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Abstract

Meiosis, a hallmark of sexual reproduction, reduces the chromatin complement by half to cope with genome

doubling at fertilization and permits exchange of genetic material between parental genomes. Recent functional

studies of novel proteins have greatly enhanced our understanding of the regulation of meiosis. The unique status of

sex chromosomes in the male germ line may have shaped their content of germ line-intrinsic genes during

evolution. Previously, a unique set of 36 spermatogonially expressed, mouse germ cell-specific genes was

identified in one genomic screen. Thirteen of these genes have been disrupted in mice and two-thirds of these

mouse mutants exhibit meiotic defects. Therefore, we hypothesize that the majority of uncharacterized germ cell-

specific genes identified in the same screen, including 11 X-linked genes, might also play important roles in

meiosis. In particular, we cite previously unpublished studies demonstrating that the NXF2 protein, an X-encoded

factor, is present in early spermatocytes.

Unique status of the X chromosome in the male

germ line

In germ cells the X chromosome and the autosomes

behave differently. In particular, during meiosis of

mammalian spermatogenesis, the sex chromosomes

undergo meiotic sex chromosome inactivation

(MSCI), while autosomes remain transcriptionally

active (Solari 1974, Handel et al. 1994). MSCI

appears to be part of a common process that silences

unsynapsed chromatin during the pachytene stage of

meiosis I, a phenomenon termed MSUC (meiotic

silencing of unsynapsed chromatin) (Baarends et al.
2005, Turner et al. 2005). (For an in-depth dis-

cussion, refer to the review on meiotic silencing and

the epigenetics of sex in the current issue by Kelly &

Aramayo (2007)). MSCI does not require the Xist
gene that is essential for X-inactivation in females

(McCarrey et al. 2002) but involves a BRCA1-

dependent mechanism. The BRCA1 tumor protein

recruits ATR to asynapsed sex chromosomes, which

in turn phosphorylates the H2AX histone variant

(Turner et al. 2005). BRCA1-dependent silencing

also applies to asynapsed autosomal chromatins in

pachytene germ cells in both sexes. Asynapsed

chromatin undergoes extensive histone modifications

and nucleosome replacement beginning at the pachy-

tene stage (Khalil et al. 2004, Greaves et al. 2006,

van der Heijden et al. 2007). While some sex-linked

genes are reactivated post-meiotically, transcriptional

silencing of most X-linked genes persists in sperma-

tids (Wang et al. 2005, Namekawa et al. 2006,

Turner et al. 2006).

In contrast with their differential transcriptional

activities during the pachytene and post-meiotic

stages, both sex chromosomes and autosomes in
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mouse are transcriptionally active in mitotically

dividing germ cells (spermatogonia) and early mei-

otic spermatocytes such as leptotene and zygotene.

The unique and dynamic transcriptional states of

the X chromosome during the various phases

(mitotic, meiotic, and post-meiotic) of spermatogen-

esis may have influenced its gene content during

evolution, particularly those involved in germ cell

development (Vicoso & Charlesworth 2006). A

genomic study using Spo11-deficient mouse testes

revealed two contrasting gene distribution patterns

on the X chromosome. Topoisomerase SPO11 is

required for homologous recombination and its loss

causes meiotic arrest prior to the pachytene stage in

mouse (Baudat et al. 2000, Romanienko & Camerini-

Otero 2000). Expression profiling of Spo11-deficient

testes showed that genes expressed before the Spo11
block are enriched on the X chromosome, whereas

those expressed after the block are under-represented

(Khil et al. 2004). It has been hypothesized that male

beneficial genes (for example, genes expressed in

early spermatogenesis) tend to accumulate on the X

chromosome during evolution because of its hemi-

zygosity in males (Rice 1984). However, the deple-

tion of meiotic and post-meiotic genes on the X

chromosome can be explained by MSCI (Turner

et al. 2006).

Enrichment of early spermatogenesis genes

on the mammalian X chromosome

The importance of the X chromosome in mammalian

spermatogenesis was first suggested by its abundant

representation in mouse spermatogonia. When 36

germ cell-specific genes were identified from mouse

spermatogonia in a systematic genomic screen

(Table 1), nearly one-third of these genes were

X-linked, demonstrating that early spermatogenesis

genes are enriched on the X chromosome in mouse

(Wang et al. 2001). [Such enrichment is also

substantiated by genomic studies of the mouse

Spo11 mutant and human germ cell-restricted genes

(Khil et al. 2004, Koslowski et al. 2006)]. To date,

13 out of these 36 genes (Sycp1, Sycp2, Sycp3, Sall4,

Figla, Stra8, Tex14, Ddx4, Rnf17, Piwil2, Dazl,
Tdrd1, and Taf 7l) have been characterized by

targeted inactivation in mice (Table 1). These genetic

studies have uncovered functions of most genes

during spermatogenesis that could not be predicted

based mainly on their expression patterns.

