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Abstract
Parkinson’s disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neu-
rons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology 
of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficien-
cies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the 
development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to 
ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to 
PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. 
Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative 
stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with 
high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and 
oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. 
Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate 
abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways 
like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways 
are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progres-
sion of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation 
of inflammatory signaling pathways.
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Abbreviations
AD	� Alzheimer’s disease
ANS	� Autonomic nervous system
BBB	� Blood brain barrier
CNS	� Central nervous system
GABA	� Gamma aminobutyric acid

NF-κB	� Nuclear factor kappa B
NLRP3	� Nod-like receptor pyrin 3
PD	� Parkinson’s disease
ROS	� Reactive oxygen species
SAH	� S-adenosyl-homocysteine
SN	� Substantia nigra

Introduction

Parkinson's disease (PD) is one of the second most com-
mon chronic degenerative brain motor disorders, next to 
Alzheimer’s disease (AD) (Blauwendraat et al. 2019; Batiha 
et al. 2022). One percent of people over the age of sixty 
have PD. Dr. James Parkinson first identified PD in 1817 
and described it as a shaking palsy (Kalia and Lang 2015). 
PD is a progressive disease due to dopaminergic neuron 
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loss in the substantia nigra (SN) with high dopamine defi-
ciency in the basal ganglion (Armstrong and Okun 2020; 
Al-Kuraishy et al., 2020). PD is characterized by motor and 
non-motor symptoms. The non-motor symptoms appear 
before the onset of motor symptoms for many years. Motor 
signs of PD include rigidity, resting tremors, bradykinesia, 
and walking difficulty (Lang et al. 2022). Apathy, sadness, 
anxiety, autonomic disorders, dementia, neuropsychiatric 
diseases, cognitive dysfunction, and sleep disturbances are 
the most common non-motor disorders in PD (Yang et al. 
2020). PD neuropathology is characterized by the deposition 
of α-synuclein in the SN, with the formation of Lewy bodies 
a hallmark of this disease (Church 2021).

Interestingly, the α-synuclein aggregation is not restricted 
to the SN but affects the entire brain, such as the autonomic 
nervous system (ANS) (Carapellotti et al. 2020). Further-
more, previous reports documented that the aggregation of 
α-synuclein is progressive for many years before the devel-
opment of a symptomatic period (Chen et al. 2019). In fact, 
the dorsal motor nucleus of the glossopharyngeal and vagus 
nerves is where -synuclein deposition first begins in the ANS 
before spreading to other parts of the brain (Norcliffe-Kauf-
mann 2019). Noticeably, in the prodromal phase, non-motor 
symptoms, including anosmia, constipation, sleep disorders, 
and depression, develop before dopaminergic degeneration 
in the SN (Durcan et al. 2019). Subsequent development 
of motor symptoms due to dopaminergic degeneration in 
the SN cognitive dysfunctions is promulgating due to the 
involvement of the temporal cortex (Kalia 2018).

Additionally, PD is tied to the development of several 
inflammatory and oxidative stress illnesses linked to the 

development of PD neuropathology (Yang et al. 2019). 
Different factors are involved in the pathogenesis of PD, 
including old age, genetic and environmental factors caus-
ing increasing deposition of α-synuclein and the formation 
of Lewy bodies (Rai et al. 2020a, Rai et al. 2020b; Rai et al. 
2021). In addition to dopaminergic neuronal loss in the 
SN and the onset of motor symptoms in PD, these changes 
cause microgliosis, mitochondrial failure, oxidative stress, 
and inflammation. Therefore, PD neuropathology is com-
plex and related to different factors (Yang et al. 2019; Kalia 
2018) [Fig. 1].

Due to lifestyle changes and personality disorders, PD 
patients are more likely to experience nutritional problems 
and a lack of specific vitamins, including folate, B6, and 
B12. Additionally, prolonged L-dopa therapy is linked to 
folate, B6, and B12 deficiency (de Lau et al. 2006; Christine 
et al. 2018). These nutritional disorders augment the level 
of Homocysteine in the blood, leading to hyperhomocyst-
einemia, which may play a role in the pathogenesis of PD. 
Therefore, this review aimed to find the potential role of 
hyperhomocysteinemia in the pathogenesis of PD regarding 
oxidative and inflammatory signaling pathways.

Homocysteine Pathway

Homocysteine is a sulfur and thio-containing amino acid 
[Fig. 2] produced by methionine demethylation through 
methionine demethylase, and is involved in the metabolism 
of methionine and cysteine (Smith and Refsum 2021).

Fig. 1   Neuropathology of Parkinson’s disease
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Homocysteine is mainly produced from methionine 
found in the diet; however, it does not contribute to the 
synthesis of proteins because it is a non-proteinogenic 
amino acid (Smith and Refsum 2021). About 80% of 
plasma homocysteine is bound to albumin, though some 
portions remain free or bound to cystein to form homo-
cysteine-cystein disulfide (Silla et al. 2019). Homocysteine 
in the body is recycled to form methionine or converted to 
cysteine with the assistance of vitamins B6, B12, and folate 
(Silla et al. 2019) [Fig. 3]. Homocysteine can also trans-
form into homocysteine thiolactone in a self-loop reaction, 
which boosts the generation of reactive oxygen species 
(ROS) with the development of oxidative stress (Silla et al. 
2019; Karolczak and Watala 2021). The average plasma 
level of Homocysteine is around 10–20 mol/L which is 
higher in men than in women. Hyperhomocysteinemia is 
homocysteine plasma levels greater than 15 mol/L, linked 
to aging and a lack of folate, B6, and B12. Homocysteine 
levels between 15 and 30 mol/L are recognized as mild 
hyperhomocysteinemia, between 30 and 100 mol/L as 
moderate hyperhomocysteinemia, and beyond 100 mol/L 
as severe hyperhomocysteinemia (Elshahid et al. 2020; 
Al-Gareeb et al. 2016). Three changes occur to Homocyst-
eine in the plasma: it is remethylated to form methionine, 

trans-sulfated with serine, and discharged into extracel-
lular fluids (Myles et al. 2008).

