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Abstract
Melatonin is ubiquitous molecule with wide distribution in nature and is produced by many living organisms. In human 
beings, pineal gland is the major site for melatonin production and to lesser extent by retina, lymphocytes, bone marrow, 
gastrointestinal tract, and thymus. Melatonin as a neurohormone is released into circulation wherein it penetrates all tissues 
of the body. Melatonin synthesis and secretion is supressed by light and enhanced by dark. Melatonin mostly exerts its effect 
through different pathways with melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2) being the predominant type 
of receptor that are mainly expressed by many mammalian organs. Melatonin helps to regulate sleep patterns and circadian 
rhythms. In addition, melatonin acts as an antioxidant and scavenges excessive free radicals generated in the body by anti-
excitatory and anti-inflammatory properties. A multiple array of other functions are displayed by melatonin that include 
oncostatic, hypnotic, immune regulation, reproduction, puberty timing, mood disorders, and transplantation. Deficiencies 
in the production or synthesis of melatonin have been found to be associated with onset of many disorders like breast cancer 
and neurodegenerative disorders. Melatonin could be used as potential analgesic drug in diseases associated with pain and 
it has quite promising role there. In the past century, a growing interest has been developed regarding the wide use of mela-
tonin in treating various diseases like inflammatory, gastrointestinal, cancer, mood disorders, and others. Several melatonin 
agonists have been synthesized and are widely used in disease treatment. In this review, an effort has been made to describe 
the biochemistry of melatonin along with its therapeutic potential in various diseases of humans.
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Abbreviations
ASMT  Acetyl-serotonin-methyltransferase
NAT  N-Acetyltransferase
RZR/ROR  Retinoid-related Orphan nuclear hor-

mone receptor family
GPCR  G-protein coupled receptor
GnRH  Gonadotrophin-releasing hormone
ROS  Reactive oxygen species
SOD  Superoxide dismutase
AD  Alzheimer’s disease
Aβ  β-Amyloid
APP  Amyloid precursor protein
PD  Parkinson’s disease
SNC  Substantia nigra pars compacta
T2D  Type 2 diabetes
ZDF  Zucker diabetic fatty
Glut 1 and Glut 2  Glucose transporters
RA  Rheumatoid arthritis
MS  Multiple sclerosis
SLE  Systemic lupus erythematosus
BD  Bipolar disorder

MDD  Major depressive disorder
SAD  Seasonal affective disorder
BZD  Benzodiazepinergic
TNF-α  Tumor necrosis factor-α
IL-1β  Intereukin-1β
MT1  Melatonin receptor 1
MT2  Melatonin receptor 2

Introduction

The word ‘melatonin,’ comes from a Greek word ‘melas 
meaning dark’ and ‘tonos meaning hormone of darkness’ is 
a ubiquitous hormone found in all living organisms of ani-
mal kingdom. Melatonin (N-acetyl-5-methoxytryptamine), 
an indoleamine, is predominantly secreted and synthesized 
by the pineal gland through hydroxylation of essential 
amino acid i.e., tryptophan at carbon 5 forming 5-hydroxy-
tryptophan by tryptophan hydroxylase. Decarboxylation 
of 5-hydroxytryptophan yields a key neurotransmitter, 
5-hydroxytryptamine (serotonin) which on acetylation 
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by enzyme arylalkylamine N-acetyltransferase produces 
N-acetyl serotonin, the immediate precursor of melatonin. 
Subsequently, the enzyme acetyl-serotonin-methyltrans-
ferase (ASMT) through the process of methylation converts 
N-acetyl serotonin to melatonin (Coon et al. 2001) (Fig. 1). 
Pineal gland is the principal synthesizer and secretor of 
melatonin, in addition to many reports indicating the for-
mation of melatonin in very small quantities by other organs 
namely retina, harderian gland (Cardinali and Rosner 1971), 
gastrointestinal tract (Bubenik 2002), and lymphocytes. The 
traces of melatonin have been significantly identified in dif-
ferent parts of higher plants like fruits, seeds, and leaves 
(Tan et al. 2016; Reiter et al. 2014). However, the levels in 
these plant parts are too low for supply to human beings. The 
wide distribution of melatonin in primitive bacteria depicts 
ancient origin of the molecule and has been retained from 
evolution of living creatures (Pshenichnyuk et al. 2017). 
In bacteria, melatonin has evolved by process of endos-
ymbiosis. Earlier, melatonin was thought to be involved in 
the photosynthesis and metabolic pathways and free radi-
cal detoxification processes (Manchester et al. 2015; Tan 
et al. 2015). However, during the course of evolution, mela-
tonin diversified and attained a pleiotropic nature showing 
predominant role not only in resisting oxidative stress but 
also affecting biological rhythms and reducing inflamma-
tory states (Tan et al. 2010; Tamtaji et al. 2018). Differ-
ent species have evolved divergent melatonin biosynthetic 
routes and the genes encoding the enzymes involved in these 
pathways (Back et al. 2016). The role of melatonin is quite 
evident from its involvement in multiple biosynthetic meta-
bolic pathways. In unicellular and multicellular organisms, 
the enzymes involved in biosynthesis of melatonin located 
in subcellular localization may somehow have been changed 