This review describes the characteristics of this

unique set of 36 genes (Table 1), whose properties

might indicate some of the functions of the unchar-

acterized genes identified in the same screen (Wang

et al. 2001). Even though they are expressed in

spermatogonia, these 36 genes are also expressed in

meiocytes, suggesting a possible role in meiosis

(Wang et al. 2005). Genetic studies of 13 genes in

mice by targeted inactivation have demonstrated that

the majority of them are involved in the regulation of

meiosis (Table 1). In particular, at least two

molecular/genetic networks of meiosis (the synapto-

nemal complex and post-transcriptional regulatory

network) have emerged from these mouse studies

and are reviewed as follows.

The synaptonemal complex (SC)

The synaptonemal complex, a tripartite multi-protein

structure unique to meiotic cells, consists of two

axial/lateral elements (AE/LE), one central element

(CE), and numerous transverse filaments (TF) (Page

& Hawley 2004). The assembly and disassembly of

SC ensure chromosome synapsis, homologous recom-

bination, and faithful chromosome segregation during

meiosis. (For an in-depth discussion, refer to the

review on the synaptonemal complex structure in the

current issue by Cooke 2007). Interestingly, four

genes identified in the genomic screen (Sycp1, Sycp2,

Sycp3, and Tex12) encode components of the SC

(Table 1): SYCP1, SYCP2 and SYCP3 are known

SC proteins, whereas TEX12 is a novel SC constit-

uent (Heyting et al. 1989, Hamer et al. 2006).

Recent studies of SC proteins have provided novel

mechanistic insights into the regulation of meiosis, in

particular the assembly of SC. SYCP1 is a TF

protein. In mice lacking Sycp1, axial elements appear

to be assembled normally; homologous chromo-

somes pair with each other but fail to undergo

synapsis; meiotic recombination is initiated, but

crossovers are not formed (de Vries et al. 2005).

Recent biochemical and cell biological studies have

shown that TEX12 and two SYCP1-interacting

proteins (SYCE1 and SYCE2) localize exclusively

to the CE and their localization to CE is SYCP1-

dependent (Costa et al. 2005, Hamer et al. 2006).
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Apparently, TEX12 forms a complex with SYCE2,

which in turn interacts with SYCE1, and SYCE1

anchors this CE protein complex to TF via interac-

tion with SYCP1. These new studies have uncovered

an intriguing molecular network within the central

element of SC.

SYCP2 and SYCP3 are integral components of the

AE/LE. Genetic studies of mutant mice demonstrate

that both proteins are required for formation of axial

elements and thus chromosomal synapsis (Yuan et al.
2000, Yang et al. 2006). Not surprisingly, SYCP2

interacts with SYCP3, suggesting that they exist as

heterodimers in the axial elements. An evolutionarily

conserved coiled coil domain in SYCP2 is required

for its interaction with SYCP3. Studies of a unique

Sycp2 mouse mutant lacking the coiled coil domain

reveal that the assembly of SYCP2 and SYCP3 into

axial elements might be tightly regulated (Yang et al.
2006). In Sycp3-deficient meiocytes, SYCP2 fails to

localize to the axial chromosomal cores (Pelttari

et al. 2001, Yuan et al. 2002). In Sycp2 mutant mice

the truncated SYCP2 protein lacking the coiled coil

domain still localizes to the axial chromosomal

cores, whereas SYCP3 fails to do so but forms large

nuclear aggregates that are not associated with

chromatin (Yang et al. 2006). Collectively, these

studies suggest that SYCP2 is a primary determinant

of AE/LE and SYCP3 might play a yet-unknown

role in the stabilization of SYCP2 to the axial

chromosomal cores.

Post-transcriptional regulation in meiosis

Several germ cell-specific genes (Table 1) encode

putative RNA-binding proteins, such as Dazl, Ddx4
(Mvh), Piwil2, Tdrd1, Nxf2, and Rnf17, underlining

the complexity of post-transcriptional control in

proliferation and differentiation of germ cells. Tar-

geted inactivation studies have shown that at least

four of these proteins (DAZL, MVH, PIWIL2 and

TDRD1) play a role in meiosis (Table 1). These

proteins have highly conserved sequence homo-

logues in metazoans.