The causes of hyperhomocysteinemia may be nutritional 
deficiencies such as a lack of folate, vitamin B6, or vitamin 
B12, or they may be hereditary, such as congenital hyperho-
mocysteinemia caused by a methionine synthase deficiency 
(Al Mutairi 2020). Hyperhomocysteinemia is thought to 
be primarily influenced by aging. Age-related increases 
in plasma homocysteine are previously reported (Xu et al. 
2020). Homocysteine levels are positively correlated with 
age, which may be caused by deficiencies in folate, vitamin 
B6, and vitamin B12, kidney impairment, and reduced activ-
ity of the enzymes involved in the elimination of Homocyst-
eine (Al Mutairi 2020; Xu et al. 2020). Additionally, men 
may have greater plasma homocysteine levels due to hor-
monal influences, particularly testosterone. However, even 
after menopause, homocysteine plasma levels do not vary 
(Nakhai Pour et al. 2006). Notably, 70% of plasma homo-
cysteine is eliminated by the kidney; thus, renal impairment 
could potentially cause hyperhomocysteinemia development 
(Kaplan et al. 2020). Moreover, smoking, alcoholism, and 
malignancies are associated with hyperhomocysteinemia 
risk (Kim et al. 2018a; Baszczuk and Kopczyński 2014).

It’s interesting to note that hyperhomocysteinemia is 
linked to the onset of thrombosis, ischemic heart disease, 
and atherosclerosis (Kravchuk 2012; Al-Kuraishy et al. 
2016). It is also believed that hyperhomocysteinemia during 
pregnancy poses a separate risk for abortion and neural tube 
defects (Dai et al. 2021). Likewise, Homocysteine leads to 
synaptic dysfunction by induction of endoplasmic reticulum 
stress, activation of glutamatergic receptors and DNA dam-
age (Yakovleva et al. 2020) [Fig. 4].

Hyperhomocysteinemia and Degenerative 
Brain Diseases

Vascular dementia, AD, PD, and other neurodegenerative 
illnesses are all linked to hyperhomocysteinemia (Price et al. 
2018). Apoptosis, DNA damage, excitotoxicity, and oxida-
tive stress may all play a role in developing hyperhomocyst-
einemia-induced neurodegenerative disorders (Cordaro et al. 
2021). Alteration in the Homocysteine caused by genetic or 
dietary variables promotes neuronal Ca+2, the deposition of 
tau and amyloid beta (Aβ), and the induction of neuronal cell 
deaths and apoptosis (Cordaro et al. 2021). The risk of stroke 
and the onset of vascular dementia had been linked to hyper-
homocysteinemia and related microangiopathy (Kevere et al. 
2012). Furthermore, hyperhomocysteinemia increases the 
risk of an ischemic stroke by inhibiting the endogenous 
anticoagulant system and increasing thrombin production 
(Faverzani et al. 2017). Also, hyperhomocysteinemia trig-
gers platelet activation by increasing lipid peroxidation and 

Fig. 2   Chemical structure of Homocysteine

Fig. 3   Pathway of Homocysteine: homocysteine, with the assistance 
of folate and vitamin B12, is converted to methionine and converted 
to cysteine with the assistance of vitamin B6
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oxidative stress effects of hyperhomocysteinemia on the 
platelet-driven contraction of blood clots (Litvinov et al. 
2021). A previous study illustrated that hyperhomocyst-
einemia increased ischemic risk in children ( Komitopoulou 
et al. 2006). A case–control study that included 45 patients 
with ischemic stroke and 234 healthy controls showed higher 
homocysteine serum levels and was correlated with the risk 
of ischemic stroke (Komitopoulou et al. 2006). A study com-
paring 152 healthy controls to 161 patients with ischemic 
stroke found that hyperhomocysteinemia is an independent 
risk factor for developing ischemic stroke (Parnetti et al. 
2004). These findings indicated that hyperhomocysteinemia 
is implicated in the development of ischemic stroke and the 
progression of vascular dementia.

Moreover, hyperhomocysteinemia increases the inci-
dence of multiple sclerosis through macrophage activation 
and induction of immune deregulations (Teunissen et al. 
2008; Ramsaransing et al. 2006). Hyperhomocysteinemia 
is correlated with the progression of multiple sclerosis due 
to a defect in the methylation of myelin basic protein with 
subsequent degeneration of myelin sheath (Ramsaransing 
et al. 2006; Teunissen et al. 2008). It has been shown that 
hyperhomocysteinemia induces endothelial dysfunction, 
impairment of blood brain barrier (BBB) and thrombosis 
with subsequent translocation of leukocytes and immune 
cells into CNS (Dubchenko et al. 2020). Besides, hyperho-
mocysteinemia contributes to progressive neuronal injury 
and apoptosis (Dubchenko et al. 2020). Therefore, hyper-
homocysteinemia directly damages neuronal sheath or indi-
rectly through the induction of abnormal immune response 
(Mititelu et al. 2021). Additionally, multiple sclerosis’s clini-
cal progression and cognitive impairment are both associ-
ated with hyperhomocysteinemia (Teunissen et al. 2008).

