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Abstract
Ferroptosis is a new form of programmed cell death, which is characterized by the iron-dependent accumulation of lipid 
peroxidation and increase of ROS, resulting in oxidative stress and cell death. Iron, lipid, and multiple signaling pathways 
precisely control the occurrence and implementation of ferroptosis. The pathways mainly include Nrf2/HO-1 signaling 
pathway, p62/Keap1/Nrf2 signaling pathway. Activating p62/Keap1/Nrf2 signaling pathway inhibits ferroptosis. Nrf2/HO-1 
signaling pathway promotes ferroptosis. Furthermore, some factors also participate in the occurrence of ferroptosis under 
hypoxia, such as HIF-1, NCOA4, DMT1. Meanwhile, ferroptosis is related with hypoxia-related diseases, such as MIRI, 
cancers, and AKI. Accordingly, ferroptosis appears to be a therapeutic target for hypoxia-related diseases.
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Introduction

Ferroptosis is a newly discovered form of iron-dependent 
programmed cell death that is induced by the accumulation 
of iron-mediated lipid peroxidation (Fuhrmann and Brune 
2022). It is reported that small molecule erastin induces an 
iron-dependent cell death pattern from apoptosis, necrosis 
and autophagy in tumor cells with oncogene RAS muta-
tion, which is officially named as ferroptosis (Dixon et al. 
2012). Ferroptosis is mainly characterized by intracellular 
iron accumulation and lipid peroxidation, and is mainly 
related to intracellular iron accumulation, glutathione (GSH) 
depletion, glutathione peroxidase 4 (GPX4) inactivation, and 

increasing lipid peroxidation (Dixon et al. 2012; Yang et al. 
2016). Increasing studies confirm that ferroptosis is related 
to multiple signaling pathways and participates in the regula-
tion of many diseases. Meanwhile, accumulating evidence 
suggests that ferroptosis plays an important role in hypoxia-
related diseases such as myocardial infarction (MI), acute 
kidney injury (AKI), neurodegenerative disorders, ischemia 
stroke (IS), hypoxic tumors (Zhao et al. 2021b; Zhou et al. 
2022). In the injuries of many organs such as the heart, 
brain, and kidney, ferroptosis is reported to play an essential 
role in inducing the occurrence of diseases by influencing 
iron metabolism or lipid peroxidation. In neurodegeneration 
disease, ferroptosis is inhibited by reducing the iron con-
tent to suppress the production of lipid peroxides (Masaldan 
et al. 2019). In cancer, ferroptosis is induced to suppress the 
development of non-small cell lung cancer (NSCLC) cells 
(Bebber et al. 2021). Many drugs for cancer treatment have 
been found to induce ferroptosis to control the development 
of cancer cells, suggesting that the induction of ferroptosis 
reaches the intention of treating cancer (Lachaier et al. 2014; 
Zhao et al. 2021a).

Hypoxia is caused by internal and external conditions, 
such as high altitude, ischemia–reperfusion injury, and solid 
tumors (Ow et al. 2018; McClelland and Scott 2019; Chen 
et al. 2022). Many reasons may cause hypoxia in people. 
For example, there is insufficient blood flow to partial areas 
in tumors, or decreasing in hemoglobin in tissues. Hypoxia 
regulates iron-related proteins to effect iron concentration 
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and lipid peroxidation. Hypoxia-inducible factor-1 (HIF-
1) is regulated by hypoxia to increase iron uptake, thereby 
affecting ferroptosis sensitivity. Hypoxia also regulates fer-
roptosis by Nrf2/HO-1 signaling pathway, p62/Keap1/Nrf2 
signaling pathway. Besides, epigenetic modification plays a 
role in regulating ferroptosis under hypoxia, such as miRNA, 
lncRNA, methylation. There is an important relationship 
between ferroptosis and hypoxic diseases. Hypoxia induces 
cardiomyocyte ferroptosis through mitochondrial dysfunc-
tion caused by calcium overload, resulting in impaired car-
diac function. Hypoxia also regulates ferroptosis in brain by 
inducing abnormal iron metabolism and oxidative stress. In 
addition, ferroptosis is related with cancers, organ damage 
caused by ischemia, and coronavirus disease-19 (COVID-
19). In this review, we aim to describe the regulatory mecha-
nisms of ferroptosis and the relationship between ferroptosis 
and hypoxia-related diseases.

