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Abstract
Prenatal exposure to anesthetics has raised increasing attention about the neuronal development in offspring. Animal models 
are usually used for investigation. As a new drug, esketamine is the s-isoform of ketamine and is twice as potent as the race-
mic ketamine with less reported adverse effects. Esketamine is currently being used and become more favorable in clinical 
anesthesia work, including surgeries during pregnancy, yet the effect on the offspring is unknown. The present study aimed 
to elucidate the effects of gestational administration of esketamine on neuronal development in offspring, using a rat model. 
Gestational day 14.5 pregnant rats received intravenous injections of esketamine. The postnatal day 0 (P0) hippocampus 
was digested and cultured in vitro to display the neuronal growth morphology. On Day 4 the in vitro experiments revealed 
a shorter axon length and fewer dendrite branches in the esketamine group. The results from the EdU- imaging kit showed 
decreased proliferative capacity in the subventricular zone (SVZ) and dentate gyrus (DG) in both P0 and P30 offspring brains 
in the esketamine group. Moreover, neurogenesis, neuron maturity and spine density were impaired, resulting in attenuated 
long-term potentiation (LTP). Compromised hippocampal function accounted for the deficits in neuronal cognition, memory 
and emotion. The evidence obtained suggests that the neurobehavioral deficit due to prenatal exposure to esketamine may 
be related to the decrease phosphorylation of CREB and abnormalities in N-methyl-d-aspartic acid receptor subunits. Taken 
together, these results demonstrate the negative effect of prenatal esketamine exposure on neuronal development in offspring 
rats.
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Graphical Abstract
G14.5 esketamine administration influenced the neurobehavior of the offspring in adolescence. Poorer neuronal growth 
and reduced brain proliferative capacity in late gestation and juvenile pups resulted in impaired P30 neuronal plasticity and 
synaptic spines as well as abnormalities in NMDAR subunits. Attenuated LTP reflected compromised hippocampal function, 
as confirmed by behavioral tests of cognition, memory and emotions. This figure was completed on the website of Figdraw.
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Introduction

It has been reported that nearly 2% of pregnant women 
undergo non-obstetric surgeries during pregnancy (Good-
man 2002; Ni Mhuireachtaigh and O'Gorman 2006). In 
Denmark, the total incidence of surgery during pregnancy, 
including obstetric and non-obstetric surgery, is as high 
as 7% (Rasmussen et al. 2019). The US Food and Drug 
Administration  (FDA) has called for more attention to 
perinatal anesthetic use (http://​www.​fda.​gov/​Drugs/​DrugS​
afety/​ucm53​2356.​htm), although clinical human research is 
scarce. Ing et al. reported increased externalizing behav-
ioral problems in childhood due to prenatal exposure to 
general anesthetics(Ing et al. 2021), which again aroused 
immediate concern for anesthesiologists, surgeons, and 
families(Fardelmann and Gaiser 2021).

Most of the research on the effects of prenatal exposure to 
anesthetics on offspring was based on animal models, such 
as the rat, mouse, rabbit (Van der Veeken et al. 2019), and 
rhesus macaque (Brambrink et al. 2012). Different anesthet-
ics may exhibit different effects, either positive or negative. 
Prenatal exposure to sevoflurane was reported to inhibit fetal 

neural stem cell proliferation (Wang et al. 2018), neuronal 
migration and axon growth (Chai et al. 2019, 2020), cause 
neuronal apoptosis(Zhang et al. 2017; Zheng et al. 2013) and 
a persistent imbalance of excitatory and inhibitory neurons 
in the medial prefrontal cortex (Zhao et al. 2020), leading 
to learning and memory deficits and anxiety-like behaviors. 
In contrast, dexmedetomidine could reverse sevoflurane-
induced toxicity (Shan et al. 2018). Similar negative effects 
of traditional ketamine were found as that of sevoflurane.

There are two optical isomers of the 2-(2-chlorophenyl)-
2-(methylamino)-cyclohexanone ketamine: S(+) ketamine 
and R(−) ketamine(Morgan et al. 2012). Ketamine was first 
applied to patients requiring surgery as a pretreatment or for 
sedation, and also for induction and maintenance of general 
anesthesia (Curran and Morgan 2000; Domino et al. 1965). 
In addition, a subanesthetic dose of ketamine is used for 
acute and chronic pain relief in anesthesiology, emergency, 
and cancer internal medicine departments (Allen and Ivester 
2018; Brinck et al. 2018; Gao et al. 2016; Mercadante et al. 
2000; Vadivelu et al. 2016). In addition to the anesthetic 
and analgesic effect of ketamine, the S-isomer, esketamine 
was found to have an antidepressive effect, especially for 

http://www.fda.gov/Drugs/DrugSafety/ucm532356.htm
http://www.fda.gov/Drugs/DrugSafety/ucm532356.htm
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patients with treatment-resistant depression (Canuso et al. 
2018; Daly et al. 2018; Shouan and Grover 2018; Singh et al. 
2016). Esketamine was approved to treat treatment-resist-
ant depression in 2019 by the US FDA (Cristea and Naudet 
2019), and was also approved by the Chinese National Medi-
cal Products Administration in 2020. Ketamine is water- and 
lipid-soluble, so it can be easily administered via various 
routes, such as intravenous, intramuscular, intranasal, oral, 
and rectal (Gao et al. 2016). Once unpopular due to its disso-
ciative side effects, ketamine is now back to its former glory 
thanks to the numerous medical effects it exerts through 
multiple pathways (Nowacka and Borczyk 2019).

Although ketamine is commonly used in clinical anesthe-
sia work for surgeries during pregnancy, anesthesiologists 
prefer to use esketamine after its approval for clinical use, 
as it has less adverse effects and a shorter recovery time than 
ketamine (Wang et al. 2019). Esketamine has a higher affin-
ity for the N-methyl-d-aspartic acid receptor (NMDAR) than 
ketamine, which may exert different effects on the offspring. 
Nevertheless, the effect of perinatal use of esketamine on the 
fetus and offspring is unknown.