Markedly, hyperhomocysteinemia is considered an inde-
pendent risk factor for AD (Nazef et al. 2014; Alsubaie 
et al. 2022; Al-Kuraishy et al. 2022a). A case–control study 
involving 41 AD patients and 46 healthy controls showed 
that hyperhomocysteinemia correlates with cognitive 
impairment and AD risk due to induction of cortical atro-
phy and reduced hippocampal activity (Nazef et al. 2014; 
Al-Kuraishy et al. 2022b). Of note, hyperhomocysteine-
mia decreases learning and memory by distorting synaptic 
transmission and synaptic plasticity in rats (An and Zhang 
2013). Therefore, plasma homocysteine level is regarded as 
a biomarker evaluating the development of AD and other 
types of dementia (Seshadri et al. 2002). The underlying 
mechanism linking hyperhomocysteinemia and dementia is 
the development of endothelial function and impairment of 
cerebral blood flow with subsequent oxidative stress-induced 
neuronal injury (Kovalska et al. 2018, 2019; Rehman et al. 
2020). Moreover, hyperhomocysteinemia inhibits the inhibi-
tory neurotransmitter gamma-aminobutyric acid (GABA), 
leading to excitotoxicity and BBB disruption (Tyagi et al. 
2007). Remarkably, hyperhomocysteinemia promotes Aβ 
formation and increases neurons' sensitivity to the toxic 
effects of Aβ in experimental studies (Zhuo et al. 2011; 
Chung et al. 2016). Thus, hyperhomocysteinemia induces 
and exacerbates AD neuropathology via Aβ alone or through 
interaction with fibrinogen (Chung et al. 2016).

Homocysteine, through activation of NMDA receptors, 
induces Ca+2, leading to excitotoxicity, astrocyte activation 
with release inflammatory mediators, and matrix metallopro-
teinase (MMP) activation with subsequent BBB injury and 
microvascular inflammation (Kamat et al. 2016). In addi-
tion, these changes cause a reduction of cerebral blood flow 
(CBF) and synaptic dysfunction with the development of 

Fig. 4   Homocysteine and syn-
aptic dysfunction
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neurodegeneration and cognitive impairment (Kamat et al. 
2016)[Fig. 5].

Taken together, hyperhomocysteinemia is correlated with 
development and progression of various types of degenera-
tive brain diseases by inducing neuronal oxidative stress and 
DNA damage.

Hyperhomocysteinemia and PD

It has been shown that hyperhomocysteinemia is an inde-
pendent risk factor for the development of PD (Sampedro 
et  al., 2022). A case–control study showed that plasma 
homocysteine level was higher in PD patients than in healthy 
controls (Kuhn et al. 1998). A recent cross-sectional study 
comprising 99 PD patients, 34 with minor hallucinations 
and 65 without minor hallucinations, revealed that plasma 
homocysteine level was higher in PD patients with minor 
hallucinations (Zhong et al. 2022). This study suggests that 
plasma homocysteine level is correlated with motor and non-
motor manifestations like psychiatric disorders in PD. As 
well, plasma homocysteine level predicts the clinical out-
comes in PD patients (Zhong et al. 2022). It has been noted 
that patients with PD and AD have higher levels of total CSF 
homocysteine but not free Homocysteine (Isobe et al. 2005). 
Therefore, the total homocysteine level in CSF may serve 
as a diagnostic biomarker for both PD and AD. The use 

of L-dopa may be responsible for an increase in CSF total 
Homocysteine in PD patients (Isobe et al. 2010).

Moreover, hyperhomocysteinemia leads to memory dys-
function and reduced verbal fluency commonly observed in 
PD patients due to the development of oxidative stress in the 
neocortex (Hara et al. 2016).

Muller et al. observed that initiating L-dopa therapy in 
PD patients induces the development of hyperhomocyst-
einemia (Müller and Kuhn 2009). This may explain the 
propagation of neuropsychiatric disorders and atheroscle-
rotic complications in PD patients. Notably, L-dopa impairs 
homocysteine metabolism and elimination, leading to hyper-
homocysteinemia and associated disorders, as confirmed by 
a cohort study (Müller and Kuhn 2009). However, a pre-
vious study illustrated a modest increase in plasma homo-
cysteine levels following the initiation of L-dopa therapy 
in PD patients (O’Suilleabhain et al. 2004). Furthermore, a 
prospective study involving PD patients on L-dopa therapy 
compared to other treatments showed that L-dopa therapy 
in PD patients was associated with a modest increase in 
plasma homocysteine level with a significant reduction in 
B12 serum level (O’Suilleabhain et al. 2004). Therefore, 
L-dopa therapy and vitamin deficiency increase the risk of 
PD severity. Thus, folate and 12 supplementations improve 
hallucination, sleep disorders, and motor disorders in PD 
patients by ameliorating hyperhomocysteinemia-induced 
oxidative stress and inflammatory disorders (Srivastav et al. 