Regulation of Ferroptosis

Iron Metabolism

Iron absorbed in body is mainly Fe3+ which loads onto the 
transferrin (TF) in serum and then combine with transfer-
rin receptor (TfR) in the cell membrane. Subsequently, the 
TF-Fe/TfR complex is endocytosed into the cell. With the 
help of six-transmembrane epithelial antigen of prostate 3 
(STEAP3) in the endosome, Fe3+ is reduced to Fe2+ and then 
Fe2+ is released into cytoplasm by divalent metal transporter 
1 (DMT1) (Hu et al. 2022).It is confirmed that the ferritin in 
cytoplasm is the main iron storage protein. Ferritin is com-
posed of ferritin light chain (FTL) and ferritin heavy chain 1 
(FTH1). FTH1 mainly oxidizes Fe2+ into Fe3+ and the FTL 
mainly makes next Fe2+ enter the ferroxidase site (Fuhrmann 
et al. 2020). The deficiency of iron leads to nuclear receptor 
coactivator 4 (NCOA4) recognizing the ferritin and then the 
ferritin moves to lysosomes (Li et al. 2020b). Subsequently, 
the iron ions in ferritin are released into cytoplasm. Abnor-
mal iron metabolism causes iron overload, which leads to the 
Fenton reaction (Hu et al. 2022). Iron chelating agents and 
nitrogen oxides are inhibitors of Fenton reaction. For exam-
ple, deferoxamine (DFO) is combined with Fe3+ to form 
iron amine complexes to reduce the impact of iron overload, 
ultimately reducing unstable iron in cells and then inhibiting 
the Fenton reaction in the process of ferroptosis (Ben Ismail 
et al. 1994; Cheng et al. 2021). In addition, TEMPO inhibits 
the formation of hydroxyl radical to block the Fenton reac-
tion, which may inhibit the process of ferroptosis (Shi et al. 
2017). The Fenton reaction increases generation of reactive 
oxygen species (ROS) which ultimately causes ferroptosis 
(Zhou et al. 2018; Xu et al. 2021c). The concentration of TF 
in serum of patients with hypoxic diseases was significantly 

higher than that of healthy people (Koistinen et al. 2000; Li 
et al. 2022c). Hypoxia causes the increase of erythropoietin 
(EPO), which in turn leads to the increase of serum TF, 
eventually leading to abnormal iron metabolism to promote 
ferroptosis. Besides, hypoxia enhances HIF-1 levels to pro-
mote the concentration of transferrin to regulate ferroptosis 
(Li et al. 2022c). Consequently, iron metabolism plays an 
important role in ferroptosis.

Regulation Pathways of GPX4

GPX4 is a selenoprotein antioxidant enzyme also called 
phospholipid-hydroperoxide glutathione peroxidase 
(PHGPx) (Hu et al. 2022; Wei et al. 2022). GPX4 oxidizes 
GSH into glutathione (GSSG) and reduces toxic L-OOH to 
non-toxic L-OH, which controls the spread of lipid perox-
ide and maintains the stability of cytomembrane (Xu et al. 
2021c). In addition, the knockdown of GPX4 increases 
intracellular ferrous iron and ROS, and finally causes 
ferroptosis (Wei et al. 2022). Simultaneously, excessive 
iron decreases the expression of GPX4 and solute carrier 
family 7 member 11 (SLC7A11), which accelerates the 
occurrence of ferroptosis. GSH is composed of cysteine, 
glutamic acid and glycine, and is a co-factor with GPX4 in 
the catalysis of peroxides. The decrease of cysteine causes 
depletion of GSH, which leads to inactivation of GPX4 
and then ferroptosis occurs (Yang et al. 2016). Studies 
present that inhibition of GPX4 induces ferroptosis (Hou 
et al. 2021; Liu et al. 2022). It is suggested that the GPX4 
inhibitor triggers ferroptosis in cancers (Fan et al. 2021a; 
Li et al. 2021c; Zhang et al. 2022b). In addition, RAS-
selective lethal 3 (RSL3), an inhibitor of GPX4, bonds 
with GPX4, which effectively leads to lipid peroxides 
and downregulates ion GPX4 in glioblastoma, resulting 
in ferroptosis of glioblastoma (Li et al. 2021c; Hu et al. 
2022). Bufotalin (BT), a novel GPX4 inhibitor, increases 
the degradation of GPX4 and intracellular Fe2+ level, caus-
ing ferroptosis in non-small cell lung cancer cells (Zhang 
et al. 2022b). Correspondingly, the up-expression of GPX4 
inhibits ferroptosis. It is presented that the platycodin D 
(PD) treatment in diabetic nephropathy (DN) and cur-
culigoside (CUR) treatment in ulcerative colitis (UC) is 
mainly through suppressing ferroptosis with the elevation 
of GPX4 (Wang et al. 2020a; Huang et al. 2022a). GPX4 
expression is activated by activating transcription factor 4 
(ATF4) and androgen receptor (AR). Heat shock protein 
family A member 5 (HSPA5) increased by activation of 
ATF4 inhibits lipid peroxidation in ferroptosis by protect-
ing against GPX4 degradation in cancer cells (Zhu et al. 
2017). AR activation increases GPX4 and decreases ROS 
production to affect hypoxia-mediated ferroptosis in MIR 
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(Zhang et al. 2022c). Accordingly, GPX4 is a regulator of 
ferroptosis.

