—intron
structures of Dmrtl orthologue and paralogue were
conserved during vertebrate evolution, using the
genomic and/or EST databases of teleost fish medaka,
amphibian Xenopus, chicken, and mammalian species
(human and mouse). We also predicted the Dmrtl
structures of monotreme platypus and marsupial opos-
sum by comparative analysis between their genomic
databases. The exon—intron structures, including the
splicing sites, are well conserved among various ver-
tebrate species except for the noncoding exons
(Fig. 1). Interestingly, the comparative analysis did
not detect a Dmrtl noncoding exon 1 in mouse,
human, or chicken. To confirm the absence of the
noncoding exon 1, we then determined the Dmrtl
transcription initiation sites using mouse and chicken
testis RNAs. The transcription initiation sites of the
mouse and chicken Dmrtl genes were located at 236
and 54 bases, respectively, upstream of the ATG trans-
lation initiation codon, indicating that each Dmrtl
gene has a coding first exon. These findings suggest
that a Dmrtl noncoding exon 1 has degenerated dur-
ing amniote or homoiothermal evolution.

Comparative analysis of the 5'-flanking sequences
among vertebrate Dmrt] homologues

To understand the conservation and molecular evolution

of the 5'-flanking sequences of Dmrtl orthologues dur-
ing vertebrate evolution and of the neofuctionalization-
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type sex-determining genes Dmy and Dm-W after Dmrtl
duplication, we conducted a comparative analysis of the
5'-flanking sequences of the Dmrt/ homologues in sev-
eral vertebrate species using a comparative genomics
tool, mVISTA (see “Materials and methods”). The anal-
ysis detected no significant homologous regions among
mouse, chicken, clawed frog, and medaka fish over
approximately 5 kb of the Dmrt! 5'-flanking sequences.
However, in the more closely related species, such as
human/mouse Dmrtl (Fig. 2a), and X. tropicalis/X. lae-
vis Dmrtl (Fig. 2b), some homologous regions were
found within 500 bp of the transcription start site. Since
about 2.5 kb repeated sequence is inserted into the
medaka Dmy promoter region (Herpin et al. 2010), we
also searched the upstream region of the repeated
sequence. As expected, two homologous regions were
identified in the region —500 to —75 of medaka Dmrtl
and —3,120 to —2,386 of medaka Dmy (Fig. 2c). Curi-
ously, we could not detect any sequence homology
between X. laevis Dm-W and X. tropicalis or X. laevis
Dmrtl. This may be because Dm-W emerged earlier
than Dmy and much more base substitutions were accu-
mulated—Dm-W and Dmy diverged from Dmrtl 13—64
million years ago (Bewick et al. 2011) and about 10
million years ago (Kondo et al. 2004), respectively. In
any case, it will be necessary to obtain the gene structure
and sequence information of X. laevis Dmrt1 3, which is
infered to be an ancestral paralogue of Dm-IW (Bewick et
al. 2011).

To understand basic mechanisms for transcription
of Dmrtl orthologues, we searched for DNA-binding
motifs of transcription factors in the 5'-flanking 500
bases upstream of the transcription start sites of the
Dmrt] homologues, using the program TFSEARCH
1.3 (http://www.cbrc.jp/research/db/TFSEARCH.
html). We could find a few motifs common to the
human and mouse Dmrt] promoter regions upstream
of the coding exon 1, except for the binding elements
for AML-1a, C/EBP, and GATA2 within the homolo-
gous regions detected by mVISTA (Supplementary
Fig. 1A). In the promoter regions upstream of the
noncoding exon 1, we could not find any common
motifs arranged in order among the Xenopus and
medaka Dmrtl homologues. However, there was a
conserved array of DNA-binding motifs, that is,
Sox5/Nkx-2.5/AML-1a/Sox5/HNF-1/GATA-1/CdxA/
YY1, in the homologous regions corresponding to the
region —500 to —250 of medka Dmrt! and the —3,120
to —2,862 of medaka Dmy (Supplementary Fig. 1B).
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Fig. 1 Exon-intron structures of Dmrt] orthologues and its paral-
ogous sex-determining genes Dmy and Dm-W in vertebrates. The
number shows the size (bp) of each exon. Noncoding exon 1 is
shown as a blue box; other noncoding and coding regions in exons
are shown as white and gray boxes, respectively. The locations of
DM domains, male-specific motifs, and P/S (proline/serine)-rich