Fig. 5   Role of Homocysteine in neurodegeneration and cognitive 
impairment: homocysteine, through activation of N-Methyl-D-
Aspartate (NMDA) receptors, induces Ca+2 leading to excitotoxicity, 
astrocyte activation with release inflammatory mediators and activa-
tion of matrix metalloproteinase (MMP) with subsequent BBB injury 
and microvascular inflammation. These changes cause a reduction of 

cerebral blood flow (CBF) and synaptic dysfunction with the devel-
opment of neurodegeneration and cognitive impairment. In addition, 
neurodegeneration induces a reduction in the expression of brain-
derived neurotrophic factor (BDNF), microtubule-associated protein 
2 (MAP-2), synapse associate protein 97 (SAP-97), postsynaptic den-
sity protein 95 (PSD-95) with the development of synaptic loss
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2015; Haghdoost-Yazdi et al. 2012). In addition, hyperho-
mocysteinemia leads to a differential gender-specific effect 
on cognitive and motor severity in PD patients (Bakeberg 
et al. 2019). A case–control study revealed that hyperhomo-
cysteinemia led to more detrimental effect in men compared 
to women with PD by unknown mechanism (Bakeberg et al. 
2019).

The complex interaction between hyperhomocysteinemia 
and PD induces different pathological changes, including 
DNA hypomethylation, neuroinflammation, oxidative stress, 
and neuronal cell deaths (Doherty 2013). These verdicts pro-
posed a potential link between hyperhomocysteinemia and 
the development/progression of PD [Fig. 6].

Hyperhomocysteinemia and Degeneration 
of Dopaminergic Neurons

Homocysteine acts directly as an NMDA receptor agonist 
or indirectly by inhibiting GABA leading to excitotoxicity 
and neuronal Ca+2 overloads with the acceleration of protein 
misfolding and Aβ aggregation (Hassin-Baer et al. 2006). 
It has been shown that glutamate-induced excitotoxicity is 
linked to the development and progression of PD (Iovino 
et al. 2020). Accumulating extra-synaptic glutamate due to 
the over-activation of microglia promotes aberrant synaptic 
signaling in PD and other neurodegenerative brain diseases 
(Iovino et al. 2020). A computational study demonstrated 
that glutamate-induced excitotoxicity is correlated with 
the loss of dopaminergic neurons in PD (Muddapu et al. 
2019). In this bargain, a case–control study involving 110 
PD patients compared to 90 healthy controls observed that 
serum glutamate level was higher in PD patients (Mironova 
et al. 2018).

Together, GABA signaling is highly disturbed in PD and 
associated with developing motor and non-motor symptoms 
(van Nuland et al. 2020). A case–control study illustrated 
that cortical GABA benefits PD patients by reducing motor 
symptoms (van Nuland et al. 2020). GABA-ergic dysfunc-
tion also contributes to the development of non-motor symp-
toms in PD (Murueta-Goyena et al. 2019). Cognitive dys-
function and motor and non-motor symptoms in PD may be 
due to disturbance of GABA and adenosine signaling (Zhao 
et al., 2021). It has been shown that arbutin in plants can 
improve various motor functions, including posture, move-
ment, and rigidity, in MPTP-treated mice. Arbutin exhibited 
potent antioxidant and anti-inflammatory activities and could 
restore neurotransmitter levels like dopamine and GABA 
in the striatum and protect neurons against degeneration 
through inhibition of adenosine signaling (Zhao et al., 2021). 
GABAergic neurons play a critical role in the modulation of 
the activity of the thalamocortical motor circuit in PD (van 
Nuland et al. 2020). A study involved 60 PD patients with 
dopamine-resistant tremor (n = 17), dopamine-responsive 
tremor (n = 23), or no tremor (n = 20), and healthy controls 
(n = 22) showed that GABA level was unchanged in PD 
patients compared to the controls. Though, motor cortex 
GABA level was inversely correlated with disease sever-
ity. Therefore, cortical GABA has a beneficial rather than 
a detrimental role in PD, and GABA reduction may donate 
to increased motor symptom expression (van Nuland et al. 
2020). Moreover, dysregulation of GABAergic signaling 
is linked with the development of non-motor symptoms, 
including sleep disorders in PD (Murueta-Goyena et al. 
2019). Thus, hyperhomocysteinemia may aggravate PD 
through augmentation of glutamate-induced excitotoxicity 
and attenuation of the protective effect of GABA.

Homocysteine also triggers ROS generation and reduces 
the generation of nitric oxide (NO) with activation of 

Fig. 6   The link between high 
Homocysteine and the develop-
ment of PD
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inflammatory series leading to progressive neuronal loss 
(Hassin-Baer et al. 2006). A cohort study noted that hyper-
homocysteinemia is associated with the progression of sys-
temic oxidative stress in post-menopausal women (Bour-
gonje et al. 2020). Zhang et al. (Zhang et al. 2020) showed 
that hyperhomocysteinemia induces ferroptosis and oxida-
tive stress by enhancing the methylation of glutathione per-
oxidase. Bhattacharjee and Borah found that mitochondrial 
dysfunction and the development of oxidative stress could be 
the potential mechanisms for homocysteine-induced degen-
eration of dopaminergic neurons in the SN in the rat model 
of PD (Bhattacharjee and Borah 2016). Of note, oxidative 
stress and reduction of glutathione peroxidase activity are 
linked with the degeneration of dopaminergic neurons in 
PD (Aborode et al. 2022). A systematic review and meta-
analysis involving 80 studies of 7212 PD patients and 6037 
healthy subjects revealed that PD is linked with higher oxi-
dative stress biomarkers (Wei et al. 2018). Herein, hyperho-
mocysteinemia may aggravate PD through the induction of 
oxidative stress; when the plasma homocysteine level pro-
gressively rises, it is associated with an increase in both the 
motor and non-motor symptoms of PD.