In the current study, we aimed to clarify the effect of 
prenatal exposure to esketamine on offspring using a preg-
nant rat model. Neuronal development, including neuronal 
growth, proliferation and survival, as well as synaptogenesis 
were evaluated by morphological experiments. Electrophysi-
ological and neurobehavioral tests were performed to assess 
brain function.

Materials and Methods

Subjects

All experimental procedures were performed according to 
the guidelines that have been approved by the Ethics Com-
mittees of Jinan University, Guangdong, China (Approval 
number: IACUC-20201215-05). Animals were housed in 
cages in a temperature- and humidity-regulated room with 
a 12-h light/dark cycle and were allowed free access to water 
and food. All efforts were made to minimize the number of 
animals used. A total of 8 female and 4 male 8-week-old 
rats per group were used. One male and two female rats 
were housed in one cage for mating at the beginning. After 
vaginal plugs were detected in the morning, pregnant female 
rats were housed alone until delivery (1 pregnant rat in a 
cage). This day was marked as gestational Day 0.5 (G0.5).

Dams were used for experiments on gestational Day 14.5 
(G14.5) and were divided randomly into the esketamine 
group and the control group. Rats in the esketamine group 
were given a bolus dose of 20 mg/kg esketamine via the 
tail vein and then maintained with 20–30 mg/kg/h esketa-
mine for 2 h in a sedative state between light anesthesia and 

deep sedation, evidenced by a lack of voluntary movement, 
decreased muscle tone, and minimal reaction to painful stim-
ulation. The body temperature of the dams was maintained 
between 36.5 and 37.5 °C by a temperature-settled heat-
ing pad throughout the experiments. After recovery from 
the 2-h continuous intravenous infusion anesthesia, the rats 
were returned to their cages. On the contrary, dams in the 
control group received the intravenous injection of the same 
induction volume of normal saline and were then sent back 
(Fig. 1).

Two dams per group were injected with the 50 mg/kg 
5-Ethynyl-2ʹ-deoxyuridine (EdU) (APExBIO, Houston, 
USA, B8337) intraperitoneally at gestational Day 21.5 and 
were anesthetized with sevoflurane 12 h later, receiving a 
cesarean section if they had not delivered. Newborn postna-
tal Day 0 (P0) pup brains were collected for immunohisto-
logical examination of the EdU-positive test. The remaining 
dams were allowed to give birth naturally, and the day pups 
were delivered was recorded as P0. Four P0 pups per group 
were used for hippocampal neuron culture. A total of 6 pups 
(3 pups per dam and 2 dams per group, n = 3 × 2 = 6) were 
sacrificed for the extraction of protein and 6 for the extrac-
tion of RNA from the bilateral hippocampi on P0. The other 
pups were left to grow up under the breastfeeding of their 
mothers (no more than 6 pups per cage were kept with their 
mother) and were weaned on P21. Two to three offspring 
rats were housed in one cage from P21-P30. Behavioral tests 
were carried out on P24-29. At the same time, 6 pups per 
group received intraperitoneal injections of 50 mg/kg EdU 
daily on P27-29, and their brains were collected on P30 after 
euthanasia. Besides, at P30, 6 pups per group were sacrificed 
for extraction of protein and RNA respectively, and 3 pups 
per group were sacrificed for the Golgi staining test, while 
3 were sacrificed for long-term potential (LTP) evaluation 
of the brain slices.

Behavioral Test

Twelve pups per group were randomly selected for the Mor-
ris water maze (MWM) test on P24-29. Another 12 pups per 
group were randomly selected for the open field activity test 
(OFT) on P28 and the forced swimming test (FST) at least 
after a three-hour rest. The sucrose preference test (SPT) was 
performed on P28-29. To avoid possible behavioral biases, 
each behavioral test of the two groups of animals was per-
formed at the same time interval on the day of testing.

Morris Water Maze (MWM)

The MWM test was performed to assess spatial learning 
and memory in the animals. Rats were allowed to swim in 
a water tank 150 cm in diameter and 100 cm in height with 
a depth of 80 cm water, where an escape platform (15 cm 
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in diameter) was placed 1 cm below the water surface. The 
water temperature was maintained at 25 ± 1 °C and the rats 
were placed in the pool in one quadrant and allowed to swim 
for 1 min to search for the platform for four trials per day 
(beginning from the four quadrants). On the training day 
of P24-28, if the rat had not arrived at the platform in one 
minute, it was guided to the platform and left there for 30 s, 
and the escape time was recorded as 60 s. On P29, the plat-
form was withdrawn, and the rats were allowed to swim for 
one minute. Data were recorded with a video camera and 
analyzed with EthoVision XT 7.0 (Noldus).

Open Field Activity Test (OFT)

The open field activity test was applied to measure the gen-
eral locomotor activity and anxiety-like behaviors of the 
rats (Prut and Belzung 2003). On P28, pups were left in an 
apparatus (100 cm × 100 cm) with walls and a black back-
ground and were allowed to move freely for 10 min. The 
arena was cleaned with 75% ethanol after each trial. Data 
were recorded with a video camera and analyzed by Etho-
Vision XT 7.0 (Noldus). The duration of the center zone 
traveling was used to measure anxiety-like behaviors, and 

the total traveling distance and speed were used to measure 
locomotor activity.

Forced Swimming Test (FST)

The FST is regarded as a behavioral test of the depressive 
extent (Petit-Demouliere et al. 2005). After a three-hour rest 
period from the open field test, pups were placed in a trans-
parent cylinder (50 cm high and 15 cm in diameter) with a 
depth of 25 cm water which was maintained at 25 ± 1 °C. 
Pups were left to swim for 2 min to adapt to the environ-
ment and then another 5 min to swim, being recorded by a 
video camera connecting the EthoVision XT 7.0 software 
(Noldus). The immobile time of the pups was calculated. 
A variance of the movement of less than 20% was defined 
as immobile.

