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Abstract
Neuroinflammation is an important pathogenesis of neurological diseases and causes a series of physiopathological changes, 
such as abnormal activation of glial cells, neuronal degeneration and death, and disruption of the blood‒brain barrier. There-
fore, modulating inflammation may be an important therapeutic tool for treating neurological diseases. Mesenchymal stem 
cells (MSCs), as pluripotent stem cells, have great therapeutic potential for neurological diseases due to their regenerative 
ability, immunity, and ability to regulate inflammation. However, recent studies have shown that MSC-derived exosomes 
(MSC-Exos) play a major role in this process and play a key role in neuroprotection by regulating neuroglia. This review 
summarizes the recent progress made in regulating neuroinflammation by focusing on the mechanisms by which MSC-Exos 
are involved in the regulation of glial cells through signaling pathways such as the TLR, NF-κB, MAPK, STAT, and NLRP3 
pathways to provide some references for subsequent research and therapy.

Graphical Abstract
Exosomes derived from MSCs exhibit neuroprotective effects by regulating signaling pathways and mitigating neuroinflam-
mation triggered by glial cells.
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Introduction

Neuroinflammation refers to the inflammatory response 
that arises when central nervous system (CNS) damage is 
induced by either endogenous or exogenous stimuli and is 
accompanied by the activation of neuroglia, particularly 
microglia and astrocytes (Kwon and Koh 2020; Leng and 

Edison 2021). In the initial phase of CNS injury, inflam-
mation exerts a protective effect by eliminating harmful 
substances. However, a sustained inflammatory response 
continuously stimulates neuroglia, releasing inflammatory 
factors, and mediators. This activation prompts neuronal 
degeneration, impairs the blood‒brain barrier (BBB), and 
exacerbates brain damage via various mechanisms (Lid-
delow and Barres 2017; Rodriguez-Gomez et al. 2020). 

Extended author information available on the last page of the article

http://orcid.org/0009-0005-2716-2194
http://orcid.org/0000-0002-2056-890X
http://orcid.org/0009-0008-5339-2550
http://orcid.org/0000-0002-1910-6660
http://orcid.org/0000-0002-1313-7423
http://crossmark.crossref.org/dialog/?doi=10.1007/s10571-024-01460-x&domain=pdf


	 Cellular and Molecular Neurobiology           (2024) 44:24    24   Page 2 of 12

Neuroinflammation significantly contributes to the initiation 
and progression of neurodegenerative conditions and acute 
CNS ailments (Stephenson et al. 2018; Novoa et al. 2022; 
Liu et al. 2022b). Consequently, targeting neuroinflamma-
tion has emerged as a promising intervention strategy.

MSCs are pluripotent stem cells that can be isolated from 
various tissues, such as the umbilical cord, placenta, and 
bone marrow; they have the ability to undergo osteogenic, 
lipogenic, and chondrogenic differentiation. In recent years, 
MSCs have attracted much attention for use in cell therapy 
(Levy et al. 2020). MSCs exhibit a regulatory influence 
on the immune response by dispensing anti-inflammatory 
mediators, cytokines, and immunosuppressive factors (da 
Silva Meirelles et al. 2006; Shi et al. 2018). MSCs, known 
to inhibit neuroinflammation, actively stimulate neuronal 
differentiation and promote neural axon growth; they also 
enhance damaged nerve functions (Skok 2021; Huang 
et al. 2022; Bagheri-Mohammadi 2021b; Ba et al. 2022). 
Although MSCs are known to possess therapeutic effects, 
these effects are believed to be primarily induced through 
paracrine mechanisms, and sufficient evidence supports this 
claim (Ha et al. 2020). Extracellular vesicles secreted by 
MSCs possess a bilayer lipid membrane structure and are 
termed MSC-Exos (Harrell et al. 2019; Qiu et al. 2019; Pal-
mulli and van Niel 2018). These vesicles contain proteins, 
lipids, and nucleic acids and can be used for tissue regen-
eration, immunomodulation, and inflammation modulation. 
MSC-Exos also play a vital role in cellular transmission 
(Tang et al. 2021). The significant inflammatory regulatory 
capacity of MSC-Exos has garnered considerable inter-
est from researchers investigating neurological disorders 
(Losurdo et al. 2020).