A previous experimental study conducted by Lee et al. 
found that Homocysteine reduced tyrosine hydroxylase (TH) 
activity in the SN with a significant reduction in dopamine 
turnover in mice and rats. In addition, L-dopa treatment in 
PD augments the toxic effect of Homocysteine on the dopa-
minergic neurons in the SN (Lee et al. 2005). In vitro studies 
demonstrated that TH-positive neurons were highly suscepti-
ble to the toxic effect of Homocysteine (Heider et al. 2004). 
In addition, increased intracellular dopamine enhances the 
toxic effect of Homocysteine (Heider et al. 2004). Likewise, 
hyperhomocysteinemia depletes neuronal ATP and enhances 
the sensitivity of dopaminergic neurons to the toxic effect 
of rotenone in rats (Duan et al. 2002). In this state, L-dopa 
treatment in the MPTP model of PD augments homocysteine 
neurotoxicity without a reduction in the number of dopamin-
ergic neurons (Bhattacharjee et al. 2016). Indeed, human TH 
activity is related to PD neuropathology and other neurode-
generative brain diseases (Nagatsu et al. 2019). The reduc-
tion of TH activity could be secondary to the degeneration of 
dopaminergic neurons in PD. Thus, TH activity deficiency 
may not contribute to PD neuropathology (Nagatsu et al. 
2019). Also, the accumulation of α-synuclein increases the 
depletion of TH (Kawahata and Fukunaga 2020). Thus, the 
depletion of TH in the SN is not the primary event in the 
pathogenesis of PD. Therefore, hyperhomocysteinemia-
induced depletion of TH may not involve in the development 
but only in the progression of PD through the degeneration 
of dopaminergic neurons with secondary deficiency of TH 
in PD (Kawahata and Fukunaga 2020; Nagatsu et al. 2019).

The direct toxic effect of Homocysteine on the dopamin-
ergic neurons in the SN could be the possible mechanism 

in the development and progression of PD. It has been 
reported that Homocysteine augments the CNS to the toxic 
methylation process. Homocysteine inhibits S-adenosyl-
homocysteine (SAH) metabolism causing increasing of 
SAH with induction of apoptosis and neuronal injury with 
the development of cognitive impairment (Lin et al. 2008). 
SAH level was reported to be higher in PD patients than in 
healthy controls (Kennedy et al. 2004). A study involving 87 
PD patients revealed that methylation biomarkers, including 
SAH, were increased (Obeid et al. 2009). SAH level was 
correlated with methyltransferase inhibition and cognitive 
impairment in PD and AD patients (Kennedy et al. 2004). 
Of interest, direct exposure of dorsal hippocampus to the 
effect of Homocysteine does not cause direct neurotoxicity, 
though co-administration of Homocysteine with glutamate 
agonists like kainic acid induces more neurotoxicity (Mül-
ler et al. 2001; Kruman et al. 2000). These findings suggest 
that Homocysteine does not cause direct neurotoxicity but 
enhance the sensitivity of dopaminergic neurons to the envi-
ronmental toxins.

Furthermore, homocysteine-induced apoptosis is mainly 
mediated by induction DNA injury and energy depletion 
(Fan et al. 2019). Homocysteine reduces ATP production 
and cellular glucose consumption by inhibiting cytochrome 
C oxidase leading to more cellular injury (Zhai et  al. 
2019). Plasma mitochondrial and nuclear DNA levels were 
increased in PD patients correlated with autonomic dysfunc-
tion (Chen et al. 2017). These biomarkers served as media-
tors of autonomic dysfunction, like poor baroreflex reaction 
and sensitivity in PD patients (Chen et al. 2017).

Reduction of homocysteine conversion to methionine due 
to deficiency of vitamin B12 and folic acid triggers DNA 
injury (Koklesova et al. 2021). These changes provoke neu-
ronal apoptosis by inhibiting mitochondrial dysfunction and 
developing oxidative stress (Koklesova et al. 2021). Homo-
cysteine-induced mitochondrial dysfunction is mediated 
by the activation of caspase activity and distortion of mito-
chondrial trans-membrane potential leading to Ca+2 over-
load and apoptosis (Wang et al. 2018). It has been shown 
that apoptosis plays a crucial role in PD neuropathology. 
Apoptosis is initiated by caspase-9 and caspase-8, leading to 
DNA cleavage and fragmentation (Babalghith et al., 2022). 
Pro-apoptotic factors like Bax promote caspase-mediated 
dopaminergic neuronal injury and the development of PD 
(Erekat 2018). Therefore, homocysteine-induced apoptosis 
and DNA damage could be potential mechanisms for the 
development and progression of PD in patients with hyper-
homocysteinemia. Together, oxidative stress, mitochondrial 
dysfunction, and apoptosis are interrelated in the induction 
of dopaminergic neurodegeneration and development of PD 
(Javed et al. 2020).