(Lee et al. 2017). The separate subcellular sites of localiza-
tion for biosynthesis of melatonin may be beneficial for its 
efficient control (Back et al. 2016; Byeon et al. 2015). The 
secretion of the melatonin is controlled by enzyme hydrox-
yindole-O-methyltransferase (HIOMT), also referred as 
acetyl-serotonin-methyltransferase (ASMT) which indirectly 
is commanded by photoneural system (Jang et al. 2010). 
Within the parenchymal cells, the presence of many capillar-
ies permit excessive metabolic activity. Because the pineal 
lacks a blood–brain barrier, it shows resemblance to other 
periventricular glands like subfornical organ (SFO), median 
eminence, and subcommissural organ (SCO), which all are 
produced from ependymal cells in the third ventricle’s roof 
(Hissa et al. 2008). In living species, a circadian manner of 
melatonin secretion is observed with highest levels at night 
with 30–70-fold increase in N-acetyltransferase (NAT) 
enzyme activity. Melatonin production and release peak 
during the dark hours and fall during the day in all species 
studied (Binkley et al. 1988; Bolliet et al. 1996). The pineal 
gland does not store melatonin; however, the gland capacity 
of synthesis is reflected by its plasma concentration. The 
pineal gland responds directly to light in early non-mamma-
lian vertebrates, whereas in higher vertebrates, it is no longer 
sensitive to light. Due to high lipid and water solubility of 
melatonin, its distribution is facilitated through most cell 
membranes including the blood–brain barrier (Pardridge 
and Mietus 1980). When released into circulation, it easily 
gains entry into different body fluids, cellular compartments, 
and tissues. Melatonin is mostly synthesized at night with 
its peak plasma concentration found around 3:00 to 4:00 
a.m. Mainly, melatonin in blood is largely bound to albumin 
(70%) and to orosomucoid or alpha-1-acid glycoprotein to 
lower extent. The melatonin in circulation can travel to all 
tissues in the body and easily modulate activity of brain 
by crossing blood–brain barrier. No or very less melatonin 
secretion occurs upto 3 months of age. Then, at the age of 
3–4 years, the production of melatonin reaches its peak, and 
by the adult stage, it progressively drops down by 80%. Tem-
porarily, this change has been associated with sexual matu-
rity and not with growing size of body; however, production 
of constant melatonin during childhood is due to increasing 
body size (Waldhauser et al. 1993).

Factors Affecting Melatonin Synthesis

In humans, melatonin synthesis and generation is influenced 
by many factors as represented in Table 1 (Simonneaux and 
Ribelayga 2003; Zawilska et al. 2009).

5- Hydroxy Tryptophan

Aromatic-L amino acid decarboxylase

Serotonin 

Arylalkylamine N-acetyltransferase

N-Acetyl Serotonin 

Hydroxyindole-O-methyl transferase

Melatonin

Tryptophan 

Trytophan 5-hydroxylase

Fig. 1  Pathway of melatonin synthesis in humans
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Edible Sources of Melatonin

Melatonin has been notably found in a variety of food items, 
whether edible plants or plant-based products. The plants 
and few food entities not only possess melatonin but also 
its precursor. In plants, melatonin presence is universal; 
however, the concentrations may vary from picograms to 
micrograms in plant tissue (Tan et al. 2012). Table 2 shows 
the amount of melatonin that has been detected by chroma-
tographic and immunological techniques in food and plants. 