Glial Cells and Neuroinflammation

Neuroglia, pivotal in the CNS, include microglia, astrocytes, 
and oligodendrocytes. These cells actively participate in the 
immune response within the CNS, fostering neuronal nour-
ishment and ensuring synaptic homeostasis (Schirmer et al. 
2021; Liu et al. 2023). The role of microglia and astrocytes 
in neuroinflammation is a subject of growing interest (Hash-
ioka et al. 2021).

Microglia, which are derived from the embryonic yolk 
sac, are innate immune cells that dominate the CNS (Rod-
riguez-Gomez et al. 2020; Bagheri-Mohammadi 2021a). 
These immune cells, which dwell in the CNS, play vital 
roles in pathogen defense and damage repair (Subhraman-
yam et al. 2019). Microglia, which are indispensable for 
maintaining CNS homeostasis, are activated by diverse 
pathological stimuli. This activation gives rise to two dis-
tinct types of M1 macrophages: classical M1 macrophages 
and selective M2 macrophages. Proinflammatory cytokines, 

chemokines, and neurotoxic factors such as tumor necro-
sis factor-alpha (TNF-α), nitric oxide (NO), prostaglandin 
E2 (PGE2), interleukin-1β (IL-1β), and IL-6, which are 
generally secreted by M1 microglia, contribute to damage 
of the CNS (Zavatti et al. 2022). M2 macrophages secrete 
anti-inflammatory and neuroprotective factors such as IL-4, 
IL-10, arginase-1 (Arg-1), and chitinase 3-like 3 (Ym1), 
which promote nerve repair and regeneration to maintain 
CNS homeostasis (Zong et al. 2021). Chronically activated 
M1 macrophages lead to the excessive release of inflam-
matory mediators, intensifying neuroinflammation and 
exacerbating neuronal damage (Guo et al. 2022; Cowan and 
Petri 2018); this highlights the importance of understand-
ing the balance between M1 and M2 microglia. Modulating 
microglia could thus serve as a potent intervention method 
to regulate neuroinflammation.

Astrocytes, abundant in the brain, are instrumental in 
numerous physiological processes. These processes include 
blood flow regulation, BBB preservation, synaptogenesis 
facilitation, CNS homeostasis maintenance, and neuronal 
function regulation (Giovannoni and Quintana 2020). Astro-
cytes, which share similarities with microglia, serve dual 
functions as proinflammatory and neuroprotective agents. 
When exposed to constant pathological stimuli, these cells 
secrete proinflammatory cytokines such as IL-1β and TNF-
α. Consequently, this action elevates reactive oxygen spe-
cies (ROS) production, and this escalation leads to neuro-
degeneration (Hasel and Liddelow 2021; Linnerbauer et al. 
2020). The release of inflammatory factors by activated 
microglia can trigger proinflammatory astrocytes, resulting 
in secondary inflammatory responses (Liddelow et al. 2017). 
Astrocytes, which possess neuroprotective traits, generate 
anti-inflammatory cytokines such as IL-4 and IL-10, con-
tributing to nerve regeneration (Li et al. 2022b). The role of 
neuroinflammation mediated by astrocytes in CNS disorders 
is significant and cannot be overlooked.

Despite being distinct cell types, microglia and astrocytes 
are interconnected in their response to CNS injury; they par-
ticipate in complex mechanisms that regulate neuroinflam-
mation, and their role in the CNS is double-edged (Rueda-
Carrasco et al. 2021). It is crucial to regulate glial cells and 
exert a protective effect on them (Fig. 1).

The Role of MSC‑Exos in CNS Disorders

CNS studies revealed that MSC-Exos exhibit neuroprotec-
tive effects by harnessing their ability to regulate inflamma-
tion, adjust neuroglial activity, and boost the functionality 
of damaged neural tissue (Jin et al. 2021; Liu et al. 2022a; 
Cui et al. 2022). As a promising, innovative therapeutic tool, 
MSC-Exos can be a potential game changer for neurological 
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disorders, offering fresh hope to the medical community 
(Joo et al. 2020; Guo et al. 2020) (Table 1).