Moreover, hyperhomocysteinemia is the leading 
cause of endothelial dysfunction and the development of 
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atherosclerosis by direct injury of endothelial cells (Esse 
et al. 2019; Al-kuraishy et al. 2022c). Homocysteine inter-
acts with various molecules produced from endothelial 
cells, including thrombomodulin and Von-Willebrand factor 
leading to disturbance of the endothelial coagulant/antico-
agulant axis with the development of thrombosis (Nilsson 
et al. 2005). Besides, Homocysteine inhibits endothelial 
glutathione peroxidase by reducing endogenous antioxidant 
capacity (Wu et al. 2019). Further, Homocysteine activates 
vascular smooth muscle hyperplasia with further aggrava-
tion of endothelial dysfunction (Balint et al. 2020). Endothe-
lial dysfunction is associated with the progression of nigros-
triatal injury and the development of PD (Cahill-Smith and 
Li 2014). Interestingly, a cohort study revealed that L-dopa 
therapy in PD patients increases the risk of homocysteine-
induced endothelial dysfunction with the progression of PD 
neuropathology (Yoon et al. 2014).

Taken together, hyperhomocysteinemia triggers the devel-
opment and progression of PD by different mechanisms, 
including oxidative stress, mitochondrial dysfunction, apop-
tosis, and endothelial dysfunction [Fig. 7].

Hyperhomocysteinemia 
and Immunoinflammatory Response in PD

It has been shown that the advancement of PD is linked 
with high inflammatory changes and systemic inflamma-
tory disorders (Lin et al. 2016). Notably, pro-inflamma-
tory cytokines are increased in the peripheral blood cells 
of PD patients (Koziorowski et al. 2012). Furthermore, a 
prospective study that included 60 PD patients compared 

to 24 healthy controls exposed that pro-inflammatory 
cytokines are increased in PD patients (Koziorowski et al. 
2012). These judgments designated that higher inflamma-
tory changes may intensify the development of PD. Besides, 
Homocysteine induces transcription of inflammatory media-
tors in monocytes (Meng et al. 2013). Thus, Homocysteine is 
regarded as a pro-inflammatory amino acid that induces the 
expression of different transcription factors and the release 
of pro-inflammatory cytokines (Meng et al. 2013).

Furthermore, an experimental study demonstrated that 
chronic hyperhomocysteinemia augments inflammatory 
biomarkers in rat hippocampus (da Cunha et al. 2012). In 
contrast, pro-inflammatory cytokine levels are not correlated 
with homocysteine plasma levels in AD patients (Veryard 
et al. 2013). Thus, mild hyperhomocysteinemia in AD may 
not be associated with inflammatory reactions. Notoriously, 
hyperhomocysteinemia-induced brain injury and disruption 
of BBB are mediated by the release of pro-inflammatory 
cytokine and immunomodulatory dysfunction to protect the 
injured brain (Zhang et al. 2019).

Noteworthy, the dysfunction of the immune system 
with genetic susceptibility impairs humoral and cellular 
immune response in PD (Tan et al. 2020). Dysregulation of 
the immune system and abnormal innate/adaptive immune 
response are concerned with developing degenerative brain 
diseases including PD (Tan et al. 2020). In PD, an immune 
response is slanted with accumulative risk for the develop-
ment of the autoimmune response. Consequently, peripheral 
inflammatory biomarkers may be augmented and connected 
with motor severity in PD patients (Kim et al. 2018b). A 
case–control study involving 58 PD patients compared to 
20 healthy controls showed that IL-1β, TNF-α, IL-6, CRP, 

Fig. 7   Mechanism of homocysteine role in Parkinson’s disease
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and IL-12 are increased in PD patients compared to healthy 
controls (Kim et al. 2018b). There was no positive cor-
relation between levels of inflammatory biomarkers and 
non-motor symptoms in PD patients (Kim et al. 2018b). 
Chen (2005) showed an unusual alteration in inflammatory 
cytokines in the CSF of patients with degenerative brain 
diseases, including PD. Furthermore, abnormal immune 
response and microglia hyper-activation are connected with 
the degeneration of dopaminergic neurons in the SN (Miller 
et al. 2009). These findings indicated that the progression 
of PD is highly correlated with the severity of peripheral 
inflammatory disorders.

On the other hand, moderate hyperhomocysteinemia 
induces immune activation through ROS and oxidative 
stress (Schroecksnadel et al. 2004). In turn, an activated 
immune response promotes the development and progres-
sion of hyperhomocysteinemia (Schroecksnadel et al. 2004). 
Lazzerini and colleagues found that hyperhomocysteinemia 
is intricate in developing inflammation and autoimmunity 
(Lazzerini et al. 2007). Similarly, immunoinflammatory 
reactions contribute to the development of hyperhomocyst-
einemia, and in turn, high Homocysteine acts as an immu-
nostimulant and pro-inflammatory molecule, increasing 
abnormal immune response (Lazzerini et al. 2007). Notably, 
Homocysteine can react and modify specific proteins, result-
ing in neo-antigens development and autoimmunity develop-
ment (Lazzerini et al. 2007). Further, hyperhomocysteinemia 
triggers immune imbalance and inflammation during acute 
brain injury (Zhang et al. 2021).

Therefore, hyperhomocysteinemia-induced immunoin-
flammatory disorders and abnormal immune response may 
aggravate abnormal immunoinflammatory in PD, leading to 
more progression of PD severity.

Hyperhomocysteinemia and Inflammatory 
Signaling Pathways in PD

Inflammatory signaling pathways like nuclear factor kappa B 
(NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflamma-
some as well as other signaling pathways, are intricate in the 
pathogenesis of PD (Miller et al. 2009; Batiha et al. 2022b).