The medaka and Xenopus Dmrtl genes have a non-
coding exon 1. Therefore, we predicted there would be
a homologous region between the upstream regions of
the noncoding exons 1 of Xenopus/medaka Dmrtl and
the far upstream regions of the coding exons 1 of
mouse/human and chicken Dmrtl. We searched the
regions from the transcription start sites of Xenopus
and medaka Dmrtl to the 3’ end of the next upstream
gene, kankl but did not find any sequene homology.
Besides, a Blat search (http://genome.ucsc.edu/cgi-bin/
hgBlat) using the wider region between the Dmrtl and
kank 1 genes revealed a significantly homologous
region, consisting of about 600 bases, among the
various species of mammals, chicken, and lizard
(Supplementary Fig. 2). This region on the human
genome is located at about 40 kb upstream of Dmrtl
(Supplementary Table 1), which corresponds to about
60 kb downstream of kankl. Figure 2d shows the
results of mVISTA analysis on this region. There
was a high sequence conservation among the regions
of eutherian human, mouse and dog, marsupial opos-
sum, and monotreme platypus. Moreover, the human
region showed a significant homology with those of
chicken and lizard, but not of frog. From mammals to
lizards, the region included common DNA-binding

regions are indicated by orange, green, and purple boxes, respec-
tively. Medaka, Oryzias latipes; Frog (XI), Xenopus laevis; Frog
(X?), Xenopus (Silurana) tropicalis; Chicken, Gallus gallus; Platy-
pus, Ornithorhynchus anatinus; Opossum, Monodelphis domes-
tica; Mouse, Mus musculus; Human, Homo sapiens

motifs, such as Cdxa, GATA-X, Pbx-1, AP-1, and
Nkx-2.5 (Supplementary Fig. 2), which might regu-
late the transcription of Dmrtl and/or kankl. Lei and
Heckert (2002, 2004) reported that transcription factors
Spl and Egrl/Gata4 regulate transcription of the rat
Dmrtl gene in the testes by binding to about 100 b
and 3 kb upstream of the gene, respectively. Our search
in the upstream regions of vertebrate Dmrt] genes iden-
tified no consensus sequences for Spl and Egrl/Gata 4
binding except for rats/mice and rats, respectively.

The sex-determining genes Dmy/Dm-W and Sry show
a higher substitution rate than their prototype genes,
Dmrtl and Sox3, respectively

To elucidate the molecular evolution of the sex-
determining genes, we first examined the substitution
rates of the sex-determining gene Dmy and its proto-
type gene Dmrtl from three groups of medaka (O.
latipes HNI, Carbio, and YZ), and Dm-W and Dmrti (3
from three species of Xenopus (X. laevis, X. andrei,
and X. itombwensis). The substitution rates of Dmy
and Dm-W were higher than those of Dmrtl and
Dmrtl 3, respectively (Fig. 3). Particularly, the DNA-
binding DM domains of Dmy and Dm-W showed a
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Fig. 2 Comparisons of the 5'-flanking regions among several
vertebrate Dmrt] homologues using mVISTA. Graphs were con-
structed using the AVID alignment program. Numbers with minus
sign correspond to bp upstream of the transcription start site (+1). a
Comparison of the first 500 bp of the mouse or chicken Dmrt]
promoter sequence, located upstream of the coding exon 1, with
that of human DMRTI. b Comparison of the first 500 bp of the
frog (XI) Dmrtla, frog (XI) Dm-W, medaka Dmrtl, or medaka
Dmy promoter sequence, located upstream of the noncoding exon
1, with that of frog (X7) Dmrtl. ¢ Comparison of the medaka Dmy