Melatonin in plants plays an important role in reducing oxi-
dative stress, promotes growth and germination of seeds, 
improves resistance to stress, stimulates immune system, 
modulates circadian rhythms, controls closure of stomata 
on leaves, and antistress agent against drought, toxic chemi-
cals, salinity, heavy metal stress, UV radiation, high and 
low ambient temperatures, water stress, and light-induced 
stress. Moreover, melatonin also shows it role in combating 
biotic stress in plants that includes various properties like 
antibacterial, antiviral, and antifungal effects.

Table 1  Factors affecting 
production of melatonin

Factor Effect on melatonin Remarks

Light Suppress A > 30 lx light intensity in the wavelength of 
460–480 nm has found to be more potent

Light Phase-shift Light of shorter wavelengths found to be efficacious
Timing of sleep Phase-shift Secondarily partial light exposure
Exercise Increased phase-shift Vigorous
5-Hydroxytryptamine increases fluvoxamine Metabolic effect
β-Adrenoceptor-A Decreased synthesis Anti-hypertensive
Chlorpromazine Increases Metabolic effect
Benzodiazepines Changes are variable –
Ibuprofen, Aspirin Decreases –
Alcohol Decreases –
Smoking Possibly changes –
Caffeine Increases –
Oral contraceptives Increases –
Testosterone Decreases –
Estradiol Decreases, but not clear yet –
Menstrual cycle Changes are inconsistent –

Table 2  Amount of melatonin 
in edible plant and related foods

Plant/Food Amount Part/Organ References

Tomato 3–114 ng/g Fruit Iriti et al. (2010), Sturtz et al. (2011)
Strawberry 1–11 ng/g Fruit Iriti et al. (2010)
Rice/Barley 300–1000 pg/g Seed Hattori et al. (1995)
Corn 14–53 ng/g Seed Mena et al. (2012)
Walnuts 3–4 ng/g Seed Reiter et al. (2005)
Olive oil 53–119 pg/ml Seed de la Puerta et al. (2007)
Black pepper 1093 ng/g Leaf Padumanonda et al. (2014)
Curcuma 120 ng/g Root Chen et al. (2003)
Coriander 7 ng/g Seed Manchester et al. (2000)
Black mustard 129 ng/g Seed Manchester et al. (2000)
Almond 39 ng/g Seed Manchester et al. (2000)
Cherry 18 ng/g Fruit Burkhardt et al. (2001)
Pomegranate 5.5 ng/g Fruit Mena et al. (2012)
Fennel 28 ng/g Seed Manchester et al. (2000)
White radish 485 ng/g Bulb Chen et al. (2003)
Beer 52–170 pg/ml Fruit Maldonado et al. (2009)
Wine 50–230 pg/ml Fruit Iriti et al. (2010)
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Receptors and Mechanism of Action

Melatonin is a multifaceted hormone exhibiting its effects 
through endocrine, autocrine, and paracrine modes (Reiter 
2003). Its action is facilitated either by receptor binding 
or acting directly. Within species, the melatonin receptors 
express considerable variability in density and location 
(Morgan et al. 1994; Liu et al. 2016). In mammals, mela-
tonin shows its effect by binding to plasma membrane recep-
tors, intracellular proteins like calmodulin or orphan nuclear 
receptors.

Melatonin also shows interaction with intracellular pro-
tein molecules such as calreticulin, calmodulin, and tubulin 
(Bolliet et al. 1996). Calmodulin is an intracellular second-
ary messenger. Melatonin directly competes with calcium 
for binding to calmodulin (Bolliet et al. 1996; Ekmekcioglu 
2006) which may also be responsible for anti-proliferative 
effect observed in cancers. The immunomodulatory effects 
of melatonin are due to synthesis of IL-2 and IL-6 by mono-
nuclear cells by binding of melatonin to Retinoid-related 
Orphan nuclear hormone receptor family (RZR/ROR) 
(Ekmekcioglu 2006).