System Xc‑

System Xc- is a part of the heterodimeric amino acid trans-
porter (HAT) family and is a cystine/glutamate antiporter 
system (Chen et al. 2021c; Liu et al. 2021a). System Xc- in 
the cell membrane is composed of two subunits, the solute 
carrier family 7 member 11 (SLC7A11) and the SLC3A2 
(Liu et al. 2021a). Cystine is converted into cysteine which 
is one of the components of GSH. The GSH is reduced with 
the dysfunction of system Xc-, which leads to the decrease 
of GPX4 and the accumulation of lipid peroxidation, then 
the ROS increases, and ultimately ferroptosis is induced 
(Chen et al. 2021c; Li et al. 2022a). It is reported that IFN-γ 
inhibits System Xc- through down-regulating SLC3A2 and 
SLC7A11 to induce ferroptosis (Kong et al. 2021). Narin-
genin (NAR) regulates system Xc- to inhibit ferroptosis in 
Myocardial ischemia–reperfusion injury (MIRI) rats (Xu 
et al. 2021b). ATF induced by oxidative stress inhibits the 
expression of SLC7A11 to repress the system Xc-, result-
ing in ferroptosis (Wang et al. 2020b; Feng et al. 2021a). In 
colorectal cancer cells, 2-imino-6-methoxy-2H-chromene-
3-carbothioamide (IMCA) downregulates the expression 
of SLC7A11 and decreases cysteine to result in ferroptosis 
(Zhang et al. 2020). Besides, prevotella histicola (P. histi-
cola) activates the anti-ferroptosis system Xc-/GPX4 axis 
to reduce ferroptosis in ethanol-induced gastric mucosal 
lesions (EGML) (Wang et al. 2023). Canagliflozin (Cana), 
an anti-diabetes drug, also promotes the system Xc-/GPX4 
axis to inhibit ferroptosis, attenuating cardiovascular dis-
eases (Du et al. 2022). At present, system Xc- inducers still 
need more studies to clarify the relationship between sys-
tem Xc- and ferroptosis. Accordingly, system Xc- may be a 
potential regulator of ferroptosis.

Nuclear Factor Erythroid 2‑Related Factor 2 (Nrf2)

Nrf2 is a key transcription factor in antioxidation and plays 
an important role in the regulation of intracellular iron 
concentration (Hu et al. 2022). Nrf2 binds to Kelch-like-
ECH-associated protein 1 (Keap1) in the cytoplasm, and 
then Nrf2 is inactivated by ubiquitination (Xu et al. 2021c; 
Hu et al. 2022). However, under oxidative stress, Nrf2 is 
released from Keap1 and translocates into the nucleus, sub-
sequently interacts with the antioxidant response element 
(ARE) to drive the expression of antioxidant genes and then 
cells are protected from oxidative stress (Xu et al. 2021c). 
It is reported that Nrf2 inhibits ferroptosis through enhanc-
ing the cellular antioxidant ability (Wang et al. 2020c). 
The activation of Nrf2 reduces ROS, increases FTH1 and 
GPX4 mRNA expression to balance oxidative stress and 

then ferroptosis is inhibited (Qiu et al. 2020; Zhang et al. 
2021). Besides, Nrf2 plays an indirect role in ferroptosis 
through regulating lncRNA and miRNA. Decreased expres-
sion of noncoding myocardial infarction-related transcripts 
(lncRNA) promoted ferroptosis by regulating Nrf2 (Wang 
et al. 2022). LncRNA metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) prevents Nrf2 from moving 
into the nucleus by increasing Keap1 levels, ultimately lead-
ing to ferroptosis (Radhakrishnan and Kowluru 2021). Inhib-
iting microribonucleic acid 27a (miRNA-27a) in ischaemic 
stroke brain issue may inhibit ferroptosis by upregulating 
Nrf2 (Zhang et al. 2022a). Bach1, repressing some of Nrf2 
target genes, inhibits MUFA biosynthesis to induce ferrop-
tosis (Xie et al. 2023).

Moreover, p62/Keap1/Nrf2 signaling pathway is a key 
pathway to inhibit ferroptosis. P62 is an adaptor protein and 
is also a cytoplasmic protein induced by oxidative stress. 
P62 to activate Nrf2 by combining with Keap1, leading 
to the upregulation of GPX4 and GSH, thereby protecting 
cells from oxidative stress. Besides, p62 activation increases 
the degradation of Nrf2 and scavenges lipid peroxides to 
inhibit ferroptosis (Li et al. 2020a). The accumulation of p62 
which is caused by inhibition of autophagy, leads to Keap1 
dysfunction, and then prevents Keap1-mediated degradation 
of Nrf2, activating the Nrf2 pathway to protect cells from 
ferroptosis (Ji et al. 2015). Thus, Nrf2 plays an important 
role in regulating ferroptosis.