higher substitution rate, about 46 and 7 times, respec-
tively (Fig. 3). To examine whether substitution rates
vary significantly between the sex-determining genes
and their prototype genes, Tajima's relative rate test
was performed on the DNA sequences corresponding
to Fig. 3. The Tajima's test showed that the molecular
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5'-flanking region with the first 500 bp of medaka Dmrtl.
The 8-kb 5'-flanking region of the transcription initiation
site of medaka Dmy was used, and the homologous regions are
shown. d Comparison of the 2-kb region between the 3'-flanking
region of kankl and the 5'-flanking region of Dmrtl, a region
conserved in several vertebrate species. The graph was constructed
in comparison to the human 2-kb sequence. The locations of the
conserved regions are shown in Supplementary Table 1. Dog,
Canis lupus familiaris; Lizard, Anolis carolinensis

clock hypothesis was rejected (p<0.05) between each
region of medaka Dmrtl and Dmy (Supplementary
Table 3) and between the DM domain region or com-
bined region of Xenopus Dmrtl and Dm-W except for X.
itombwensis (Supplementary Table 4). These results
indicated that the sex-determining genes Dmy and
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Ol (Carbio) Dmy 0.2768|0.2412%
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Ol (YZ) Dmrt1 0.0094
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Substitution rate
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Fig. 3 Comparisons of substitution rates among Dmy, Dm-W,
and their prototype gene Dmrtl. The phylogenetic trees were
constructed from three groups of medaka and O. marmoratus
(Om) as an outgroup (a) or three species of Xenopus and Bufo
marinus (Bm) as an outgroup (b), using the maximum likelihood
method based on the Tamura 3-parameter model with 4 discrete
gamma distribution categories (a) or Kimura 2-parameter model
(b). The three trees of each panel were derived from the DM
domain region (upper), the non-DM domain region (middle),
and their combined region (/ower). The number shows the
branch length, which was defined as the number of nucleotide

Dm-W significantly have a higher substitution rate than
their prototype genes. The substitution rates of the DM
domains of medaka and Xenopus Dmrtl were lower
than those of their non-DM domain regions (Fig. 3).
This was expected because the DNA-binding domain is
known to be functionally conservative. Interestingly, the
substitution rate of the DM domain, on the contrary, was

B

DM domain (Xenopus)

Substitution rate
from common ancestor

XIDmrt1p 0
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0.0700 | 0.0668%
0.0700
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0.0985 0.02
Non-DM domain (Xenopus)

6 0.0287
0.0255

Substitution rate
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Xa Dmrtifi1 0.0255
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XIom-w  0.0434
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substitutions per site for the branch. The substitution rates of
Dmy or Dm-W and their prototype gene Dmrtl (right side of
each panel) were calculated using the branch lengths from the
position of their common ancestor (white block) to the branch
tip corresponding to each gene (gray block). Bootstrap percent-
age values of 500 replications are shown in bold above the node.
Dmy and Dm-W diverged from the their prototype genes 10 and
13—64 million years ago, respectively (Kondo et al. 2004;
Bewick et al. 2011). *An average of the substitution rates of
sex-determining genes or thier prototype gene. Ol, O. latipes;
Xl, X. laevis; Xa, X. andrei; Xi, X. itombwensis

higher than that of the non-DM domain region in Dmy
and was equal to in Dm-W.

We next examined substitution rates of the mamma-
lian sex-determining gene Sry and its prototype gene
Sox3 from four species of primates—H. sapiens, P.
troglodytes, N. leucogenys, and M. mulatta (Fig. 4a).
Because there is little homology in the non-HMG
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Pt Sox3 0.0099
NI Sox3 0.0052
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Fig. 4 Comparisons of substitution rates among a sex-
determining gene Sry and its prototype gene Sox3. The phyloge-
netic trees were constructed from the HMG domain regions of
Sox3 and Sry (a) in four species of primates and Ornithorhynchus
anatinus (Oa) as an outgroup, Sox3 (b) or Sry (¢) in three species
of primates and Macaca mulatta (Mm) as an outgroup, using the
maximum likelihood method based on the Kimura 2-parameter
model (a), Hasegawa-Kishino-Yano model (b), or the Kimura 2-
parameter model (c). The three trees in (b) and (¢) were derived