In animal cells, melatonin mostly exerts its effects 
through membrane-bound G-protein coupled receptors 
(GPCR) (Jockers et al. 2016). In mammals, melatonin three 
designated GPCR are MT1, MT2, MT3 and also one nuclear 
receptors have been identified (Reppert et al. 1995; Nosjean 
et al. 2000). The receptors of melatonin are widely distrib-
uted and are found in brain, cardiovascular system, aorta, 
cardiac ventricular wall, cerebral and coronary arteries, 
gallbladder, liver, retina, parotid gland, appendix, cecum, 
colon, skin, pancreas, platelets, immune system cells, kid-
ney, brown and white adipocytes, breast and ovarian granu-
losa cells, epithelial cells of prostrate, fetal kidney, and pla-
cental myometrium (Uz et al. 2005, Hardeland 2012). In the 
jejunal and colonic mucosa of the gastrointestinal tract, most 
of the receptors of melatonin are typically located (Bolliet 
et al. 1996). Since the melatonin exhibits its action through 
the involvement of various molecular pathways, the most 
described pathways involve activation of specific membrane 
receptors namely ML1 i.e., high affinity and low affinity i.e., 
ML2 sites (Dubocovich 1995; Morgan et al. 1994). ML1 acts 
directly on the target cells or via G-protein coupled receptors 
and contains two sub types MT1 and MT2 (Li et al. 2013), 
whereas the newly purified ML2 receptors also referred as 
MT3 protein that belongs to quinone reductases family (Car-
dinali et al. 1997). On the basis of chromosome location and 
molecular structure, the receptors of melatonin (MT1 and 
MT2) are described as distinct subtypes (Reppert et al. 1995; 
Dubocovich et al. 2003).

MT1 Receptor

MT1 also known as Mell a receptor is made up of 351 amino 
acids and is encoded by chromosome 4 in humans (Li et al. 
2013). Mell a has a wide distribution in pars tuberalis and 
suprachiasmatic nucleus (SCN) of the hypothalamus the 
anatomical site of the circadian clock, cortex, thalamus, 
substantia nigra, cerebellum, nucleus accumbens, and ret-
ina (Jockers et al. 2008). The binding of melatonin to these 
high affinity receptors of GPCR super family in target cells 
causes inhibition of the adenylate cyclase/cAMP activity and 
increases phospholipase C/IP3 action (Ebisawa et al. 1994). 
MT1 receptors have two subgroups, MT1a and MT2b (Mor-
gan et al. 1994). In cardiac vessels and SCN that express 
MT1 receptor helps to modulate circadian rhythms (Dubo-
covich et al. 1998; Liu et al. 1997) and constrict cardiac ves-
sels (Doolen et al. 1998). Apart from these areas, other parts 
of the brain and peripheral tissues express MT1 (Clemens 
et al. 2001; Ram et al. 2002).

MT2 Receptor

It has 363 amino acids and is coded on human chromosome 
11 (Li et al. 2013). MT2 receptors, also known as Mell b 
receptors, have low affinity and are involved in phospho-
inositol hydrolysis (Brzezinski 1997), retinal physiology 
(Klein 1985), circadian rhythm modulation (Dubocovich 
et al. 1998), cardiac vessel dilation (Doolen et al. 1998), 
and inflammatory responses (Lotufo et al. 2001; Li and Witt-
Enderby 2000; Masana and Dubocovich 2001; Von Gall 
et al. 2002). The localization of MT2 receptors is restricted 
as compared to MT1 and primarily they are found in retina 
and secondarily in hippocampus, cortex, paraventricular 
nucleus, and cerebellum (Zawilska et al. 2009; Li and Witt-
Enderby 2000; Masana and Dubocovich 2001; Von Gall 
et al. 2002).

MT3 Receptor

Initially, MT3 was purified from the kidney of Syrian ham-
ster and showed similar binding profile to MT2 (Dubocov-
ich 1995; Molinari et al. 1996; Nosjean et al. 2000). It was 
discovered that the MT3 protein is 95% identical to human 
quinone reductase 2, a detoxifying enzyme (Nosjean et al. 
2000). Leukotriene B4-induced leukocyte adherence is 
inhibited and intraocular pressure is reduced when MT3 
receptors are activated (Dubocovich et al. 2003).

In addition to this, few properties of melatonin can-
not be described by membrane receptors. Another group 
of receptors known as orphan nuclear hormone receptor 
superfamily RZR/ROR appears to be the natural ligand 
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for melatonin. The immunomodulatory properties of 
melatonin are because of these nuclear bound receptors 
(Carrillo-Vico et al. 2003).