MSC‑Exos and Alzheimer’s Disease

Slow progressive memory loss and cognitive impairment 
are the main clinical symptoms of Alzheimer’s disease (AD) 
(Monteiro et al. 2023). The pathological signatures of this 
disease typically involve excessive accumulation of extra-
cellular Aβ and neurofibrillary tangles (NFTs) (Ratan et al. 
2023; Ba et al. 2022). Glial-induced neuroinflammation has 
been found to significantly contribute to the acceleration 
of Aβ accumulation (Singh 2022; Huang et al. 2019). In 
contrast, MSC-Exos inhibited microglial and astrocyte acti-
vation, thereby reducing hippocampal inflammation and Aβ 
and tau deposits. Furthermore, it enhances synaptic function 
and increases brain-derived neurotrophic factor (BDNF), 
effectively mitigating cognitive dysfunction in AD mice (Liu 
et al. 2022a). In mice with amyloid precursor protein/prog-
erin 1 (APP/PS1) mutations, MSC-Exos enhanced YM-1 
and Arg-1 expression. This improvement was accompanied 
by superior spatial learning and memory function during 
water maze testing (Ding et al. 2018). MSC-Exos signifi-
cantly decreased Aβ deposition in the brains of APP/PS1 
mice, which is consistent with previous observations (Ding 
et al. 2018). MSC-Exos significantly attenuated Aβ-induced 
neuroinflammation by inhibiting the nuclear factor kappa B 
(NF-κB) signaling pathway and suppressing signal trans-
ducer and activator of transcription 3 (STAT3). This inter-
vention also markedly improved the neurological function 
and locomotor ability of AD mice (Nakano et al. 2020; Cui 
et al. 2018). In vitro investigations demonstrated that MSC-
Exos suppress the increase in proinflammatory agents such 
as TNF-α and NO induced by Aβ aggregation (Kaniowska 

et al. 2022). Furthermore, MSC-Exos protect Aβ-induced 
PC12 cells by reducing inflammatory factor release and 
attenuating PC12 cell apoptosis; this occurs through the 
inhibition of the nucleotide-binding oligomerization domain, 
leucine-rich repeat, pyrin domain-containing 3 (NLRP3), 
and caspase-1 (Zhai et al. 2021). Studies indicate that MSC-
Exos can regulate glial cells, thereby modulating neuroin-
flammatory responses in AD.

MSC‑Exos and Parkinson’s Disease

PD, a neurodegenerative disorder, is the second most com-
mon disorder. Dopamine depletion is characterized by the 
degeneration of dopaminergic neurons, which leads to motor 
and nonmotor impairments (Jankovic and Tan 2020). PD 
has a complex pathogenesis, often caused by neuroinflam-
mation (Wang et al. 2022). MSC-Exos play a significant 
role in PD treatment (Chen et al. 2020a). Administering 
MSC-derived conditioned medium (MSC-CM) effectively 
reduced Iba-1 and CD4 levels, inhibited alpha-synuclein 
production, increased tyrosine hydroxylase levels in the 
striatum, and improved motor deficits in rats with rotenone-
induced Parkinson’s disease. This finding highlights the 
potential of MSC-CM in Parkinson’s disease therapy (Chen 
et al. 2020c). In a PD in vitro model, MSC-generated con-
ditioned medium effectively reduced neuroinflammation, 
oxidative stress, and apoptosis in MPP+-induced SH-SY5Y 
neuroblastoma cells (Li et al. 2019). MSC-Exos significantly 
reduced NLRP3-induced inflammation and cytosolic protein 
kinase 5 (CDK5)-related nigrostriatal autophagy; moreover, 
they decreased dopaminergic neuronal apoptosis and inflam-
mation while inhibiting α-synuclein aggregation in PD mice 
(Li et al. 2021). MSC-Exos effectively modulate Parkinson’s 

Fig. 1   Under neuroinflamma-
tion, microglia and astrocytes 
are activated, releasing inflam-
matory factors and chemokines 
that lead to neuronal damage
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disease-related neuroinflammation, reduce dopaminergic 
neuron apoptosis, and enhance PD motor symptoms.