Sucrose Preference Test (SPT)

It is acknowledged that rodents prefer sweet food and bever-
ages when they have a choice between regular water and a 
sucrose solution (Goshen et al. 2008; Zhou et al. 2011). The 
ratio of sucrose consumption to the total intake is regarded 
as the taste preference, and generally speaking, less sucrose 

Fig. 1   Flowchart of the experiment protocols. Gestational Day 14.5 
(G14.5) dams (n = 8/group) were randomly divided into the esketa-
mine group or the control group and received injection of either 
esketamine or normal saline. At G21.5, 2 dams/group received EdU 
injection and cesarean section 12 h later. The newborn pups were sac-
rificed for brain collection. The other 6 dams were allowed to give 
birth naturally. At postnatal Day 0(P0), 4 pups from each group were 
sacrificed for hippocampal neuron culture. In addition, hippocampal 

RNA and protein were extracted at P0, respectively. The other pups 
were allowed to grow up and take the behavioral test. At P30, ado-
lescent pups were sacrificed for different sample extractions or LTP 
recordings. G gestational day, P postnatal day, EdU 5-ethynyl-2’-de-
oxyuridine, MWM Morris water maze test, OFT open field test, FST 
forced swimming test, SPT sucrose preference test, WB western blot, 
qPCR quantitative real-time PCR, IF immunofluorescence, LTP long-
term potentiation. This figure is completed on the website of Figdraw
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consumption reveals more severe anhedonia (Rygula et al. 
2005). At P28, pups were allowed alone in a cage with 2 
bottles, one containing 1% (wt/vol.) sucrose in double dis-
tilled water and one with double distilled water alone. They 
were left to adapt to the environment of the new cage and 
bottles until the next day. At P29, they were deprived of both 
water and food for 8 h. Then, they were given one bottle of 
regular water and one bottle of sucrose in an exchange posi-
tion for 1 hour. The pre- and post-weight of the two bottles 
were recorded, so that the consumption could be measured. 
Sucrose preference was quantified as the ratio of sucrose 
intake to total fluid intake.

Brain Slice Section Preparation

At P0 and P30, pups received transcardial perfusion with 
PBS and then 4% paraformaldehyde (4%PFA). The whole 
brain was separated from the cranium. The brain was post-
fixed with 4% PFA overnight and then dehydrated in 10%, 
20%, and 30% sucrose. The P0 brain was cut with a cryostat 
microtome (Thermo) into 14 µm/slice, while the P30 brains 
were cut with a sliding microtome (Leica) into 40 µm/slice.

Immunofluorescence

Brain sections were blocked with 3% bovine serum albu-
min and 10% donkey serum in 0.3% PBST (1X PBS with 
0.3% Triton-100) for 2 h. Then, the slices were incubated 
overnight with the primary antibody at 4 °C and washed for 
10-min ~ 3 times with 0.3% PBST, followed by a 2-h incuba-
tion with the secondary antibody at room temperature. The 
primary antibodies used in this study included anti-NeuN 
(1:1000, Abcam, 104224), anti-DCX (1:1000, Abcam, 
18723), and anti-beta III tubulin (1:1000, Abcam, 18207). 
Secondary antibodies used were as follows, donkey anti-
mouse 488 IgG (1:1000; Thermo Fisher, USA, A21202), 
and donkey anti-rabbit 546 IgG (1:1000; Thermo Fisher, 
USA, A10040). DAPI (1:1000; Cell Signaling Technology, 
4083) was used for staining the nucleus. The EdU-positive 
test was accomplished with the help of an EdU imaging 
kit (APExBIO, Houston, USA, K1076) according to the 
manufacturer’s protocol. Images were captured via a Zeiss 
LSM700 confocal microscope and Zeiss software.

Western Blot

Proteins were extracted using RIPA lysis buffer (Beyotime, 
P0013B) with protease and phosphatase inhibitor cocktail 
(Beyotime, P1045) on ice, homogenized via ultrasonication 

and centrifuged at 12,000×g for 15 min at 4 °C. The super-
natant was assessed using a BCA assay kit (Beyotime, 
P0012) and then quantified to the same concentration with 
RIPA lysis buffer and loading buffer (Beyotime, P0015) and 
boiled at 100 °C for 10 min. Samples were then separated 
on an 8 to 12% SDS-PAGE gel (Beyotime, P0012A) and 
transferred to polyvinylidene fluoride (PVDF) membranes 
(Merck Millipore). Membranes were blocked with 5% BSA 
in 0.1% TBST (TBS with 0.1% Tween 20) for two hours 
at room temperature and then incubated with the primary 
antibodies overnight at 4 °C. After three 10-min washes in 
0.1% TBST, the membranes were incubated with secondary 
antibodies for 2 h at room temperature and then washed 3 
times. The blots were visualized with a ChemiDoc Touch 
Imaging System (Bio-Rad) and quantified using ImageJ.exe. 
The primary antibodies were: anti-BDNF (1:1000, Abcam, 
ab108319), anti-SY38 (1:500, Abcam, ab8049), anti-PSD95 
(1:1000, CST, 3450), anti-p-CREB (1:500, CST, 9198), anti-
CREB (1:1000, PTM, 5595), anti-NR1 (1:1000, Millipore, 
05-432), anti-NR2A (1:1000, Millipore, 07-632), anti-NR2B 
(1:1000, Millipore, 06-600), anti-β-tubulin (CST, 2146). The 
secondary antibodies were HRP goat anti-rabbit (1:5000, 
Abcam, ab6721) and HRP goat anti-mouse (1:5000, Abcam, 
ab6789).

qPCR

Total RNA was extracted using TRIzol (Invitrogen, Carls-
bad, CA) reagent following the manufacturer’s guidance and 
then assessed by Nanodrop 2000 (Nanodrop, USA). One 
microgram of RNA was reverse transcribed into cDNA using 
HiScript II Q RT SuperMix for qPCR (Vazyme, R223-01, 
China). qPCR were performed with TB green Premix Ex 
Taq II (Takara, RR820A, Japan) using a Bio-Rad CFX96 
machine. The primers are listed in Table 1.