Melatonin Actions (Non‑receptor Mediated)

Most of the activities of the melatonin are receptor medi-
ated; however, a few occur with the involvement of recep-
tor molecule and thus are non-receptor mediated and the 
prominent example is the free radical scavenging activity. 
Melatonin being a strong antioxidant is directly respon-
sible for scavenging of the free radicals and so are its 
metabolites (Galano et al. 2013). It also activates many 
scavenging pathways and enhances the antioxidant enzyme 
activity (Barlow-Walden et  al. 1995; Rodriguez et  al. 
2004). It also binds to the transition metals thus preventing 
the formation of hydroxyl radicals (Galano et al. 2015). 
Melatonin being highly concentrated in mitochondria pro-
tects proteins, lipids, and DNA from oxidative damage 
caused by free radicals (Venegas et al. 2012; Garcia et al. 
2014). The antioxidant role of melatonin is of paramount 
importance for mitochondrial activities where free radical 
production is a natural phenomenon because of cellular 
respiration (Reiter et al. 2017). Apart from antioxidant 
role, melatonin plays a prime role not only in regulating 
respiratory chain complexes I and IV but also prevents the 
mutation and deletion of mitochondrial DNA (Jou et al. 
2002). This action of melatonin results by direct inter-
action between melatonin and protein. Melatonin plays 
an antagonist role in protein degradation by its direct 
interaction with  Ca2+-calmodulin thereby inhibiting the 
 Ca2+/calmodulin-dependant protein kinase II activity and 
autophosphorylation (Benitrez-King et al. 1996). It pre-
vents DNA damage by down regulation of the expression 
of ATM (a phosphoinositide 3-kinase-related kinase) and 
histone H2AX phosphorylation process involved in DNA 
degradation (Majidinia et al. 2017).

Melatonin and Brain

Melatonin has a diverse role and mostly affects brain. It 
has role in regulating circadian rhythm, seasonal adapta-
tion, and puberty development pubertal development (Pandi 
et al. 2008). Melatonin is associated with memory by regu-
lating memory formation by directly affecting hippocampal 
neurons (Comai and Gobbi 2014). It also controls posture 
and balance of the body (Pandi et al. 2008). Melatonin has 
antinociceptive, antidepressant, anxiolytic, and locomotor 
regulating effects (Uz et al. 2005). Melatonin has neuropro-
tective, lowering blood pressure, modulating pain, vascu-
lar, retinal, osteoblast differentiation, seasonal reproductive, 

ovarian physiology, anti-tumor, and antioxidant properties 
(Li et al. 2013). From hypothalamic neurons, secretion of 
gonadotrophin-releasing hormone (GnRH) is regulated by 
melatonin that further affects synthesis of follicle stimulat-
ing hormone (FSH) and luteinizing hormone (LH) (Dubo-
covich et al. 2003). In granulosa cells, the production of 
progesterone is promoted by melatonin (Dubocovich et al. 
2003). Melatonin also inhibits estrogen receptor expression 
and estrogen activation (Carlberg 2000). Melatonin has been 
shown very helpful in treating neurological disorders such 
as Parkinsonism (Gunata et al. 2020), Alzheimer’s disease 
(Vecchierini et al. 2021), brain edema and traumatic brain 
injury (Dehghan et al. 2013), depression (Grima et al. 2018), 
cerebral ischemia (Tang et al. 2014), hyperhomocysteinuria 
(Karolczak and Watala 2021), glioma (Lai et al. 2019), and 
phenylketonuria (Yano et al. 2016). Melatonin was shown 
to inhibit amyloidosis (Shukla et al. 2017).