MSC‑Exos and Traumatic Brain Injury

Traumatic brain injury (TBI) is a severe central nervous 
system disorder that is associated with high mortality and 
disability rates (Jacquens et al. 2022). A study revealed a 
significant link between TBI and neurodegenerative dis-
eases (Brett et al. 2022). Neuroinflammation mediated by 
glial cell overactivation is the leading cause of brain dam-
age secondary to TBI (Karve et al. 2016). In a study of 
TBI mice, after injection of MSC-Exos, TNF-α and IL-1β 

expression decreased. Simultaneously, inducible nitric oxide 
synthase (iNOS) expression was downregulated, and Arg-1 
was upregulated. This manipulation shifts the conversion 
of microglia from proinflammatory to anti-inflammatory, 
thereby reducing the neuroinflammatory effects of TBI (Ni 
et al. 2019). After 14 days of TBI, MSC-Exos significantly 
reduced the size of the brain lesions. This was attributed to 
their role in regulating inflammation and their capacity to 
alleviate secondary brain damage (Ni et al. 2019). Interven-
tion with MSC-Exos led to a decrease in activated astrocytes 
following TBI, and its ability to modulate inflammation was 
positively correlated with the duration of administration 
(Zhang et al. 2020). Enriched miRNA-17-92 MSC-Exos 

Table 1   Exosomes derived from MSCs exert neuroprotective effects, primarily by suppressing glial cell activation and regulating neuroinflam-
mation

Disease Biological sample Main findings References

AD C57BL/6 mice MSC-Exos improve AD-like behavioral performance, 
connected to its role in modulating glial activation, 
hippocampal neuroinflammation, and BDNF-related 
neuropathological changes

Liu et al. (2022a)

APP/PS1 mice MSC-Exos attenuate Aβ-induced neuroinflamma-
tion by inhibiting NF-κB and the STAT3 signaling 
pathway

Ding et al. (2018); Nakano et al. (2020); 
Cui et al. (2018)

BV2 cells and PC12 cells MSC-Exos inhibit Aβ-induced inflammatory response 
in microglia and protect neuronal PC12 cells

Kaniowska et al. (2022); Zhai et al. (2021)

PD rat MSC-Exos ameliorate neuroinflammation, reduce 
α-synuclein, and improve dyskinesia in rats

Chen et al. (2020c)

SH-SY5Y cells MSC-Exos effectively mitigates neuroinflammation, 
oxidative stress, and apoptosis in MPP(+)-induced 
Parkinson’s disease model

Li et al. (2019)

C57BL/6 J mice and MN9D cells MSC-Exos inhibit NLRP3 and CKD5, suppress the 
inflammatory response, and reduce apoptosis of 
dopaminergic neurons to improve dyskinesia

Li et al. (2021)

TBI C57BL/6 mice MSC-Exos inhibit early neuroinflammation in TBI 
mice by modulating microglia polarization to exert 
neuroprotective function

Ni et al. (2019)

rat Inhibition of astrocyte activation by MSC-Exos 
improves sensorimotor and cognitive functions in 
TBI rats and is time-dependent with MSC-Exo

Zhang et al. (2020)

rat and BV2 cells MSC-Exos inhibit HMGB1/NF-κB and/or TLR4/
NFκB and MAPK signaling pathways, reducing 
microglia overactivation-mediated neuroinflamma-
tion

Xu et al. (2020); Thomi et al. (2019)

SE C57BL/6 mice MSC-Exos improve cognition in sustained epilepsy 
mice by modulating glial cell activation and attenuat-
ing hippocampal inflammation

Liu et al. (2021a); Long et al. (2017)

tMCAO C57BL/6 mice MSC-Exos inhibit microglia activation and reduce 
neutrophil factor and chemokine accumulation

Pathipati et al. (2021)

ALS SOD1G93A mice and astrocytes Important mechanisms by which MSC-Exos improve 
prognosis in ALS are associated with inhibition 
of MAPK11-involved astrocyte inflammation and 
enhancement of antioxidant capacity

Provenzano et al. (2022)

MS SJL/J mice MSC-Exos modulates microglia activation in MS with 
immunomodulatory capacity, reduces Th1 and Th17 
expression, improves motility, and promotes myelin 
regeneration