domains between Sox3 and Sry, we calculated the sub-
stitution rates of only the HMG domain to compare the
two genes (Fig. 4a). As expected, the rate of the DNA-
binding HMG domain of Sry was about seven times
higher than that of Sox3. Tajima's test was also per-
formed, indicating that the molecular clock hypothesis
was rejected between the HMG regions of Sry and Sox3
(»<0.05) (Supplementary Table 5). These results coin-
cided with the relationships between Dmy/Dm-W and
their prototype gene Dmrtl. We next compared substi-
tution rates between the HMG domain and non-HMG
domain regions by constructing phylogenetic trees of
Sox3 or Sry (Fig. 4b, c). The substitution rate of the Sox3
HMG domain was lower than that of the non-HMG
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from the HMG domain region (upper), the non-HMG domain
region (middle), and their combined region (lower). Calculations
of'the substitution rates were performed as described in Fig. 3. Sry
diverged from the prototype genes 148—166 million years ago
(Marques-Bonet et al. 2009). A common ancestor of Homo. sapi-
ens, Pan. troglodytes, and Nomascus leucogenys diverged from M.
mulatta 18 million years ago (Marques-Bonet et al. 2009). Hs, H.
sapiens; Pt, Pan troglodytes; NI, Nomascus leucogenys

domain (Fig. 4b), as was seen for the DNA-binding
DM domain of medaka and Xenopus Dmrtl. Interest-
ingly, the substitution rate of the HMG domain of Sry
was also lower than that of its non-HMG domain
(Fig. 4c), which was not the case for Dmy or Dm-W.

Discussion

Degeneration of a Dmrt] noncoding exon 1
during vertebrate evolution

Here, we performed a comparative analysis of Dmrtl
homologue genomic and cDNA sequences in medaka,
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Fig. 5 Proposed model for evolutionary relationships between
the appearance of sex-determining genes (SDGs) and sex chro-
mosomes in vertebrates. First, a candidate SDG emerges or
evolves on one chromosome of a pair of autosomes by insertion
or mutation. Then, the candidate gene may be established as an
SDG during species divergence with few morphological
changes in the two chromosomes, in cases like that of the
heterogametic XY or ZW sex chromosomes in the teleost fish
medaka (O. latipes) carrying the Y-linked SDG Dmy, or the
African clawed frog (X. laevis) carrying the W-linked SDG
Dm-W, respectively. If the new SDG emerges as a stronger

Xenopus, chicken, and mouse, with determination of
the transcription initiation sites (Fig. 1) and showed
that a Dmrtl noncoding exon 1 exists in the fish and
frog, but not in chicken or mouse. This suggests that
non-coding exon 1 degenerated during vertebrate evo-
lution. Why did it degenerate? It may have been due to
the need for a promoter change to modify the tran-
scription machinery for the Dmrt] mRNA expression.
In mice, DMRT1 is expressed in primordial germ cells
(PGCs) and somatic cells of XX- and XY-indifferent
gonads (Lei et al. 2007). In chicken and Xenopus,
Dmrtl is expressed in somatic cells of ZZ- and ZW-
indifferent gonads (Oréal et al. 2002; Yoshimoto et al.
2010). In medaka, Dmy and Dmrtl are expressed in
PGC- and spermatogonium-supporting cells, respec-
tively, of XY gonads (Kobayashi et al. 2004). Dmrtl is
not essential for fetal testis and ovary development in
mice (Raymond et al. 2000) but is necessary for male
and female germ cell development (Matson et al.
2010; Krentz et al. 2011) and for postnatal testicular