Table 1   qPCR primers used in this study

Primer

BDNF Forward TCC​ATT​CAG​CAC​AAG​GGT​CC
Reverse CAC​TAA​CAC​ATT​CGC​GCT​GG

Dlg4 Forward ACT​ACT​CCT​CGT​CGG​CTG​AA
Reverse GGC​TGT​AGC​CAG​AAA​GTC​CATC​

SYP Forward TCC​TGT​ACC​CTC​TGC​TGT​GT
Reverse GCA​CAG​GAA​AGT​AGG​GGG​TC
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Golgi Staining

P30 rat brains were processed and stained using the FD 
rapid Golgi Stain Kit (FD Neurotechnologies, Inc, PK401). 
According to the manufacturer’s protocol, well-stained indi-
vidual neurons in the CA1 or CA3 area were selected for 
three-dimensional reconstruction, and dendrite analysis was 
performed with the help of image J. Images of ten segments 
of dendrites per animal were acquired with a 63X objective 
Zeiss microscope.

Cell Culture

The Hippocampi of the P0 pups were dissociated with 
0.125% trypsin, and the reactions were stopped by fetal 
bovine serum (FBS). After centrifugation at 1000 rpm for 
3 min, the samples were suspended in DMEM F12 and 
seeded on 6-well plates precoated with poly-l-lysine hyd-
robromide (Solarbio, P8130). Neurons were cultured with 
10% FBS in DMEM F12 for the first 8 h, and then the cul-
ture medium was changed to Neurobasal with 2% B27. Half 
of the culture medium was changed 48 h later. On Day 4 
in vitro, plates were fixed with 10% PFA, followed by immu-
nofluorescence staining for βIII tubulin.

Electrophysiology

Hippocampal slices (300 µm) were prepared from the P30 
pup brains, immediately incubated at 32 °C for 30 min 
and maintained at 26 °C for 1 h as described previously 
(Toni et al. 1999). The slices were then placed in a record-
ing chamber at 25 °C and perfused with oxygenated artifi-
cial cerebrospinal fluid (ACSF) containing 126 mM NaCl, 
2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM 
glucose, 2 mM CaCl2, and 2 mM MgSO4 at a rate of 1 ml/
min. A glass electrode filled with ACSF (2–3 MΩ) was 
placed in the CA1 area to record the field excitatory post-
synaptic potential(fEPSP). The Schaffer collateral pathway 
was stimulated every 30 s using concentric bipolar elec-
trodes. The theta burst stimulation (TBS) protocol (four 
pulses of 100 Hz repeated three times at 5 Hz, and a 20 s 
intertrain interval) was used to induce LTP. Field potentials 
were amplified, lowpass filtered (MultiClamp 700B, Axon 
Instruments), and digitized, and the data were analyzed 
using Clampex software (Axon Instruments).

Statistical Analysis

All data are presented as the mean ± SEM. Homogene-
ity of variance was verified using Levene's test, and then 
a single comparison between both groups was made using 
an unpaired two-tailed Student’s t test with the help of 

GraphPad Prism software 8.0.1. P < 0.05 was considered 
significant.

Results

(1)	 Gestational administration of esketamine impaired the 
growth status of the P0 cultured neurons.

We used a rat model to investigate the effect of general 
anesthesia during pregnancy on the offspring. On gestational 
day 14.5, pregnant rats were injected with esketamine via 
the tail vein for anesthesia induction and maintenance. To 
study the growth status of postnatal neurons after delivery, 
we cultured neurons from the P0 hippocampus. On Day 4 
of the in vitro experiment, the cultured neurons were fixed 
with PFA and then cultivated with beta III tubulin primary 
antibody overnight to visualize the neuronal cytoskeleton. 
The imaging (Fig. 2) revealed that the axons of the neu-
rons from the esketamine group were significantly shorter 
than those from the control group (t test, 134.8 ± 10.5 µm 
vs. 93.5 ± 10.6 µm, P = 0.011). Moreover, the number of 
dendrite branches was much smaller (t test, 5.4 ± 0.5 vs. 
8.3 ± 0.8, P = 0.003). Hippocampal neurons cultured from 
the esketamine group pups seem to be less robust in axonal 
growth and dendrite branches number increase.

(2)	 Gestational administration of esketamine impaired the 
proliferative capacity of the offspring’s brain.

As the subventricular zone(SVZ) and the dentate 
gyrus(DG) of the hippocampal formation are acknowledged 
to produce new neurons (von Bohlen und Halbach 2011), we 
focused on the exploration of EdU-positive neurons in these 
two areas. As shown in Fig. 3, the number of EdU-positive 
neurons in the SVZ and DG in the esketamine group was 
significantly reduced compared to that in the control group 
in P0, suggesting an impaired proliferative potential caused 
by esketamine from midgestation to the end of pregnancy. 
Moreover, P30 EdU-positive images showed similar results 
that the esketamine group had significantly fewer EdU-pos-
itive cells in both the SVZ and DG than the control group. 
The above results indicated that the impaired proliferation 
of the brain may last until adolescence in rats.

(3)	 Gestational administration of esketamine influenced the 
neuronal plasticity of the offspring brain in adolescent 
rats.