Laso-García et al. (2018)
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exhibit considerable promise in restoring sensory-motor 
and cognitive abilities in mouse models of TBI (Zhang et al. 
2021). Several studies have demonstrated that the HMGB1/
NF-κB pathway can be inhibited by exosomes from MSCs 
enriched with miR-216a-5p, thereby reducing TBI-induced 
neuroinflammation (Xu et al. 2020). MSC-Exos interrupt 
TLR4 signaling, inhibit NF-κB and MAPK phosphoryla-
tion, and mitigate neuroinflammation triggered by microglial 
overactivation in rats with brain injury (Thomi et al. 2019). 
MSC-Exos exert inhibitory neuroinflammatory and neuro-
protective effects by regulating glial cells and improving the 
microenvironment in regions of brain injury.

MSC‑Exos and Other Neurological Disorders

MSC-Exos, a novel therapy, significantly improve cogni-
tive function in mice suffering from sustained epilepsy 
(SE) (Liu et al. 2021a). By regulating glial cell activation, 
reducing hippocampal inflammation, and enhancing neu-
ronal protection, MSC-Exos prevent SE-induced cognitive 
memory deficits and decrease cognitive activity. In a study 
investigating the beneficial impact of MSC-Exos on middle 
cerebral artery occlusion, it was discovered that MSC-Exos 
effectively suppressed microglial activation, simultaneously 
diminishing neutrophil factor and chemokine accumulation 
(Pathipati et al. 2021). The inhibition of MAPK11-involved 
astrocyte inflammation and the enhancement of antioxidant 
capacity are essential mechanisms by which MSC-Exos 
improve the prognosis of amyotrophic lateral sclerosis 
(ALS) (Provenzano et al. 2022). MSC-Exos exhibit immu-
nomodulatory effects, effectively regulating microglial cell 
activation in multiple sclerosis (MS). Diminishing Th1 and 
Th17 expression enhances motility and fosters myelin regen-
eration (Laso-García et al. 2018). The efficacy of MSC-Exos 
in mitigating numerous neurological ailments is strongly 
connected to their function in regulating neuroinflamma-
tion, a factor that cannot be overlooked.

Mechanisms by Which MSC‑Exos Regulate 
Neuroinflammation

Recent research has revealed that MSC-Exos possess neu-
roprotective effects under neurological conditions, with 
neuroinflammation being a critical pathogenic mechanism. 
Neuroglial activation initiates neuroinflammation, prompt-
ing astrocyte activation and the release of inflammatory 
agents. These factors contribute to neuronal damage and 
exacerbate neuroinflammation (Liddelow et al. 2017; Nor-
den et al. 2016). The regulation of glial cells has been 
identified as a vital link in neuroinflammation. Numerous 
studies have demonstrated that MSC-Exos aid in trans-
forming microglia from a proinflammatory state to an 

anti-inflammatory state, suppressing activated astrocytes, 
and providing neuroprotection (Go et al. 2020; Garcia-
Contreras and Thakor 2021; Cui et al. 2022; Xian et al. 
2019). The following question then arises: how do MSC-
Exos regulate glial cells?

MSC‑Exos with TLRs and NF‑κB

Toll-like receptors (TLRs), including TLR2 and TLR4, serve 
as pattern recognition receptors (PRRs) capable of identify-
ing pathogen-associated molecular patterns (PAMPs). TLRs 
are crucial in modulating CNS inflammation by regulating 
cytokines and chemokines, particularly in microglial acti-
vation (Sloane et al. 2010; Fiebich et al. 2018; Huang et al. 
2017). CD14, a GPI-anchored protein expressed on myeloid 
cells, is activated by TLR4, which produces proinflamma-
tory cytokines via MyD88-dependent and TRIF-independent 
signaling pathways (Ciesielska et al. 2021). Research has 
revealed that MSC-Exos can inhibit LPS binding to TLR4 
via the TLR4/CD14 complex, manipulate IκBα and AP-1 
transcription, and minimize inflammatory factor release 
(Thomi et al. 2019). MSC-Exos exhibit direct inhibitory 
effects on neuroinflammation driven by the TLR4 signaling 
pathway, explicitly targeting HMGB1 (Xiong et al. 2020). 
Additionally, research has revealed that MSC-Exos can sup-
press the TLR2/NF-κB signaling pathway, thereby reducing 
the inflammatory response by inhibiting IRAK1 expression 
(Zhang et al. 2022).