Heme Oxygenase‑1 (HO‑1)

HO-1, an anti-inflammatory and antioxidant intracellular 
enzyme, metabolizes heme to ferrous iron, carbon monox-
ide (CO) and biliverdin (Wang et al. 2020c; Xu et al. 2021c). 
Over-expression of HO-1 leads to Fenton reaction, GSH 
depletion, and lipid peroxidation in clear cell renal carci-
noma (ccRCC), which causes ferroptosis in ccRCC (Han 
et al. 2022). Ferroptosis inhibition effectively reduces sep-
sis-induced acute kidney injury (SAKI), which is related to 
Nrf2/HO-1 signaling pathway activated by melatonin (MEL) 
(Qiu et al. 2022). Elevating the expression and activity of 
HO-1 increase the levels of free iron and expression of 
subsequent ferritin (Xu et al. 2021a; Machado et al. 2022). 
Chronic HO-1 overexpression causes excessive iron in nor-
mal cells, promoting intracellular toxicity and cell death 
(Nitti et al. 2018). However, adequate HO-1, caused by Nrf2, 
protects cells from toxicity.

The Nrf2/HO-1 signaling pathway is an important signal-
ing pathway to protect cells against oxidative stress. HO-1 
is regulated by Nrf2. When Nrf2 is activated, it promotes 
the expression of HO-1. The upregulation of HO-1 expres-
sion regulates antioxidant enzymes which transforms free 
radicals into water and molecular oxygen, reduces oxida-
tive stress damage and the production of oxidation products, 
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exerting antioxidant effects (Loboda et al. 2016). In recent 
years, increasing studies demonstrate the Nrf2/HO-1 sign-
aling pathway inhibits ferroptosis. Activating Nrf2/HO-1 
signaling pathway reduces hypoxia/reoxygenation (H/R)-
reduced ferroptosis of cardiomyocytes by icariin (ICA), 
while levistilide A (LA) activities Nrf2/HO-1 signaling 
pathway to promote ferroptosis in breast cancer (BC) (Liu 
et al. 2021b; Jing et al. 2022). Meanwhile, Nrf2/HO-1 sign-
aling pathway is activated by hypoxia and Nrf2 overexpres-
sion in hypoxia-induced HTR-8/SVneo cells activates Nrf2/
HO-1 signaling pathway and decreases oxidative stress and 
ferroptosis (Wang et al. 2021c).

Hypoxia‑Inducible Factor (HIF)

HIF is a key transcription factor mediating adaptation to 
hypoxia, hypoxia-inducible factors (HIFs) consist of HIF-
1, HIF-2 and HIF-3 (Urrutia and Aragones 2018; Li et al. 
2022d). HIF-1 and HIF-2 regulate ferroptosis in a context-
dependent manner. However, whether HIF-3 is associated 
with ferroptosis is unclear. HIF-1 may suppress ferroptosis 
in AKI by prompting mitophagy, decreasing mitochondrial 
redox homeostasis, limiting mitochondrial respiration and 
limiting mitochondrial damage (Li et al. 2022d). Besides, 
HIF-1 regulates the gene levels of SLC7A11, and knock-
ing down HIF-1 decreases SLC7A11 protein in rat brain to 
lead to ferroptosis (Hsieh et al. 2017). HIF-1 is decreased 
in hepatic stellate cell (HSC) by sorafenib, and then reduces 
SLC7A11 expression, then leads to GPX4, GSH depletion 
and increases ROS level in HSC, and ultimately causes HSC 
ferroptosis (Yuan et al. 2022). HIF-1 is inhibited to promote 
ferroptosis through expression of the core circadian clock 
gene period 1 (PER1) (Yang et al. 2022b). What’s more, 
activation of HIF-2 may upregulate iron regulatory and 
increase ROS to cause ferroptosis in colorectal cancer (CRC) 
(Singhal et al. 2021). Consequently, HIF play an important 
role in the regulation of ferroptosis.

Endoplasmic Reticulum Stress (ER)

Recently, studies have shown that endoplasmic reticulum 
stress plays an important role in ferroptosis. The endoplas-
mic reticulum mainly maintains cell homeostasis and par-
ticipates in protein synthesis (Iurlaro and Munoz-Pinedo 
2016). Abnormal protein processing under stress conditions 
causes an unfolded protein response (UPR), and then leads 
to endoplasmic reticulum stress (ER) (Iurlaro and Munoz-
Pinedo 2016). ER may promote ferroptosis. PERK, a marker 
protein in ER period, is inhibited, prominently restraining 
ferroptosis induced by dextran sulfate sodium (DSS) (Dixon 
et al. 2014). In addition, ferroptosis induced by erastin is 
accompanied by the occurrence of ER response (Park et al. 
2019). Therefore, the combined use of ferroptosis inducer 

and endoplasmic reticulum stress inhibitor is of great signifi-
cance for the treatment of cancer. In summary, endoplasmic 
reticulum is closely related to ferroptosis, and the mecha-
nism needs further study.