NF‑κB

NF-κB is a DNA-binding protein prerequisite for transcrip-
tion pro-inflammatory cytokines and chemokines. Although 
NF-κB is under the control of extracellular stimuli, it is 
inhibited by an inhibitor of κB (IκB) which sequester NF-κB 
in the cytosol and prevent its localization (Al-Kuraishy et al. 
Kuraishy et al. 2021; Al-Kuraishy et al. 2023). However, 
cytokines inhibit IκB with subsequent activation of NF-κB 

and propagation of inflammatory disorders (Ladner et al. 
2003; Chen 2005).

NF-κB is also intricate in the pathogenesis of PD via 
induction of inflammation-mediated degeneration of dopa-
minergic neurons in the SN (Singh et al. 2020). Immune 
dysregulation by aging promotes the activation of NF-κB 
with subsequent neuronal injury and neuroinflammation 
with the development of PD (Singh et al. 2020). Results 
from postmortem studies advocate the role of NF-κB in the 
degeneration of dopaminergic neurons in the SN. Activa-
tion of NF-κB with induction of neuronal apoptosis was 
established in PD patients compared to the controls (Hunot 
et al. 1997). Ghosh et al. (Ghosh et al. 2007) exemplified that 
selective inhibition of NF-κB prevents the degeneration of 
dopaminergic neurons in the SN in the mouse model of PD.

Similarly, targeting the NF-κB pathway in murine and 
mouse PD models may prevent PD progression (Flood et al. 
2011). Notably, different drugs and herbals like pioglitazone, 
salmeterol, and curcumin hinder the degeneration of dopa-
minergic neurons in the SN by inhibiting NF-κB which is 
involved in the progression of neuroinflammation and injury 
of dopaminergic neurons (Flood et al. 2011; Al-kuraishy 
et al. 2020). Furthermore, a recent finding demonstrated 
that α-synuclein released from injured dopaminergic neu-
rons triggers activation of NF-κB and release of pro-inflam-
matory cytokines with further aggravation of dopaminergic 
neurons in a positive-loop fashion (Dolatshahi et al. 2021). 
These findings proposed that NF-κB could be a therapeutic 
target in the management of PD.

Curiously, the Aβ1-42 level in the CSF is reduced and not 
correlated with motor dysfunction in PD patients compared 
to the controls (Buddhala et al. 2015). Shi et al. (Shi et al. 
2011) exposed that the Aβ1-42 level in the CSF is augmented 
and interrelated with the severity of PD. Nonetheless, Aβ1-42 
inhibits BBB P-glycoprotein through induction of NF-κB 
with further reduction in clearance of Aβ1-42 (Park et al. 
2014). Therefore, NF-κB not only induces dopaminergic 
neurons in the SN but also increases the PD severity through 
accumulation of Aβ1-42 and α-synuclein.

Furthermore, hyperhomocysteinemia triggers the acti-
vation of NF-κB, causing releasing of pro-inflammatory 
cytokines (Ferlazzo et al. 2008). This could be a putative 
mechanism for the induction of neurotoxicity by hyperhomo-
cysteinemia. In vitro study demonstrated that the addition of 
NF-κB inhibitor abolishes hyperhomocysteinemia-induced 
neuronal apoptosis (Ferlazzo et al. 2008). Similarly, through 
the inhibition development of hyperhomocysteinemia, folic 
acid mitigates palmitate-induced inflammation and NF-κB 
activation in HepG2 cells (Bagherieh et al. 2021). Capto-
pril also attenuates homocysteine-induced inflammation via 
the NF-κB signaling pathway in human aorta endothelial 
cells (Hu et al. 2019). An experimental study demonstrated 
that hyperhomocysteinemia triggers oxidative stress and 
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inflammation via activating the NF-κB signaling pathway 
in the cerebellum and striatum of rodents (Dos Santos et al. 
2021). Thus, hyperhomocysteinemia-induced NF-κB acti-
vation could be a possible mechanism for arterial injury in 
patients with premature coronary artery diseases (Liu et al. 
2022).

These verdicts indicated that hyperhomocysteinemia 
augments the inflammatory burden in PD patients through 
activation of the NF-κB signaling pathway involved in the 
development and progression of PD.

NLRP3 Inflammasome

NLRP3 inflammasome is the nucleotide-binding domain, 
and the leucine-rich repeat-containing family and pyrin fam-
ily can form a multiprotein complex. The main function of 
NLRP3 inflammasome is an activation of caspase-1, matu-
ration of IL-1β and IL-18 (He et al. 2016). NLRP3 inflam-
masome is activated by different stimuli including alterna-
tive and non-canonical pathways (He et al. 2016). NLRP3 
inflammasome is activated by NF-κB and sphingosine-1 
phosphate (Paik et al. 2021).

NLRP3 inflammasome is intricate in the pathogenesis of 
PD (Haque et al. 2020). NLRP3 inflammasome induces the 
release of pro-inflammatory cytokines and the development 
of neuroinflammation and degeneration of dopaminergic 
neurons by induction of pyroptosis (Haque et al. 2020; Wang 
et al. 2019). The accumulation of the α-synuclein also trig-
gers the microglia's activation with the subsequent expres-
sion of NLRP3 inflammasome in the SN (Haque et al. 2020). 
Furthermore, systemic activation of NLRP3 inflammasome 
promotes the accumulation of α-synuclein and degenera-
tion of dopaminergic neurons in the SN (Fan et al. 2020). 
A case–control study that included 67 PD patients com-
pared to 24 healthy controls showed that plasma levels of 
α-synuclein, NLRP3 inflammasome, caspase-1, and IL-1β 
increased in PD patients compared to healthy patients con-
trols (Fan et al. 2020).