NF-κB, a nuclear transcription factor (Sun et al. 2022), 
initiates the expression of genes regulating inflammatory 
responses and proinflammatory factors when stimulated 
(Yu et al. 2020). The hippocampus of APP/PS1 mice exhib-
ited increased NF-κB expression. However, upon treatment 
with MSC-Exos, TNF-α, TRAF6, and NF-κB expression 
decreased. This reduction attenuated the inflammatory 
response activated by astrocytes and mitigated the cognitive 
deficits characteristic of AD (Nakano et al. 2020). MSC-
Exos also inhibit IRAK1 expression in astrocytes and inter-
vene in NF-κB-mediated neuroinflammatory responses (Lai 
et al. 2022). Research in an LPS-induced neuroinflammation 
model utilizing RAW264.7 cells revealed that MSC-Exos 
effectively targeted tumor necrosis factor-stimulated gene-6 
(TSG-6). This intervention inhibits the NF-κB/NLRP3 
signaling pathway and modulates macrophage phenotypic 
transformation (Li et al. 2022a). NF-κB also regulates his-
tone deacetylase 3 (HDAC3) expression, and MSC-Exos 
inhibit p65 phosphorylation, NF-κB transcriptional activ-
ity, HDAC3 expression, and neuroinflammation in subarach-
noid hemorrhage (Lai et al. 2020). This study indicated that 
MSC-Exos can potentially reduce neuroinflammation and 
serve a neuroprotective function by hindering TLR/NF-κB 
activation.
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MSC‑Exos with MAPK

MAPKs, as members of the serine/threonine protein kinase 
family, include extracellular signal-regulated kinase (ERK), 
c-Jun N-terminal kinase (JNK)/stress-activated protein 
kinase, and p38 MAPK. These kinases activate MAPK from 
the extracellular region to the nucleus, where they function 
in the immune response, cell proliferation, and apoptosis 
(Behl et al. 2022; Guan et al. 2020). MSC-Exos inhibit 
neuroinflammation in brain injury by effectively regulat-
ing LPS- and oxygen–glucose deprivation (OGD)-induced 
microglial activation, which occurs through suppression 
of the phosphorylation of P38MAPK, JNK, ERK1/2, P65, 
IKKαβ, and NF-κB inhibitor alpha (IKBα), ultimately 
decreasing the activation of these proteins (Shu et al. 2022; 
Chen et al. 2020b). It has been observed that MSC-Exos, 
which contain miR-467f and miR-466q, effectively target 
Map3k8 and Mk2, inhibiting p38 MAPK. This intervention 
has been shown to be involved in regulating neuroinflam-
mation induced by microglial activation (Giunti et al. 2021). 
Research has revealed that MSC-Exos exert regulatory 
effects on astrocyte activation through the MAPK pathway; 
simultaneously, they stimulate the nuclear translocation of 
nuclear factor erythroid2-related Factor 2 (Nrf2), amplifying 
antioxidant effects and diminishing neurotoxicity (Proven-
zano et al. 2022). MSC-Exos exhibit anti-inflammatory 
and antioxidant effects by regulating neuroinflammation 
through MAPK signaling and synergistically collaborating 
with Nrf2.

MSC‑Exos with JAK/STAT​

The Janus kinase/signal transducer and activator of tran-
scription (JAK/STAT) signaling pathway is constructed of 
three primary elements: the tyrosine kinase-related receptor, 
JAK, and STAT. Upon phosphorylation by JAK, STAT con-
verts into a dimer that permeates the nuclear membrane, ulti-
mately substantially impacting cell survival, inflammation, 
and immune regulation (Khera et al. 2022; Xin et al. 2020). 
MSC-Exos effectively safeguard microglia from inflamma-
tory reactions triggered by OGD stimulation. This effect is 
achieved by inhibiting STAT3 phosphorylation, downregu-
lating proinflammatory factor expression, and moderating 
inflammatory responses (Xin et al. 2022). STAT3 activa-
tion and interaction with p38MAPK occur, while MSC-
Exos reduce STAT3 and p38MAPK phosphorylation; it also 
inhibits the overexpression of the inflammatory mediators 
cyclooxygenase-2 (COX-2), monocyte chemoattractant pro-
tein-1 (MCP-1), and iNOS, leading to neuroprotective effects 
in subarachnoid hemorrhage (Liu et al. 2021c). Interestingly, 
the TBI study revealed that MSC-Exos effectively inhibited 
neuroinflammation by stimulating STAT3 phosphorylation, 
which potentially occurs because activated STAT3 further 