Sex chromosomes

-~k

-Emergence of a new SDG
on the other chromosomes =
-Degeneration of the SDG

(
(

regulator for sex determination, the original SDG or its candi-
date might degenerate into a psuedogene, as in the case of sex
determination in O. luzonensis, which is closely related to the
medaka species. In contrast, if an SDG strongly contributes to
the stability of a sex-determining system during species diver-
gence, differentiation of the sex chromosomes might be
allowed, leading to specialization of the heterogametic sex
chromosomes and to stabilization of the SDG. This might be
the case for the heterogametic XY sex chromosomes in euthe-
rian mammals carrying the Y-linked SDG, Sry

development (Matson et al. 2011). In contrast, Dmrtl
is required for male determination in chicken (Smith et
al. 2009) and has the potential to induce primary male
development in Xenopus (Yoshimoto et al. 2010).
Promoter reporter analyses of a transgenic mouse car-
rying about 9-kb upstream of the rat Dmrtl coding
exon | and of transgenic Xenopus carrying about 3-kb
upstream of the X. tropicalis Dmrtl noncoding exon 1
revealed that this region is necessary for the transgene
expression in Sertoli cells and male germ cells (Lei et
al. 2009) and in indifferent gonads (Yoshimoto et al.
2000), respectively. Totally, these findings do not
show any differences in the promoter activity and
regulation of Dmrtl between the animals with and
without non-coding exon 1.

We propose one hypothesis that some important reg-
ulatory sequences upstream of the Dmrtl noncoding
exon 1 required for sex determination and differentiation
in poikilothermic vertebrate species were abolished dur-
ing homeotherm evolution (Fig. 2; Supplemental Fig. 1).
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It is possible that these regulatory sequences are involved
in temperature sensitivity because Dmrtl expression is
related to the temperature-dependent sex determination
and sex reversal in some poikilothermic reptile, amphib-
ian, and teleost species (Kettlewell et al. 2000; Murdock
and Wibbels 2003; Sakata et al. 2006; Hattori et al. 2007;
Anand et al. 2008; Graves 2008). It is important to clarify
whether or not reptiles have a noncoding exon 1 within
the Dmirtl gene.

Dmy, Dm-W, and Sry as neofunctionalization-type
sex-determining genes

In general, all of the new genes might arise from
redundant copies of the preexisting genes (Ohno
1970). In the neofunctionalization model of gene
duplication, one copy retains the original function,
and the other evolves a new function (Lynch et al.
2001). The vertebrate sex-determining genes Sry and
Dmy/Dm-W may have evolved from Sox3 and Dmrtl,
respectively, as a neofunctionalization-type gene for
sex determination. Neofunctionalization-type genes
have higher substitution rates than those of their pro-
totype genes (Fig. 3; Fig. 4a; Supplemental Tables 3—
5). This coincides with the results of amino acid
sequence comparisons among vertebrate DMRT1 fam-
ily proteins (Supplementary Table 2). In this context,
the chicken Z-linked Dmrtl does not appear to be a
neofunctionalization-type gene (data not shown; Sup-
plementary Table 2), although avian Z-linked Dmyrt] is
a strong candidate for the male-determining gene.
The substitution rates of the transcription factor genes
Dmrtl and Sox3 indicated that their DM and HMG
domains are relatively conserved, compared to other
regions, during species divergence (Fig. 3; Fig. 4b); this
indicates the functional importance of these sequence-
specific DNA-binding domains. In contrast, the Dmrt]
and Sox3-derived sex-determining genes were different
in that point; the rate of the DNA-binding domain was
significantly higher than that of the non-DNA binding
region in Dmy, was equal to in Dm-W, and lower in Sry
(Figs. 3, 4c). The difference in substitution rates
between Dmy and Dm-W could be due to the restricted
small numbers of Dm-W sequences used for the analy-
sis. Zhang (2004) reported that the Dmy DM domain is
likely to be under positive Darwinian selection. Full
sequencing of the Dm-W orthologues in several Xenopus
species would answer whether or not there is a common
evolutionary mechanism of DM domain in the Dmrtl-
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derived sex-determining genes. On the other hand, the
contrasting results between Dmy and Sry might have
been caused by differences in the functional importance
of the non-DNA binding regions. The results in the
present study indicate that the HMG-domain sequence
of Sry is much more conserved than the other region
during species divergence. In fact, it is proved that Sry
could be replaced with Sox3 for the male determination
in the transgenic studies (Sutton et al. 2011), indicating
that the targent element of Sry is still conserved after
divergence from Sox3. In contrast, the higher substitution
rate of Dmy DM-domain than the other region suggests
that the target elements are modified after duplication.
Further transgenic experiments with a replacement of
Dmy with Dmrt] would give an answer to the intriguing
quesiton. In the future, it will be important to analyze the
molecular evolution of the Dmrti- and Sox3-derived
sex-determining genes, from the view of the differences
in the neofuntionalization-type emergence process; Dmy/
Dm-W and Sry evolved through individualized autoso-
mal Dmrt] duplication and allelic Sox3 mutation, respec-
tively (Fig. 5). This molecular process may be closely
related to the coevolution of the sex-determining genes
and sex chromosomes.