The mechanical pathways of ferroptosis are shown in 
Fig. 1.

Regulations Associated with Ferroptosis 
Under Hypoxia

Studies suggest that hypoxia affects iron concentration, 
regulation of iron-related proteins, regulation of HIF-1 and 
other factors, leading to the accumulation of ROS and the 
occurrence of ferroptosis (Christova and Templeton 2007; 
Feng et al. 2021b). Multiple pathways are activated dur-
ing this process, such as Nrf2/HO-1 signaling pathway 
(Liu et al. 2021b), p53/TfR1 pathway (Tang et al. 2021), 
Nrf2-Mediated Stress-Defense Pathway (Tao et al. 2022), 
Nrf2/HIF-1/TF signaling pathway (Li et al. 2020c), Egr-1/
miR-15a-5p/GPX4/ferroptosis signaling pathway (Fan et al. 
2021b). Among these pathways, ROS, GPX4 and GSH are 
mainly affected, which cause ferroptosis.

Hypoxia mainly regulates HIF to regulate ferroptosis. 
Hypoxia enhances HIF-1 which up-regulated TfR and 
DMT1 to increase iron uptake, which effects the sensitiv-
ity of cells to ferroptosis (Xiong et al. 2022). Meanwhile, 
HIF-1 increases the transcription of SLC7A11 and HO-1, 
which both protect from ferroptosis through decreasing ROS 
and increasing GSH (Feng et al. 2021b; Lin et al. 2022). 
Moreover, it is reported that HIF-2 increases the expression 
of perilipin 2 (PLIN2) and hypoxia-inducible lipid droplet-
associated protein (HILPDA) to increase lipid accumula-
tion, oxidative stress, and then enhance ferroptosis (Sin-
ghal et al. 2021). The mechanism between HIF induced by 
hypoxia and ferroptosis remains largely unknown and needs 
further investigation. Furthermore, hypoxia inducing Nrf2 
plays an important effect in ferroptosis (Potteti et al. 2021). 
Hypoxia downregulates Nrf2 in mouse tubular epithelial 
cells (MTEC) to cause ferroptosis (Huang et al. 2022b). 
The down-regulation of Nrf2 induced by hypoxia leads to 
the unbalanced of intracellular oxidation and antioxidant 
system, and then results in the increase of intracellular ROS 
and finally causes ferroptosis (Wang et al. 2021c). Besides, 
hypoxia also increases the activity of Nrf2 which increases 
the expression of HO-1 to protect from ferroptosis (Liu et al. 
2021b; Wang et al. 2021c) (Fig. 2).

Additionally, hypoxia regulates ferritin, stearoyl-CoA 
desaturase 1 (SCD1), ELAV-like protein 1 (ELAVL1) and 
carbonic anhydrase 9 (CA9) to effect ferroptosis. Ferritin, 
composed with FTL and FTH1, stores intracellular Fe2+. 
Hypoxia induces FTL increasing, NCOA4 decreasing, FTH1 
increasing (Fuhrmann et al. 2020; Liu et al. 2020a; Chen 
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et al. 2023). They are the main regulators of ferritin. Hypoxia 
decreases the expression of NCOA4 which mediate the deg-
radation of ferritins, and then increases iron storage to pro-
tect cells from ferroptosis (Fuhrmann et al. 2020; Ni et al. 
2021). Increasing expression of FTH under hypoxia pro-
tects cells from ferroptosis (Fuhrmann et al. 2020). Hypoxia 
increases FTL under hypoxia, mainly storing Fe2+, reducing 
intracellular Fe2+ and inhibiting ferroptosis (Consoli et al. 
2022; Chen et al. 2023). Moreover, hypoxia increases the 
expression of SCD1 which decreases ferroptosis through 

ferroxidase activity and generates monounsaturated fatty 
acid (MUFA) to protect from ferroptosis (Gao et al. 2021; 
Luis et  al. 2021). MUFA inhibits ferroptosis by down-
regulating transferrin receptor to reduce intracellular iron 
content (Qi et al. 2022). Additionally, hypoxia induces the 
expression of ELAVL1 which activates the ferritinophagy 
and then promotes ferroptosis (Chen et al. 2021b). ELAVL1 
binds to SLC7A11 mRNA and maintains its stability. High 
expression of SLC7A11 inhibits ferroptosis by transporting 
cysteine (Lin et al. 2022).