elevates IL-10 expression, initiating an autocrine feedback 
loop that amplifies its anti-inflammatory properties (Wen 
et al. 2022). However, the JAK/STAT pathway has opposite 
regulatory effects on various diseases, indicating that MSC-
Exos could contribute to neuroinflammation by controlling 
the JAK/STAT pathway.

MSC‑Exos with NLRP3

The NLRP3 inflammasome, a complex consisting of NLRP3, 
ASC, and caspase-1, plays a crucial role in innate immunity; 
it regulates caspase-1-induced GSDMD-dependent pyropto-
sis and the release of IL-1β and IL-18. This inflammasome 
triggers cell death in response to infections, pathological 
stress, and various stimuli (Huang et al. 2021). MSC-Exos 
demonstrated robust potential for reducing Aβ-induced 
neuroinflammation while improving memory and locomo-
tor abilities in APP/PS1 mice. The effectiveness of these 
agents stems from their ability to inhibit NLRP3 and cas-
pase-1 expression (Zhai et al. 2021). In vitro studies revealed 
that MSC-Exos are effective inhibitors of the TSG-6/NF-κB/
NLRP3 pathway, fostering the conversion of microglia to the 
M2 anti-inflammatory phenotype (Li et al. 2022a). MSC-
Exos exhibit neuroprotective effects against ischemia‒rep-
erfusion injury by efficiently suppressing NLRP3-induced 
neuronal death and regulating microglial activity (Liu et al. 
2021b). Studies have shown that MSC-Exos boost FOXO3a 
expression, resulting in decreased inflammatory factor 
release and, simultaneously, decreased NLRP3, caspase-1, 
and GSDMD expression (Hu et al. 2021). Furthermore, 
MSC-Exos exhibit a more significant inhibitory effect on 
NLRP3 under hypoxic pretreatment (Kang et al. 2021). 
MSC-Exos robustly inhibited PDCD4 expression, thereby 
restraining NLRP3 and inhibiting inflammatory factors. This 
process mitigates neuroinflammation and brain damage after 
cerebral hemorrhage (Ding et al. 2021). MSC-Exos exhibit 
excellent potential to attenuate neuroinflammation by modu-
lating NLRP3 inflammatory vesicles.

Others:

(1) BACE1, an Aβ precursor protein cleaving enzyme in 
microglia, exacerbates AD by promoting Aβ production and 
inflammatory responses (Singh et al. 2022). Nonetheless, 
MSC-EVs that deliver miR-29c-3p can potentially inhibit 
BACE1, mitigate Aβ accumulation, and ameliorate neuro-
inflammation and neuronal apoptosis in AD mouse models. 
This efficacy is derived from activating the Wnt/β-catenin 
pathway (Sha et al. 2021). (2) Neutrophil gelatinase-associ-
ated lipid transport protein 2 (LCN2), secreted by activated 
astrocytes, serves as a critical mediator of neuroinflamma-
tion and neurodegeneration (Kim et al. 2022), and MSC-
Exos containing miR-138-5p effectively downregulate LCN2 
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and inhibit neuroinflammation induced by astrocyte activa-
tion (Deng et al. 2019).

In essence, the genesis and progression of neuroinflam-
mation rely heavily on signaling pathways. These pathways 
are interconnected, forming a regulatory network that influ-
ences one another. MSC-Exos can potentially alleviate 
neuroinflammation by adjusting these signaling pathways, 
opening up a new avenue for treating neurological disorders 
(Fig. 2).