The role of DAZL in translational regulation has

been intensively studied. Mice lacking DAZL are

depleted of germ cells in both sexes (Ruggiu et al.
1997). However, the precise timing of germ cell

defects in Dazl mutant mice appears to be influenced

by genetic backgrounds; in hybrid backgrounds

spermatogenesis fails to progress beyond the lepto-

tene stage of meiosis I, whereas in C57BL/6 inbred

background Dazl is required for embryonic develop-

ment of male germ cells (Saunders et al. 2003, Lin &

Page 2005). Biochemical studies in Xenopus oocytes

show that DAZL family proteins are associated with

poly(A)-binding proteins (PABP), which regulate the

initiation of translation (Collier et al. 2005). Strik-

ingly, a number of gene transcripts in Table 1 appear

to be DAZL-binding targets (Sycp3, Tex19, Mvh,

Stk31, Tex14, Tuba3, and Fthl17). Furthermore, it

has also been shown that DAZL stimulates transla-

tion of Mvh by binding to its 3¶ untranslated region

(UTR) (Reynolds et al. 2005).

The Piwi gene family is involved in stem cell

renewal, RNA silencing, and germ cell development

in diverse organisms. Piwil2 (also known as Mili) is

required for male meiosis in mice (Kuramochi-

Miyagawa et al. 2004). Recently it has been found

that PIWIL2 binds to a novel class of small RNA

(26Y31 nucleotides) that accumulate during meiosis

(Aravin et al. 2006). In addition, PIWIL2 forms a

complex with MVH in germ cells, suggesting the

functional association of these two proteins in post-

transcriptional regulation of meiosis (Kuramochi-

Miyagawa et al. 2004).

Intriguingly, several proteins with RNA-binding

activity or putative RNA binding domains localize to

nuage. Nuage in mouse germ cells refers to a number

of electron-dense non-membrane bound structures of

unknown functions. MVH localizes to the chroma-

toid bodies, which are a multi-lobular nuage prom-

inent in the cytoplasm of spermatocytes and

spermatids (Toyooka et al. 2000). TDRD1, a tudor

repeat-containing protein, is a component of inter-

mitochondrial cement in spermatocytes and chroma-

toid bodies in spermatids (Chuma et al. 2003).

RNF17 also contains multiple tudor repeats and

localizes to a novel germ cell nuage (referred to as

RNF17 granules) in spermatocytes and spermatids,

which is distinct from chromatoid bodies (Pan et al.
2005). The molecular functions of various germ cell

nuages in germ cell development (chromatoid body,

inter-mitochondrial cement, and RNF17 granules)

remain elusive. Notably, Dicer interacts with MVH

and is concentrated in chromatoid bodies, suggesting

that chromatoid body might be involved in the

microRNA pathway (Kotaja et al. 2006).
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An abundance of meiosis factors

Out of the 36 germ cell-specific genes identified from

mouse spermatogonia, 13 genes have been disrupted

in mice to date (Table 1). Strikingly, two-thirds of

these mutant mice (Sycp1, Sycp2, Sycp3, Mvh,

Piwil2, Dazl, Tdrd1, Tex14, and Stra8) exhibit

defects in meiosis. This number likely represents an

underestimate, since disruption of Sall4 causes pre-

meiotic defects and thus precludes studies of a

possible role in meiosis (Sakaki-Yumoto et al.
2006). With the benefit of hindsight, we extrapolate

that the majority of the remaining 23 genes may also

play a role in early meiosis (Table 1), which will be

tested by targeted inactivation of these genes in mice

in the future. In support of this extrapolation, all of

these 23 genes are expressed in meiocytes (Wang

et al. 2005). In further support, a recent study shows

that TEX12 appears to be a meiosis-specific factor

(Hamer et al. 2006).

However, it is also possible that some of these 36

genes are involved in the development of mitotic

germ cells including spermatogonia, as they are

indeed expressed in spermatogonia (Wang et al.
2001). In fact, Mvh also plays a role in the

proliferation of primordial germ cells (Tanaka et al.
2000). Disruption of Dazl causes arrest of mitotic

germ cells in an inbred genetic background (Lin &

Page 2005). Tex14 is required for formation of

intercellular bridges of germ cells including sper-

matogonia (Greenbaum et al. 2006). Therefore, these

three genes (Mvh, Dazl, and Tex14) function in both

the mitotic and meiotic phases of germ cell develop-

ment, which might also be the case for other genes in

Table 1.