Neuronal plasticity is reflected by the addition of new and 
functional neurons as well as dendritic spines (von Bohlen 
Und Halbach and von Bohlen Und Halbach 2018). To 
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display the neurogenesis and maturity of the brain in adoles-
cent rats directly, we performed immunofluorescence tests of 
DCX and NeuN as well as Golgi staining in P30 brain slices. 
DCX marks the newly emerging neurons in the hippocampal 
dentate gyrus (Brown et al. 2003), reflecting neurogenesis. 
Figure 4A–C shows that the number of DCX-positive cells 
in the dentate gyrus was significantly reduced in the esketa-
mine group (t test, 346 ± 9 vs. 387 ± 9 cells/mm2, P = 0.012). 
Besides, NeuN is a marker of mature neurons (Duan et al. 
2016), and Golgi staining is one of the most effective tech-
niques for studying the morphology of neuronal dendrites 
and dendritic spines(Du 2019). We found that the number of 
mature neurons in the esketamine group could not reach the 
corresponding level in the control group, either in the CA1 
or in the CA3 region (t test, CA1 3943 ± 203 vs. 5773 ± 352 
cells/mm2, P = 0.001; CA3 3622 ± 377 vs. 4837 ± 158 cells/
mm2, P = 0.014) (Fig. 4D–I). In addition, the spine density 
(Fig. 4J–L) decreased significantly in the esketamine group 
(t test, 6.5 ± 0.5 vs. 8.3 ± 0.4 /10 µm, P = 0.039). Morpho-
logical studies of the P30 hippocampus revealed impaired 
neuronal and synaptic plasticity.

(4)	 Mechanism of the impaired neuronal development.

The hippocampus is composed of the cornu ammonis 
(areas CA1–CA3), the dentate gyrus (DG) and the subicular 

complex (Squire and Zola 1996). Impaired neuronal plastic-
ity may indicate weakened hippocampal function and synap-
togenesis. As brain-derived neurotrophic factor (BDNF) is a 
key element in hippocampal function (Leal et al. 2017; von 
Bohlen Und Halbach & von Bohlen Und Halbach, 2018), 
and synaptogenesis relies on synaptic proteins (Petzoldt and 
Sigrist 2014), we detected the relative mRNA and protein 
levels of BDNF, synaptophysin (SY38) and postsynaptic 
density 95 (PSD95). Figure 5A–C shows that the mRNA 
and protein levels of BDNF, SY38 and PSD-95 decreased 
significantly in both the P0 and P30 hippocampus.

Considering that the increased spine densities and forma-
tion of new and mature functional synapses play a crucial 
role in Long-term potentiation (LTP) (Toni et al. 1999), we 
performed the LTP test on P30 brain slices of the pups. The 
results showed that LTP was attenuated in the hippocam-
pus of the pups from the esketamine group. The normal-
ized fEPSP slope (last 20 min) (Chen et al. 2022) for hip-
pocampal slices decreased significantly (t test, 138.3 ± 8.1 
vs. 189.6 ± 20.8, P = 0.044) (Fig. 5D–E).

In addition, because synaptic development could be mod-
ulated by NMDA receptors (Pagano et al. 2021), we detected 
the P30 hippocampal NR1, NR2A, and NR2B subunits 
using western blotting (Fig. 5F). The results showed that 
the NR1 level did not differ between the two groups. How-
ever, NR2A and NR2B expression decreased significantly in 

Fig. 2   Morphology of the neurons on Day 4 in  vitro. The P0 hip-
pocampus was digested and seeded in the medium for neuron cul-
ture. Four pups from 2 different dams were used, and the hippocam-
pal neurons were seeded in 3 wells for each pup (n = 12). Thus, there 
were 12 wells in each group. On Day 4 in  vitro, cultured neurons 
were fixed with PFA and then incubated with beta III tubulin pri-
mary antibody overnight. Three neurons from every well were used 

for analysis. The axons of the neurons from the esketamine group 
were significantly shorter than those from the control group (t test, 
134.8 ± 10.5 µm vs. 93.5 ± 10.6 µm, P = 0.011). Moreover, the num-
ber of the dendrite branches was much smaller (t test, 5.4 ± 0.5 vs. 
8.3 ± 0.8, P = 0.003). Data are shown as the mean ± SEM. *P < 0.05, 
and **P < 0.01. Scale bar: 10 µm
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the esketamine group in the P30 hippocampus. The CREB 
signaling pathway was reported to enhance neurogenesis 
and improve cognitive function (Cohen and Greenberg 
2008; Lonze and Ginty 2002). We found that phosphoryl-
ated CREB, the active functional form, was expressed at 
lower levels in the hippocampus at both P0 and P30 in the 
esketamine group.

(5)	 Impaired neuronal development induced behavioral 
deficiency.

The hippocampus is crucial for cognition, memory and 
emotion (Anacker and Hen 2017). Therefore, we performed 
the following behavioral tests for spatial memory and mood 
disorder assessment. Twelve pups/group received 5 days of 
MWM training with a platform in the pool on P24-28 and 
were tested on P29 with platform withdrawn (Fig. 6A–E). 
On day 3/4/5, the mean time to platform of offspring rats in 
control group is 26.7 s/18.1 s/16.0 s, while that in esketa-
mine group is 46.2 s/42.4 s/29.3 s, with remarkable signifi-
cance (P < 0.0001, P < 0.0001, P < 0.001). Moreover, the 
target quadrant duration was shorter (t test, 24.7 ± 1.4 s vs. 
33.8 ± 0.9 s, P < 0.001) and the number of platform crossings 
was lower (t test, 1.6 ± 0.2 vs. 2.4 ± 0.2, P = 0.002) on the test 
day in the esketamine group. The swimming velocity of rats 
was 20.61 cm/s in the control group and 21.28 cm/s in the 
esketamine group, indicating that the physical mobility was 
similar between the two groups. On P28, another 12 pups 
were tested in the open field (Fig. 6F–I). The traveling dura-
tion in the center zone of the pups was significantly shorter 
in the esketamine group (t test, 14.7 ± 2.0 s vs. 20.6 ± 2.0 s, 
P = 0.046). The velocity and travelled distances were not 
significantly different between the two groups, indicating 