MSC‑Exos Carry miRNAs that Play a Role 
in Neuroinflammation

MSC-Exos, abundant in miRNAs, significantly contribute 
to cellular regulation (Schulz-Siegmund and Aigner 2021). 
These 22-nucleotide noncoding RNA molecules bind to 
the 30 untranslated regions (UTRs) or open reading frames 
(ORFs of target mRNAs, dictating mRNA degradation or 
translation inhibition, ultimately affecting protein expres-
sion (Das and Rao 2022). Research has demonstrated that 
MSC-Exos carry miRNAs capable of affecting CNS disor-
ders (Iranifar et al. 2019). miR-216a-5p (Xu et al. 2020), 
miR-193b-3p (Lai et al. 2020), miR-21a-5p (Xin et al. 2022), 
miR-26b-5p (Liu et al. 2021c), miR-181b (Wen et al. 2022), 
and miR-183-5p (Ding et al. 2021) trigger the transformation 
of microglia into an anti-inflammatory state, diminish proin-
flammatory factors, and thereby achieve neuroprotective out-
comes in acute CNS injuries. MSC-Exos, which are enriched 
in miRNA-17-92, effectively promote the recovery of sen-
sory-motor and cognitive functions in TBI mice compared to 
those in mice not loaded with exosomes (Zhang et al. 2021). 
MiR-22 (Zhai et al. 2021) can regulate GSDMD-induced 
focal death, inhibit inflammation, and improve AD motor 
and memory abilities. Moreover, a study confirmed that 

MSC-Exos containing miR-146a (Nakano et al. 2020), miR-
21 (Cui et al. 2018), and miR-29c-3p (Sha et al. 2021) inter-
fered with neuroinflammation induced by Aβ stimulation 
and attenuated neuronal apoptosis. In addition, MSC-Exos 
enriched with miR-188-3p can inhibit inflammatory vesicles 
and ameliorate PD nigrostriatal dopamine neuronal damage 
by suppressing excessive autophagy (Li et al. 2021). In ALS 
studies, miR-466q and miR-467f in MSC-Exos were shown 
to downregulate Mapk11, miR-466 m-5p, and miR-466i-3p 
to promote the nuclear translocation of Nrf2, and miRNAs 
regulate inflammatory responses and oxidative stress in 
astrocytes through anti-inflammatory and antioxidant activi-
ties (Provenzano et al. 2022). Moreover, the role of miR-
138-5p in astrocyte activation-mediated neuroinflammation 
has been identified (Deng et al. 2019). Taken together, these 
findings indicate that miRNA-rich MSC-Exos play a signifi-
cant role in regulating neuroinflammation (Table 2).

Conclusion

MSC-Exos exhibit low immunogenicity and efficiently cross 
the BBB, allowing them to reach lesion sites easily. The 
miRNAs they carry influence the differentiation of glial cells 
and regulate neuroinflammation through signaling pathways. 
This process triggers the release of cytokines and inflam-
matory mediators, enhances apoptosis resistance, and has 
neuroprotective effects. Uncovering the mechanism of MSC-
Exos in neurological diseases is thus crucial. Previous stud-
ies have shown that various components of MSC-Exos might 
collaborate to mitigate neuroinflammation through multiple 
cellular processes.

Nonetheless, the specific role of each MSC-Exo com-
ponent in reducing neuroinflammation remains to be elu-
cidated. Enhancing the targeting efficiency of MSC-Exos 

Fig. 2   MSC-Exos exert neu-
roprotective effects mainly by 
modulating the TLR, NF-ĸB, 
MAPK, JAK/STAT, NLRP3, 
and Wnt/β-catenin pathways, 
thereby improving neuroinflam-
mation
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is also a crucial aspect to consider for future research. 
Despite their broad potential in treating neurological dis-
ease, MSC-Exos face several challenges; these include 
overcoming the barriers associated with MSC-Exo extrac-
tion technology, establishing standardized quality control 
measures, and optimizing the clinical benefits of these 
materials. Furthermore, few clinical studies on MSC-Exos 
exist, necessitating numerous basic and clinical investiga-
tions to unravel the underlying mechanism of MSC-Exos, 
particularly their role in neuroinflammation regulation and 
clinical safety, which will ultimately facilitate the early use 
of MSC-Exos in neurological disease treatment.
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