Fig. 1   The regulatory pathways of ferroptosis

Fig. 2   Hypoxia regulates HIF-1 
and Nrf2 to regulate ferroptosis



3334	 Cellular and Molecular Neurobiology (2023) 43:3329–3341

1 3

Furthermore, it is reported that hypoxia increases CA9 
which blocks ferritin-mediated iron storage and increases 
lipid peroxidation by inhibiting to reduce oxidative stress 
and then ferroptosis (Li et al. 2019b). In addition, epigenetic 
modification plays an important role in regulating ferroptosis 
under hypoxia. Gene methylation is involved in the regula-
tion of hypoxia on ferroptosis. CBSmRNA -destabilizing 
lncRNA (lncRNA-CBSLR) induced by hypoxia integrated 
with YTH domain family protein 2 (YTHDF2) to decrease 
CBSmRNA stability, reducing the methylation of the Acyl-
CoA synthetase long-chain family member 4 (ACSL4) and 
leading to degradation of ASCL4, which is conducive to 
protect gastric cancer (GC) cells from ferroptosis (Yang 
et al. 2022a). In the hypoxia environment caused by I/R, 
USP7 inhibition promotes DNM-1 mediated methylation of 
FMR1 to inhibit ferroptosis, attenuating I/R-induced renal 
injury(Dong et al. 2022).In addition, miRNA is involved in 
the regulation of ferroptosis by hypoxia. Hypoxia induces 
miR-214-3p upregulated to enhance ferroptosis through 
inhibiting malic enzyme 2 (ME2) in neonatal rat cardiomyo-
cytes (NRCMs) (Liu et al. 2023). LncRNA also is involved 
in the regulation of ferroptosis caused by hypoxia. Hypoxia 
induces lncRNA-PMAN overexpression, and then leads to 
the stability of SCL7A11 improved, eventually inhibiting 
ferroptosis (Lin et al. 2022). At present, the relationship 
between epigenetic modification and ferroptosis needs more 
reaches to be further explored.

Ferroptosis and Hypoxic Diseases

Ferroptosis and Myocardial Ischemia–Reperfusion 
Injury (MIRI)

MIRI refers to the cardiac function damage resulted from 
recovery of blood supply in a short time after partial or total 
myocardial coronary artery occlusion, which often occurs 
in acute myocardial infarction, coronary heart disease (Abu-
dunaibi et al. 2015; Dong et al. 2019; Li et al. 2021b).

Hypoxia caused by ischemia induces calcium overload 
which may lead to mitochondrial dysfunction and thus 
induce cardiomyocyte ferroptosis (Jiang et al. 2016). Cyto-
solic calcium overload increases mitochondrial uptake of 
calcium ions, and then causes the mitochondrial perme-
ability transition pore (MPTP) opened, which impaired 
ATP synthesis, mitochondrial swelling, and ROS increased 
(Kwong 2017). Calcium overload-induced mitochondrial 
dysfunction leads to ROS increased to induce ferroptosis. 
Increased ROS leads to ferroptosis through generating Fen-
ton reaction decreasing GPX4 and Nrf2, and decreasing 
HIF-1 caused by hypoxia. Meanwhile, hypoxia damages 
the mitochondrial electron transport chain (ETC), and then 
increases the ROS to induce ferroptosis (Zhao et al. 2023). 

Moreover, HIF overactivation caused by hypoxia upregu-
lates TfR expression and then causes iron overload during 
MIRI, which ultimately induces ferroptosis (Zhang et al. 
2019). Accordingly, calcium overload, excessive of ROS, 
and iron overload induced by HIF result in the occurrence 
of ferroptosis. Consequently, ferroptosis is closely related to 
cardiomyocyte damage under hypoxia in MIRI.

Ferroptosis and Ischemic Stroke (IS)

IS is mainly caused by focal cerebral ischemia and hypoxia is 
induced by cerebral blood flow obstruction (Xu et al. 2022). 
Hypoxia induced by IS increases the expression of ferritin 
and TfR1, and then leads to increase of iron uptake by neu-
rons, which resulting in increase of iron in cells, and then 
ferroptosis occurs (Lan et al. 2020). Meanwhile, the absence 
of ceruloplasmin under hypoxia condition may effect iron 
metabolism and increase oxidative damage, which is con-
ductive to cause iron accumulation-induced ferroptosis 
(Ryan et al. 2018).

It is reported that increased glutamate under hypoxia 
leads to ferroptosis through disrupting intracellular iron 
homeostasis to injury the brain (Li et al. 2017). In addition, 
accumulation of glutamate inhibits cystine by inhibiting sys-
tem Xc-, and then decreases GSH, subsequently promot-
ing ferroptosis through ATF4-mediated ferroptotic genes in 
IS (Speer et al. 2013). Oxidative stress induced by hypoxia 
causes excessive ROS accumulation to induce Nrf2 activa-
tion, then increases GSH, SCL7A11 and GPX4 to protect 
cells from ferroptosis in IS (Kwak et al. 2002; Shibata and 
Kobayashi 2008; Dodson et al. 2019). Meanwhile, increased 
glutamate under hypoxia also increases ROS to active Nrf2, 
which inhibits ferroptosis (Shibata and Kobayashi 2008).