similar physical mobility. After 3 h of rest, the pups were 
left in the swimming pool for 2 min of adaptation and 5 min 
of forced swimming test. Rats in the control group were 
struggling most of the time, while those in the esketamine 
group remained floating. The immobile time was longer in 
the esketamine group (t test, 270.9 ± 2.7 s vs. 263.9 ± 1.6 s, 
P = 0.036). On the evening of P28, pups were left in inde-
pendent cages with one pure water bottle and one 1% sucrose 
bottle and food. Then, they were fasted for 8 h on the next 
day and given pure water and sucrose for a 1-h test. Sucrose 
preference was significantly lower in the esketamine group 
(0.73 ± 0.04 g vs. 0.86 ± 0.03 g, P = 0.017). Offspring rats in 
the esketamine group behaved more badly than the control 
group.

Discussion

Our current study revealed that G14.5 esketamine admin-
istration influenced the neurobehavior of the offspring in 
adolescence. Poorer neuronal growth was revealed in the P0 
hippocampal neuron culture in the esketamine group. Brain 
proliferative capacity in late gestation and juvenile pups was 
reduced in the esketamine group, resulting in impaired P30 
neuronal plasticity and fewer synaptic spines. Attenuated 
LTP reflected compromised hippocampal function, as con-
firmed by behavioral tests of cognition and memory as well 
as emotional assessment.

Evidence from the clinical anesthesia indicated that 
esketamine is superior to ketamine, owing to the following 
reasons. First, the anesthetic effect of esketamine is twice 
as potent as racemic ketamine (Adams and Werner 1997; 
White et al. 1985). Second, due to the higher anesthetic 
effect, the lower dose needed reduces the dose-dependent 
side effects of the drug, such as hallucination (Bowdle et al. 
1998) and cognitive impairment (Pfenninger et al. 2002). 
Third, the elimination of esketamine is faster than ketamine 
(Wang et al. 2019), which makes it more favorable for use in 
anesthesia as it can be better controlled (Adams and Werner 
1997). Esketamine offers a shorter recovery time rather than 
ketamine (Wang et al. 2019; White et al. 1985).

To the best of our knowledge, there is no existing lit-
erature comparing the prenatal/perinatal use of esketamine 
with ketamine, neither in human nor animal research. How-
ever, previous researchers have focused on the prenatal use 
of ketamine on the neurodevelopment in offspring. Keta-
mine impaired the offspring's postnatal neurogenesis when 
administered in G14.5 pregnancy and it also led to neuronal 
apoptosis (Zhao et al. 2016, 2014), cognitive dysfunction 

Fig. 3   EdU-positive cells in the SVZ and DG, both in P0 and P30. 
G21.5 pregnant rats (n = 2) received an intraperitoneal injection of 
50 mg/kg EdU once and received a cesarean section 12 h later. Three 
P0 brains from each dam (n = 6) were collected for the EdU-positive 
test. In addition, pups received intraperitoneal injections of 50  mg/
kg/d EdU on P27-29 and were sacrificed on P30 for brain collec-
tion (n = 6). A–H are representative images of the P0 EdU-positive 
results, of which E–H are the enlarged views. I–J were quantitative 
analyses of P0 EdU-positive cells in the SVZ and DG, respectively. 
Significant differences were found between the two groups (t test, 
Esketamine vs Control: SVZ 1321 ± 69 vs. 1661 ± 92 cells/mm2, 
P = 0.014; DG 668 ± 60 vs. 929 ± 58 cells/mm2, P = 0.011). K-N are 
representative images of the P30 EdU-positive results, and quantita-
tive (O, P) analysis showed remarkable differences (t test, Esketa-
mine vs. Control: SVZ 481 ± 7 vs 558 ± 24 cells/mm2, P = 0.010; 
DG 75 ± 5 vs. 106 ± 9 cells/mm2, P = 0.011). Data are shown as the 
mean ± SEM. *P < 0.05. Scale bar: A–D: 200 µm; E–H: 100 µm; K–
N: 20 µm

◂
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and mood disorder via the BDNF/CREB pathway (Li et al. 
2017b) and neurotoxic effect through Wnt/β-catenin path-
way (Zhang et al. 2020). Cellular proliferative inhibition 
was dose-dependently related to prenatal ketamine expo-
sure (Dong et al. 2016). Esketamine has a higher affinity for 
NMDA receptors than ketamine and requires a lower dose 
in clinical work, which may exert different effects on the off-
spring. Our results showed reduced brain proliferative capac-
ity and neuronal growth in offspring, which is consistent 
with previous research on ketamine (Dong et al. 2012; Zhao 
et al. 2014). In addition, a decrease in spine density was 
found in the hippocampal region of the offspring, which is 
similar to the results of the ketamine study. The hippocampal 
NR1 level remained unchanged in ketamine researches (Ren 
et al. 2019; Zhao et al. 2014), the same as what we found 
in esketamine study. However, Zhao et al. found increased 
NR2A but decreased NR2B in the hippocampi of offspring 
with prenatal exposure to ketamine, and we found decreases 
in both NR2A and NR2B levels in offspring with prenatal 
exposure to esketamine. Similar neurobehavior was found 
in our esketamine study and other ketamine research, such 
as a longer escape latency in the MWM (Li et al. 2017a; 
Zhao et al. 2014) and less explorative performance in the 
OFT (Coronel-Oliveros and Pacheco-Calderon 2018) and 
increased immobile time in the FST (Coronel-Oliveros 
and Pacheco-Calderon 2018; Zhao et al. 2014) as well as 
decreased sucrose preference (Zhao et al. 2014).