Consequently, α-synuclein, NLRP3 inflammasome, and 
IL-1β plasma could be biomarkers to monitor PD severity 
and progression. Different studies showed that higher levels 
of pro-inflammatory cytokines in the CSF and plasma sup-
port the interaction between the brain and the immune sys-
tem with the development of neuroinflammation and degen-
eration of dopaminergic neurons in PD (Jiang and Dickson 
2018; Qiao et al. 2018). IL-1β plasma level a main compo-
nent of NLRP3 inflammasome is augmented in PD patients 
(Boxberger et al. 2019). These observations proposed that 
systemic inflammation via induction of neuroinflammation 
may lead to the degeneration of dopaminergic neurons and 
the development of PD. Additionally, increased α-synuclein 
plasma level, a major constituent of Lewy bodies, had been 
reported to be increased in PD patients compared to the 

healthy controls (Bougea et al. 2019). In turn, α-synuclein 
can trigger NLRP3 inflammasome with subsequent release 
of IL-1β with the development of systemic inflammation and 
neuroinflammation (Codolo et al. 2013).

Moreover, hyperhomocysteinemia induces inflammation 
by activating NLRP3 inflammasome in ApoE-deficient mice 
(Wang et al. 2017). The underlying mechanism for hyperho-
mocysteinemia-induced NLRP3 inflammasome activation is 
through the generation of ROS (Wang et al. 2017). NLRP3 
inflammasome activation is also activated by cholesterol 
and oxidized low-density lipoprotein (oxLDL) (Duewell 
et al. 2010). Yang et al. (Yang et al. 2005) observed that 
hyperhomocysteinemia promotes cholesterol levels and 
atherosclerosis. Also, hyperhomocysteinemia triggers lipid 
accumulation and cholesterol biosynthesis by activating rat 
transcription factors (Woo et al. 2005). Also, hyperhomo-
cysteinemia increases the production of oxLDL in athero-
sclerotic patients (Seo et al. 2010; Al-kuraishy et al. 2019). 
Recently, hyperhomocysteinemia has been correlated with 
high oxLDL levels (Ridker et al. 2022). Thus, hyperhomo-
cysteinemia-induced NLRP3 inflammasome activation is 
mainly through ROS generation, cholesterol biosynthesis, 
and generation of oxLDL. Therefore, hyperhomocysteinemia 
may directly affect PD neuropathology or indirectly through 
activation of NLRP3 inflammasome.

Taken together, hyperhomocysteinemia through activa-
tion of NF-κB and NLRP3 inflammasome signaling path-
ways may augment PD neuropathology and associated 
neuroinflammation.

Conclusion

PD is one of the most prevalent chronic degenerative brain 
motor disorders. Because of the loss of dopaminergic neu-
rons in the SN and severe dopamine deficiency in the basal 
ganglia, PD is considered a progressive disease. Lewy bod-
ies formation and α-synuclein deposition in the SN are hall-
marks of the neuropathology of PD. However, the accumu-
lation of α-synuclein is not restricted to the SN but affects 
the entire brain including ANS. PD patients are subjected to 
nutritional disorders and deficiency of certain vitamins like 
folate, vitamin B6 and B12. Additionally, prolonged L-dopa 
therapy is linked to folate, vitamin B6 and B12 deficiency. 
These disorders augment the circulating level of Homocyst-
eine with the development of hyperhomocysteinemia, which 
may involve the pathogenesis of PD. Hyperhomocysteinemia 
is implicated in the pathogenesis of vascular dementia, AD, 
PD, and other neurodegenerative disorders. Apoptosis, DNA 
damage, excitotoxicity, and oxidative stress may all play a 
role in developing neurodegenerative diseases brought on by 
hyperhomocysteinemia.
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Moreover, hyperhomocysteinemia is a separate risk factor 
for the onset of PD. In addition, the initiation of L-dopa ther-
apy in PD patients causes the development of hyperhomocyst-
einemia, which may help to explain why neuropsychiatric dis-
eases continue to spread in PD patients. As a result, combining 
L-dopa medication with a vitamin deficiency raises the risk of 
developing severe PD. Through various processes, including 
oxidative stress, mitochondrial malfunction, apoptosis, and 
endothelial dysfunction, hyperhomocysteinemia triggers the 
occurrence and progression of PD. Notably, systemic inflam-
matory disorders are associated with the progression of PD. 
The immune system is activated by hyperhomocysteinemia via 
ROS and oxidative stress. Hyperhomocysteinemia then devel-
ops and progresses due to active immunological response. 
Therefore, abnormal immune response and immunoinflam-
matory diseases brought on by hyperhomocysteinemia may 
exacerbate abnormal immunoinflammatory in PD.

Furthermore, the pathophysiology of PD involves numer-
ous signaling pathways, including inflammatory signaling 
pathways like NF-B and NLRP3 inflammasome. Hyperho-
mocysteinemia may worsen PD neuropathology and related 
neuroinflammation by activating the NF-B and NLRP3 
inflammasome signaling pathways. Together, our find-
ings suggest that hyperhomocysteinemia has a role in the 
onset, development, and progression of PD neuropathol-
ogy, directly inducing dopaminergic neuron degeneration 
or indirectly activating inflammatory signaling pathways. 
Therefore, preclinical and clinical studies are warranted in 
this regard.
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