The regulations associated with ferroptosis in IS are 
shown in Fig. 3.

Ferroptosis and Neurodegenerative Disorders

Neurodegenerative disorders are mainly present that the 
progressive loss of selectively vulnerable populations of 
neurons leads to abnormal cognitive behaviors of patients, 
which is common in Alzheimer’s disease (AD), Parkinso-
nian disorders (PD), Amyotrophic lateral sclerosis (ALS), 
and so on. Studies suggest that hypoxia causes the reduction 
of ATP synthesis and the generation of ROS damage cells, 
and then leads to the dysfunction of mitochondrial and the 
disorder of oxidative phosphorylation, resulting in ferropto-
sis in neurodegenerative disorders (Marques et al. 2017). AD 
is a common neurodegenerative disorder that is related with 
ferroptosis (Bao et al. 2021). Reduction of cerebral blood 
flow causes hypoxia in AD and the hypoxia may activate the 
Toll-like receptor 4 (TLR4) pathway, and then decrease the 
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levels of SLC7A11 and GPX4, thereby leading to ferroptosis 
(Kimura et al. 1991; Lang et al. 2019).

Ferroptosis and Acute Kidney Injury (AKI)

AKI is a clinical syndrome caused by rapid decline of 
renal function in a short time due to various reasons (Li 
et al. 2021a). Hypoxia caused by blood flow interruption 
is the main cause of AKI, which is related to ferroptosis 
(Longo et al. 2017). Hypoxia may lead to the up-regulation 
of ELAVL1which is interact with cold-induced RNA bind-
ing protein (CIRBP), and then activate ferritinophagy to 
result in ferroptosis (Sui et al. 2021). In addition, hypoxia 
down-regulates Nrf2 and upregulates SLC7A11 to result in 
occurrence of ferroptosis (Huang et al. 2022b). Meanwhile, 
hypoxia increases ROS and prevents autophagy of GPX4 to 
induce ferroptosis in AKI (Chen et al. 2021a). Accordingly, 
the ferroptosis may be involved in AKI through hypoxia. 
However, more researches are needed to explore the relation-
ship between ferroptosis and hypoxia in AKI in the future.

Ferroptosis and Cancers

Cancer mortality is high, but the mechanism is unclear. 
Accumulating evidence shows that the occurrence of cancer 
is related to ferroptosis, ferroptosis is inhibited in hepato-
cellular carcinoma, pancreatic cancer, gastric cancer and 
other cancers. SLC7A11 is upregulated by BRCA1-asso-
ciated protein 1 (BAP1) inactivation in cancer cells, which 
increases the uptake of cystine and the synthesis of GSH 
to develop the growth of cancer by inhibiting ferroptosis 
(Zhang et al. 2018). SLC7A11 is overexpressed to inhibit 
ferroptosis in lung cancer cells and pancreatic ductal ade-
nocarcinomas (PDACs) (Badgley et al. 2020; Wang et al. 
2021a). P53 promotes ferroptosis by repressing SCL7A11 

to inhibit cancer development (Liu et al. 2020b). Besides, 
the relationship between cancer and ferroptosis is connected 
with hypoxia.

Hypoxia causes hypoxia regions on account of poor 
blood flow in many solid tumors (Takahashi 2011; Li 
et al. 2021d). It is reported that hypoxia is related to the 
relationship between SLC7A11 and ferroptosis. Hypoxia 
increases ELAVL1 by HIF-1 upregulation, and ELAVL1 
then combines with SLC7A11 to improve the expression 
of SLC7A11, thereby promoting cancer cells growth by 
inhibiting ferroptosis (Lin et al. 2022). Meanwhile, hypoxia 
increases SLC7A11 by inhibiting methyltransferase-like 14 
(METTL14) to suppress ferroptosis by decreasing ROS, 
which promotes hepatocellular carcinoma (HCC) progres-
sion (Fan et al. 2021c). Additionally, hypoxia stimulates the 
activity of HIF-1 transcription which increases TfR1 and 
DMT1 to resist ferroptosis in cervical cancer (CC) cells 
(Xiong et al. 2022). However, iron regulator protein 1 (IRP1) 
may inhibit hypoxia-induced DMT1 and control intracellular 
iron levels to regulate ferroptosis in HepG2 cells (Christova 
and Templeton 2007). The mechanism between ferroptosis 
and cancer under hypoxia is still unclear, which needs to be 
explored.