The BDNF-CREB pathway has been widely acknowl-
edged to be essential for memory and cognition (Cohen and 
Greenberg 2008; Egan et al. 2003; Hariri et al. 2003). Our 

results showed that the BDNF-CREB pathway in the hip-
pocampi of the offspring was weakened in the esketamine 
group. BDNF, as an anterograde and retrograde neurotrophic 
factor, can be secreted from the cell body, dendrite, or axon 
in response to neuronal depolarization, and then be relieved 
from both axons and dendrites in response to excitatory 
synaptic activity (Benarroch 2015). BDNF promotes the 
survival and differentiation of neurons and induces neurite 
outgrowth during the development of the brain (Greenberg 
et al. 2009). As a self-amplifying autocrine signal, BDNF 
promotes axonal growth cone formation (Cheng et al. 2011; 
Yoshimura et al. 2005) and dendrite growth toward the adult 
pattern (Dijkhuizen and Ghosh 2005; Wirth et al. 2003), 
and triggers further secretion of BDNF (Cheng et al. 2011). 
Gestational administration of esketamine caused poor pri-
mary neuron growth in culture, with a shorter axonal length 
and fewer dendrite branches, which may be related to the 
decreased expression of BDNF. In addition, prenatal and 
postnatal proliferative capacity decreased, causing compro-
mised neuronal plasticity in offspring rats on P30, with a 
lower number of newly emerging neuronal cells and mature 
neurons.

BDNF contributes to the activity-dependent increase in 
the number and volume of dendritic spines at glutamatergic 
synapses, which is essential for maintaining LTP (Jawor-
ski et al. 2005; Tanaka et al. 2008). Our study showed that 
both morphology and function were influenced by the ges-
tational administration of esketamine, with decreased spine 
density and attenuated LTP. The CREB family of transcrip-
tion factors is the key mediator of the early phase of BDNF 
transcriptional autoregulation (Esvald et al. 2020). Previous 
studies showed that infusion of BDNF protein into the adult 
rat hippocampus results in transcription-dependent LTP via 
the phosphorylation of CREB (Messaoudi et al. 2002; Ying 
et al. 2002). CREB serine-133 phosphorylation is a reliable 
indicator for CREB activation and is involved in synaptic 
development, plasticity, and the pathogenesis of human 
disorders. Regulation of these activity-dependent genes has 
impact on cognitive development and function (Cohen and 
Greenberg 2008). Our results showed that the expression of 
phosphorylated CREB (p-CREB) was reduced in the esketa-
mine group, which is consistent with the observed attenua-
tion of long-term potentiation (LTP).

LTP is a persistent increase in synaptic strength, induced 
by repetitive activity during learning or experimentation 
(Alkadhi 2021). Synapses store information through con-
tinuous modification of their structure and molecular com-
position (Bosch et al. 2014). Synaptic transmission relies on 

Fig. 4   Morphology of the P30 brain slices. Naturally delivered pups 
grown to P30 were sacrificed for brain slice collection. A, B are 
images of the immunofluorescence staining for DCX (newly emerg-
ing neuron marker) in the dentate gyrus. Quantitative analysis (C) 
showed a significantly reduced number of DCX-positive cells in 
the esketamine group (n = 6) (t test, Esketamine vs. Control 346 ± 9 
vs. 387 ± 9 cells/mm2, P = 0.012). Additionally, the morphology 
showed longer and more branches (green arrow) in the control group 
(without quantification). D, E and G, H are images of the immuno-
fluorescence staining for NeuN (a mature neuron marker) in CA1 
and CA3 regions, respectively. F–I show a significant reduction in 
NeuN-positive cells in the esketamine group, both in CA1 and CA3 
(n = 6) (t test, Esketamine vs. Control CA1 3943 ± 203 vs. 5773 ± 352 
cells/mm2, P = 0.001; CA3 3622 ± 377 vs. 4837 ± 158 cells/mm2, 
p = 0.014). J–K are images of the Golgi-stained brain slices, while L 
is the quantitative result of the number of dendritic spines in every 
10 µm branches, with a significant difference (n = 3) (t test, Esketa-
mine vs. Control 6.5 ± 0.5 vs. 8.3 ± 0.4, P = 0.039). Data are shown 
as the mean ± SEM. *P < 0.05. Scale bar: A, B, D, E, G, H: 20 µm; 
J, K: 5 µm

◂
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Fig. 5   Mechanism of the 
impaired neuronal develop-
ment. P0 and P30 naturally 
delivered pups were sacrificed 
for extraction of hippocampal 
RNA and protein (n = 6 pups/
group respectively). A–C Show 
that the transcriptional and 
translational levels of BDNF, 
SY38 and PSD-95 all decreased 
significantly, in both the P0 and 
P30 hippocampus. LTP was 
attenuated in the pups from 
the esketamine group and the 
normalized fEPSP slope (last 
20 min) decreased significantly 
(n = 6, 3 pups/group and 2 
brain slices per pup used for 
recording) (t test, 138.3 ± 8.1 vs. 
189.6 ± 20.8, P = 0.044) (D, E). 
F shows that there was no dif-
ference in NR1 levels between 
the two groups, whereas NR2A 
and NR2B expression was 
significantly reduced in the 
esketamine group in the P30 
hippocampus. In addition, the 
phosphorylation of CREB was 
weakened in the esketamine 
group, at both P0 and P30 (G). 
Ctrl control group, Esk esketa-
mine group
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the fast, efficient and synchronous release of chemical neu-
rotransmitters in response to the action potential-dependent 
entry of extracellular calcium via voltage-gated channels 
(Cousin 2021), which is achieved with the help of mobile 
synaptic vesicles traveling to the postsynaptic membrane. 
Synaptophysin (SYP/SY38) is one of the most abundant car-
gos on synaptic vesicles (Cousin 2021), regulating at least 
two phases of endocytosis to ensure vesicle availability dur-
ing and after sustained neuronal activity (Kwon and Chap-
man 2011). Postsynaptic density 95 is the key protein of 
the postsynaptic membrane, especially in the hippocampus 
(Ladurelle et al. 2012). Synaptic proteins play an important 
role in the synaptic formation, remodeling, and function, 
thus providing synaptic stability during brain development 
(Li et al. 2017b). Our results showed that the expression of 
SY38 and PSD95 were lower in P0 and P30 offspring in 
the esketamine group, indicating impaired synaptic stability 
and function. Synaptic dysfunction may account for clinical 
signs of dementia and cognitive decline through the disrup-
tion of neuronal communication (Coleman et al. 2004).