A hypothesis—undifferentiated sex chromosome state
allows a sex-determining gene to change

Closely related species to medaka fish (O. latipes),
which has Dmy as a sex-determining gene on the Y
chromosome, are O. curvinotus, O. luzonensis, and O.
mekongensis. These four species (including medaka) all
have 48 chromosomes with a genetic XX/XY-type sex-
determining system. O. curvinotus has Dmy, which is
located on the orthologous Y chromosome (chromo-
some | of O. latipes, called latipes linkage group 1
(LGY1)). Interestingly, the Dmy gene degenerats into a
pseudogene in O. luzonensis (Kondo et al. 2004), and,
there is no Dmy-orthologous gene in O. mekongensis,
suggesting that the sex-determining gene Dmy arose
from a duplicated copy of the autosomal Dmrtl gene
after divergence of the three species from O. mekongen-
sis, approximately 10 million years ago (Kondo et al.
2004). Importantly, the Y chromosomes in O. luzonen-
sis and O. mekongensis are not LG1, but LG12 and
LG2, respectively (Tanaka et al. 2007; unpublished data
in Takehana et al. 2008), suggesting that a new sex-
determining gene arose in each of the two species. In
addition, no sex-chromosomal heteromorphism was
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observed in the genus Oryzias species, as is seen in O.
latipes and O. luzonensis (Takehana et al. 2007; Tanaka
et al. 2007). The sex-reversed XX males and XY
females in these species are completely fertile, suggest-
ing that there is no functional differentiation between the
X and Y chromosomes except for the male determining
role of Dmy in the Y chromosoome (Takehana et al.
2007; Tanaka et al. 2007). This idea is supported by the
fertility of the transgenic medaka sex-reversed XX males
carrying the Dmy expression vector and the XY females
with spontaneous Dmy gene mutations (Matsuda et al.
2002, 2007). Consequently, it is plausible that a sex-
determining gene is not stabilized during species diver-
sification under the genomic condition in which sex
chromosomes are undifferentiated (Fig. 4).

We recently performed a FISH analysis of Dm-W in
X. laevis and showed that the Dm-W-harboring chromo-
some 3 is the W sex chromosome, and its homologous
partner is the Z sex chromosome (Yoshimoto et al.
2008), although conventional chromosomal staining
did not identify any morphological differences between
the Z and W chromosomes. In addition, the sex chromo-
somes are indistiguishable in the females and males of
several other species examined in the genus Xenopus,
including diploid and polyploid (tetraploid, octaploid,
and tetraoctaploid) species (Tymowska and Fischberg
1973). It is interesting that most Xenopus species may
not have developed differentiated sex chromosomes dur-
ing and after the species divergence mediated through
polyploidization. More recently, Bewick et al. (2011)
have identified Dm-W orthologues in at least seven
species of the genus Xenopus—four tetraploid species
including X. laevis and X. largeni, and three octaploid
species including X. itombwensis—but that many other
Xenopus species lack a Dm-W orthologue. They also
suggested that Dm-W might be degenerated in closely
related Xenopus species to the ones bearing Dm-W, as in
the case of the teleost fish O. luzonensis. They concluded
that Dm-W arose from a partial Dmrt1( duplication in the
Xenopus genus after diverged from its sister genus
Silurana, which has a diploid genome, but before the
divergence of X. leavis and X. clivii, that is, 13—64
million years ago. Therefore, there should be other kinds
of sex-determining genes in Xenopus species lacking
Dm-W gene. Importantly, X. laevis ZW transgenic indi-
viduals carrying the Dm-W knockdown vector develop
testes (Yoshimoto et al. 2010); among them, one ZW
individual formed sperm. In addition, X. laevis ZZ ani-
mals that had undergone male-to-female sex reversal