Cancer stem cells (CSCs) have strong self-renewal, diffu-
sion and metastasis, and resistance to various forms of anti-
cancer therapy, which can easily lead to tumor recurrence 
(Katoh 2017). It is reported that the expression of transfer-
rin and TFR1 in CSCs are higher than non-CSCs, which 
illustrates that CSCs uptake more iron than non-CSCs from 
microenvironment (Schonberg et al. 2015). Thus, iron trans-
porting in CSCs is enhancing. More importantly, the increas-
ing of iron uptake caused by CD44 overexpression and the 
decreasing iron efflux caused by downregulating FPN in 
CSCs cause intracellular iron to be higher than non-CSCs. 

Fig. 3   Regulations associated with ferroptosis in ischemic stroke
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Ferroptosis in CSCs may be an excellent target therapy for 
cancer (Cosialls et al. 2021).

Hypoxia may promote cancer growth by inhibiting fer-
roptosis, which causes difficulties in cancer treatment. The 
effect of radiation on ferroptosis is mainly reflected in radio-
therapy. Radiotherapy is one of the important treatments 
for malignant tumors, and the induction of ferroptosis is 
also one of the important factors. Radiotherapy suppresses 
SLC7A11 via activating ATM and increases lipid oxidative 
to cause the ferroptosis of tumor cells (Lang et al. 2019). 
Owing to cancer under hypoxia, the effect of radiotherapy 
treatment is not significant (Su et al. 2022). However, fer-
roptosis may play an important role in cancer treatment. 
Sorafenib inhibits SCL7A11 to suppress cancer by induc-
ing ferroptosis (Li et al. 2022b). Hence, ferroptosis may be 
an effective targeted therapy for hypoxic cancer.

Ferroptosis and Other Hypoxia‑Related Diseases

Coronavirus disease-19 (COVID-19) is a new type of explo-
sive disease characterized by pneumonia and acute respira-
tory distress syndrome (ARDS) which is accompanied with 
hypoxia and leads to multiple organ failure (Beckman et al. 
2020; Jacobs et al. 2020). Hypoxia may antagonize the iron 
transporter which causes abnormal iron metabolism, and 
then leads to ferroptosis (Naidu et al. 2023). It is reported 
that hypoxia induced by COVID-19 may increase the fer-
ritin in circulation and cause iron deficiency which cause 
the occurrence of oxidative stress and lipid peroxidation, 
resulting in ferroptosis (Lechuga et al. 2021; Ondic et al. 
2021; Suresh et al. 2021; Wang et al. 2021b). Pneumonia is 
the primary caused by COVID-19. Pneumonia induced by 
COVID-19 causes atelectasis resulting in hypoxia (Rahman 
et al. 2021).

Intestinal I/R injury is another hypoxia-related disease. 
It is reported that hypoxia induced by Intestinal I/R injury 
decrease GPX4 activity and GSH levels, and then leads to 
ferroptosis (Deng et al. 2021). Moreover, hypoxia caused by 
intestinal I/R injury induces the expression of ACSL4 and 
the ACSL4 contributes to ferroptosis (Tarhan et al. 2011; Li 
et al. 2019a). However, the mechanism between ferroptosis 
and hypoxia caused by intestinal I/R injury needs further 
exploration.

Conclusions

Ferroptosis is caused by iron-dependent accumulation of 
lipid peroxidation and the increase of ROS. The related 
pathways between ferroptosis under hypoxia mainly include 
Nrf2/HO-1 signaling pathway, p62/Keap1/Nrf2 signaling 
pathway. The Nrf2/HO-1 signaling pathway is currently a 
research hotspot in hypoxia-related diseases. However, the 

relationship between the p62/Keap1/Nrf2 signaling pathway 
and ferroptosis in hypoxia-related diseases still needs fur-
ther research, and is a potential direction for future research. 
However, more researches on the signal pathways of fer-
roptosis under hypoxia are needed. Meanwhile, some fac-
tors also participate in the occurrence of ferroptosis under 
hypoxia, such as HIF-1, NCOA4, DMT1. Hypoxia-induced 
activation of HIF-1 has been shown to be closely related 
to ferroptosis. Because HIF-1 plays a role in ferroptosis in 
a context-dependent manner under hypoxia, the connec-
tion between HIF-1 and ferroptosis under hypoxia needs 
to be sorted out. Meanwhile, ferroptosis is related with 
hypoxia-related diseases, such as MIRI, cancers, and AKI. 
The research progress in ferroptosis and MIRI, IS, AKI, 
and cancers is rich, but research progress in ferroptosis and 
intestinal I/R injury still needs further study. In addition, 
hypoxic environment may inhibit the occurrence of ferrop-
tosis and promote cancers growth, resulting in the unex-
pected effect of radiotherapy. It is needed that find a way to 
use ferroptosis to maximize the effect of radiation therapy. 
Inducing ferroptosis in ferroptosis-prone CSCs by control-
ling iron accumulation may be an excellent targeted therapy. 
Accordingly, ferroptosis appears to be a therapeutic target 
for hypoxia-related diseases.
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