LTP involves an increase in the cytoplasmic free calcium 
ion (Ca2+) concentration in postsynaptic neurons (Alkadhi 
2021), which is achieved through receptor channels such 
as the ionotropic glutamate receptor NMDAR. NMDAR 
interacts with many proteins of the postsynaptic density. 
Some of these proteins modulate glutamate receptor func-
tion, whereas others control their membrane insertion and 
removal. Therefore, the number of glutamate receptors at a 
synapse can be regulated through these interactions (Luscher 
and Malenka 2012). Hippocampal NMDARs can be dihet-
eromeric (GluN1/GluN2A and GluN1/GluN2B) or trihet-
eromeric (GluN1/GluN2A/GluN2B) (Shipton and Paulsen 
2014), so we detected NR1, NR2A and NR2B in the hip-
pocampi of P30 rats. We found that both NR2A and NR2B 
were expressed at lower levels in the esketamine group, 
while the NR1 level remained unchanged. A previous study 
showed that NR2A was increased in the hippocampi of off-
spring after prenatal exposure to ketamine, while NR2B 
decreased (Zhao et al. 2014), which is not completely con-
sistent with our results. To some extent, both studies did 
find abnormalities in the NR2A/NR2B subunits, which may 
influence the induction of LTP. In addition, changes in the 
quantity or subcellular location of these subunits could alter 
the basal state of a spine, and thus affect the future induction 
of plasticity (Shipton and Paulsen 2014).

Overall, BDNF quantity and NMDAR-dependent synap-
tic neurotransmission inducing LTP via the CREB phospho-
rylation are the structural fundamental to hippocampal func-
tion and is linked to memory and mood regulation. In rodent 
animal experiments, the Morris water maze is the classic test 
measuring spatial cognition and memory ability, while the 

open field test, sucrose preference test and forced swimming 
test are usually used for anxiety and depression assessment 
(Bannerman et al. 2014). Gestational administration of the 
NMDAR antagonist esketamine impaired the formation and 
function of the hippocampus, leading to a behavioral deficit 
in the offspring rats. To our knowledge, this is the first study 
concentrating on the effect of perinatal use of the S(+) iso-
mer esketamine on offspring brain development.

Due to there is no directly comparison between esketa-
mine and ketamine in prenatal anesthesia use, we could not 
draw a conclusion about which one is superior. Generally 
speaking, esketamine has higher potency and requests lower 
dose, which may cause fewer adverse effects. The short-term 
benefits of esketamine over Ketamine during the periopera-
tive period have been demonstrated in non-pregnant surgical 
patients. Hence, it is crucial to further investigate the poten-
tial long-term effects of esketamine, particularly in prenatal 
use, on offspring in future studies. Moreover, comparison of 
prenatal/perinatal use of ketamine and esketamine would be 
better for guiding the clinical decisions for pregnant patients.

There are several limitations of our study.
First, the esketamine dose we used on the pregnant rats 

was not equal to that used in clinical practice. According 
to the extrapolation principle between animals and humans 
(Reagan-Shaw et al. 2008), the esketamine dose in rats 
should be 3.1 mg/kg. However, clinical anesthesia work is 
usually achieved by multimodal anesthetic techniques with 
compound drugs. The single use of a clinical dose of esketa-
mine is not able to fully sedate/anesthetize the rats. There-
fore, considering that esketamine was twice as potent as ket-
amine (Domino 2010), and that the previously reported dose 
of ketamine in rats was 50 mg/kg intramuscularly (Green 
et al. 1981), whereas the previous dose of ketamine used 
in pregnant rats was 40 mg/kg intravenously (Zhao et al. 
2014), we chose 20 mg/kg esketamine intravenously for our 
study in pregnant rats. An excessive dose would inevitably 
lead to drug toxicity. Second, the 2-h anesthetic time during 
a 21–23 day pregnancy in rats is equivalent to 24–26 h in a 
human pregnancy (280 days), which is generally not realistic 
in clinical work. Excessive anesthetic exposure time causes 
side effects, as shown in our results.

Real-world human research, such as cohort studies, is 
needed, and multicenter research is better. However, anes-
thetic exposure in humans is usually accompanied by sur-
geries to cure diseases. The effects of the primary disease 
and surgery stress cannot be ignored. In this case, animal 
study designs could avoid the surgery procedure, and we 
indeed followed this rule, although modification of the 
study design is needed in future studies, such as reducing 
the anesthetic time. The subject of our study, esketamine, 
is not only an anesthetic but also one of the antidepressants. 



3018	 Cellular and Molecular Neurobiology (2023) 43:3005–3022

1 3

Therefore, clinical cohort studies of this drug in psychiatry 
may add some evidence to its use in anesthesia, and we 
expect coordinated drug research between the two fields to 
shed more light on the effects of esketamine administered 
during pregnancy on the offspring.

In summary, our findings suggest that maternal expo-
sure to esketamine affects neuronal development in off-
spring through decrease phosphorylation of CREB, lead-
ing to neurobehavioral deficits in rats.
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