Regulation of meiosis by X-linked genes

in mammals?

If the aforementioned extrapolation holds, the major-

ity of the 11 X-linked germ cell-specific genes are

expected to play a role in meiosis (Table 1). To date no

X-linked meiosis-specific factors have been identified

by gene disruption in mice. However, the 11 X-linked

germ cell-specific genes found are expressed in early

spermatocytes during the leptotene and zygotene

stages of meiotic prophase I, suggesting that they

may have meiotic roles (Wang et al. 2005).

Genetic studies in diverse organisms have shown

that critical meiotic processes are initiated or spec-

ified during the leptotene and zygotene stages,

including homologous recombination, chromosome

pairing, and chromosomal synapsis (Zickler &

Kleckner 1999, Page & Hawley 2004). Strikingly,

nearly all the spermatogonially expressed gene

mutant mice with meiotic impairment exhibit zygo-

tene arrest or severe defects prior to the pachytene

stage (Sycp1, Sycp2, Sycp3, Mvh, Piwil2, Dazl,
Tex14, and Stra8) (Table 1), underlining the impor-

tance of leptotene and zygotene stages. In contrast

with the differential transcriptional status between

sex chromosomes and autosomes during the pachy-

tene stage, there is little evidence that sex chromo-

somes and autosomes differ in their transcriptional

activity prior to the pachytene stage. Therefore, we

reason that the early meiotic function obtained from

disruption of autosomal genes can be extrapolated to

the role of not only autosomal but also X-linked

genes identified from spermatogonia in the same

genomic screen (Table 1).

One of these X-linked genes encodes TAF7L, a

TATA-binding protein (TBP) associated factor that is

abundant in meiotic and post-meiotic germ cells

(Pointud et al. 2003). As a component of the basal

transcription factor TFIID complex, TAF7L might

specify a germ cell-specific transcription program.

Disruption of Taf7l leads to reduced testis weight,

decreased sperm production, and defects in sperm

motility but no meiotic arrest (Cheng et al. 2007).

However, TAF7L might play a non-essential role in

meiosis. To further test the role of X-linked genes in

meiotic regulation, we examined the expression of a

novel X-encoded factor, NXF2, during spermatogen-

esis (Table 1).

Differential localization of NXF2

in spermatogonia and spermatocytes

The cytoplasm and the nucleus are separate compart-

ments in eukaryotic cells. Thus, bulk mRNA must be

transported from the nucleus into the cytoplasm

through the nuclear pore complex before translation

can occur. Active mRNA export is mostly carried out

by evolutionarily conserved nuclear mRNA export

factors (NXF). In mammals the Nxf gene family

consists of several members including Nxf1 and
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Nxf2. Nxf1, the founding member of this family, is

conserved from yeast to humans and ubiquitously

expressed (Katahira et al. 1999). By contrast, Nxf2

expression is restricted to testis and brain (Sasaki

et al. 2005). Interestingly, a recent study shows that

NXF2 interacts with the fragile X mental retardation
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protein (FMRP) and is restricted exclusively to

spermatogonia in the testis (Lai et al. 2006).

However, our study demonstrated that NXF2 is

also expressed in early spermatocytes and exhibited

two distinct subcellular localization patterns in

germ cells. We examined the localization of NXF2

in testes from juvenile and adult mice by immuno-

fluorescent analysis. The anti-NXF2 polyclonal

antibodies that we generated did not exhibit cross-

reactivity with NXF1, as tested by Western blot

analysis (data not shown). Consistent with previous

reports, NXF2 was expressed in germ cells but not in

Sertoli cells (Figure 1). Notably, NXF2 was exclu-

sively nuclear in gonocytes and type A spermatogo-

nia (Figure 1A and B). In type B spermatogonia,

NXF2 appeared to accumulate around the nuclear

periphery (Figure 1B). Furthermore, NXF2 localized

predominantly to the nuclear periphery in a punctate

pattern in preleptotene (Figure 1B), leptotene, and

zygotene spermatocytes. Such a punctate localization

pattern persisted in early pachytene spermatocytes in

Stage I seminiferous tubules (Figure 1C). However,

NXF2 was not observed in pachytene spermatocytes

from stage IIYIII tubules and thereafter (Figure 1D).