were fertile (Hayes et al. 2010). Taken together, these
findings suggest that there might be no functional differ-
entiation between the Z and W chromosomes except for
the sex-determining gene Dm-W. This is similar to the
relationship between the X and Y chromosomes in the
four closely related medaka species of the genus Oryzias
described above. Thus, the heterogametic sex chromo-
some may be only a vehicle for the sex-determining gene
in the two independent genera Oryzias and Xenopus.

In summary, there is likely some relationship
between the undifferentiated state of sex chromosome
and the change of sex-determining gene in the cases of
both the Oryzias fish and the Xenopus frog. Therefore,
we hypothesize that an undifferentiated state of sex
chromosomes allows change of a sex-determining gene
and provokes evolution of a neofunctionalization-type
sex-determining gene, regardless of the heterogametic
sex (Fig. 5).

Is sex chromosome specialization involved
in sex-determining gene stabilization?

Compared to poikilotherm vertebrate evolution, male
heterogametic (XX/XY) and female heterogametic
(ZZ/ZW) sex-determining systems are almost perfectly
conserved during mammalian and avian evolution,
respectively, with some exceptions, such as the Ryukyu
spiny rats and mole voles (Kobayashi et al. 2007;
Matthey 1933; Fregda 1983). A similar phenomenan of
the loss of a Y chromosome appeared to occur indepen-
dently during species diversity of the spiny rats and
mole vole (Just et al. 2007). In poikilotherm animals,
flexibility of gene expression for sex determination and
sex-reversal might be required in response to the envi-
ronmental change, and the sex chromosomes are mor-
phologically homomorphic in both sexes in many
fishes, amphibians, and reptiles. On the other hand, it
is possible that a homeothermic condition, as in birds
and mammals, makes it possible to control the gene
expression superior to the ourter environment and
requires no flexibility of the genetic systems, and thus
might allow sex chromosomes to become highly differ-
entiated between sexes. Once the sex chromosomes
were highly differentiated, some functional differentia-
tion might be accelerated between the female and male
sex chromosomes except for the role of sex determina-
tion. As a result, the sex-determining gene becomes
stabilized on the sex chromosome (Fig. 5). This could
be one reason why Sry is highly conserved as a sex-
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determining gene in most species of eutherian mammals.
Based on this scenario, one same sex-determining gene
might be common to most avian species—the avian
Z-linked Dmrtl gene is plausible to be a male-
determining gene. Likewise, as for female determina-
tion, it is possible that a particular W-linked female
determining gene is common to many avian species.

In the future, it will be interesting to clarify molecular
mechanisms of coevolution between sex-determining
genes and sex chromosomes in various vertebrate spe-
cies including the spiny rats and mole voles mentioned
above, the Japanese wrinkled frog Rana rugosa, which
underwent change of heterogametic sex from XY male
and ZW female, and some species of reptiles and fishes,
which have temperature sex determination (TSD) and/or
genetic sex determination (GSD). The identification of
sex-determining genes in these species would lead to
molecular understanding of the coevolution and supply
information to discuss on our model proposed here
(Fig. 5) with reference to TSD, GSD-TSD transitions
(Quinn et al. 2007; Grossen et al. 2011), and ZW-XY
transitions (Miura 2007; Quinn et al. 2011).
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