The nuclear peripheral localization of NXF2 might

be relevant to its nuclear mRNA export activity,

since NXF2 is known to interact with components of

nuclear pore complex (Sasaki et al. 2005). The

differential localization patterns of NXF2 in germ

cells suggest that its functions may differ between

spermatogonia (gonocytes and type A spermatogo-

nia) and early spermatocytes (preleptotene through

early pachytene). Importantly, our data suggest that

NXF2 might be implicated in the regulation of male

meiosis.

Implications of X-linked meiosis factors

Based on the genetic studies of 13 genes, we enter-

tain the possibility that the majority of germ cell-

specific genes identified in the genomic screen might

play a role in meiosis (Table 1) (Wang et al. 2001).

Such a possibility has enormous implications for the

X-linked genes in the aetiology of male infertility in

humans. Since males have only one X chromosome,

mutations in the X-linked germ-cell-specific genes

might cause or predispose to male sterility.

In several genetic studies, two X-linked germ cell-

specific genes (TAF7L and USP26) were screened for

mutations in infertile men (Paduch et al. 2005,

Stouffs et al. 2005, 2006b). Mutation screening of

TAF7L in 25 men with non-obstructive azoospermia

did not reveal mutations that are associated with

infertility (Stouffs et al. 2006b). Two studies indi-

cated that a haplotype in USP26 (371insACA,

494T9C and 1423C9T) might be a risk factor for

male infertility (Paduch et al. 2005, Stouffs et al.
2005). In contrast, other studies showed that this

USP26 haplotype is a polymorphism in non-Cauca-

sian populations (Ravel et al. 2006, Stouffs et al.
2006a). However, these studies focused on azoosper-

mic males. The fact that no causative mutations in

TAF7L and USP26 have been identified so far does

not exclude a role for these genes in meiosis or

spermatogenesis, since mutations in these genes might

cause oligospermia (low sperm count) rather than

azoospermia. Indeed, our recent study has shown that

mice lacking the Taf7l gene exhibit reduced sperm

count (Cheng et al. 2007). In addition, causative point

mutations in a single gene are extremely rare in

infertile men, given that hundreds if not thousands of

genes are specifically involved in regulation of male

fertility (Matzuk & Lamb 2002). Studies of mice

lacking Usp26 or other X-linked germ cell-specific

genes (Table 1) will shed light on their role in

spermatogenesis and facilitate mutation screening in

infertile males.

The putative X-linked meiosis factors might be

implicated in hybrid sterility in mammalian species.

Hybrid sterility represents one of the early events

in speciation and follows Haldane_s rule: the fertility

Figure 1. Distinct subcellular localization patterns of NXF2 in spermatogonia and early spermatocytes. Two rabbits were immunized with the

6xHis-NXF2 (230Y431 aa) recombinant protein, resulting in antisera UP1988 and UP1989 (Cocalico Biologicals, Inc.). Specific anti-NXF2

antibodies were affinity-purified using the immunoblot method (Harlow & Lane 1998). Frozen sections of testes from mice at different postnatal

days (PND) were immunostained with anti-NXF2 antibodies. Adult testicular sections were also immunostained with guinea pig anti-ACRV1

antibodies (1:500) to visualize the morphology of acrosomes for precise staging of seminiferous tubules as previously described (Yang et al.
2007). Texas red or FITC-conjugated secondary antibodies were used (Vector Laboratories). Nuclear DNA was stained with DAPI. Gc,

gonocytes; Sc, Sertoli cells; Asg, type A spermatogonia (that contain little heterochromatin); Bsg, type B spermatogonia (that contain

heterochromatin distributed around the nuclear periphery); Sg, spermatogonia; Pl, preleptotene spermatocytes; Pa, pachytene spermatocytes.

Scale bar, 25 mm.

R
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or viability of heterogametic sex is preferentially

affected (Haldane 1922). Genetic studies in Drosophila
demonstrated an excess of hybrid sterility loci on

the X chromosome, a phenomenon referred to as

Flarge X-effect_ (Orr & Coyne 1989, Tao et al.
2003). Several X-linked hybrid sterility loci were also

reported in mice (Oka et al. 2004, Storchova et al.
2004). These genetic studies suggest that hybrid

sterility might be caused by incompatibility of multiple

loci (or genes). The X-linked factors (Table 1), if

involved in meiosis, might interact genetically with

each other and with autosomal meiosis-specific

factors. These X-linked germ cell-specific genes are

highly divergent between species, suggesting that

they undergo rapid evolution. Therefore, we posit

that some of these X-linked factors might be

involved in reproductive isolation during mammalian

speciation.
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