Antioxidant, Anti‑inflammatory, 
and Neuroprotective Role of Melatonin

In the humans, there is a high consumption of oxygen in 
the brain i.e., 20% and this increased consumption causes 
oxidative stress and generates toxic free radical molecules 
in the body. These high reactive molecules damage DNA, 
proteins, and cell membrane (Gupta et al. 2003). The pres-
ence of considerable amount fat in membrane and myelin 
sheaths enhances the damage by free radicals thus creating 
an imbalance between oxidants and antioxidants (Skaper 
et al. 1999). The damage by reactive oxygen species (ROS) 
results in compromised blood–brain barrier and enhanced 
expression of excitatory neurotransmitter glutamate to extra-
cellular space thereby triggers the depolarization (Gilman 
et al. 1993). The ROS also results in the alteration of gene 
expression, initiate apoptotic cascade, and decreased neuron 
viability (Gilgun-Sherki et al. 2002). Melatonin scavenges 
free radicals endogenously through its role as an antioxidant 
(Tordjman et al. 2017). The intake of melatonin supplemen-
tation enhances the superoxide dismutase (SOD) and glu-
tathione peroxidase (GPx) activity (Mayo et al. 2002). Thus, 
melatonin exerts its neuroprotective potential through its 
antioxidant power. The onset of stroke results in the massive 
destruction of cells with enhanced production of ROS and 
inflammation. The neuron survival is dependent on active 
energy metabolism hence, any obstruction in the cerebral 
flow of blood, restricted glucose and oxygen supply results 
in ischemic stroke that can have catastrophic implication on 
neurons (Flynn et al. 2008). In case of glucose and oxygen 
scarcity, the cell survival is compromised through many 
pathways. In particular, the function of ATP-dependent  Na+/
K+-ATPase is compromised which results in the intracellular 
accumulation of  Na+ resulting in anoxic depolarization and 
activation of voltage-gated calcium channels and reduction 



2443Cellular and Molecular Neurobiology (2023) 43:2437–2458 

1 3

in  Na2+/Ca2+ exchange, the disturbance results in the intra-
cellular accumulation of  Ca2+ which initiates cell injury 
(Stys 1998). Melatonin a potential antioxidant protects from 
ischemic injury (Watson et al. 2016; Wu et al. 2017).

The administration of melatonin in animal models with 
induced stroke results in the reduction of cerebral infarc-
tion (Sinha et al. 2001; Pei et al. 2003). Melatonin imparts 
a protective ability in gray and white matter, diminishes 
the inflammatory cascade and permeability of blood–brain 
(Chen et al. 2006; Lee et al. 2007). Melatonin injection 
attenuates oxidative brain injury in rat models (Ersahin et al. 
2009; Wu et al. 2017). Melatonin also helps in  Ca2+ homeo-
stasis and reduction in extracellular glutamate levels by pre-
venting its release into oxygen glucose-deprived rat model 
of ischemia (Patiño et al. 2016). In rat models with induced 
injury to brain, melatonin showed anti-inflammatory proper-
ties as it reduces the movement of macrophages/monocytes 
and neutrophils in circulation to the damaged area (Lee et al. 
2007). Paredes et al. (2015) reported that intake of mela-
tonin resulted in the significant decrease of intereukin-1β 
(IL-1β), tumor necrosis factor-α (TNF-α), BAD, and BAX in 
the ischemic area of both hippocampus and cortex compared 
to non-administration group.

Alzheimer’s disease (AD) is an age-related disorder that 
results by the deposition of toxic proteins β-amyloid (Aβ) 
and neurofibrillary tangles (NFTs) in memory-related areas 
resulting in progressive cognitive behavior decline (Ittner 
and Gotz 2011; He et al. 2010). Neuronal loss and oxida-
tive stress are triggered by the deposition of harmful protein 
molecules (Sultana and Butterfield 2010; Jeong 2017). Oxi-
dative stress resulting due to accumulation of Aβ generated 
free radicals, membrane dysfunction, and inflammation and 
thereby plays a critical role in the onset of AD (Prasad 2017; 
Nesi et al. 2017). A recent study has reported antiamyloido-
genic melatonin action on AD (Shukla et al. 2017). Mela-
tonin also halts the synthesis of amyloid precursor protein 
(APP) which inturn disrupts the Aβ formation (Lahiri 1999). 
The long-time administration of melatonin is known to pre-
vent the accumulation of Aβ in hippocampus and cortex in 
transgenic mice (Olcese et al. 2009). In AD, melatonin acts 

as a strong antioxidant as it diminishes Aβ-facilitated oxida-
tive stress and lipid peroxidation (Daniels et al. 1998; Shukla 
et al. 2017). It has been reported that melatonin maintains 
the level of certain antioxidants like catalase, GPx, and SOD 
in the cortex of AD transgenic mice (Olcese et al. 2009).

Millions of people are suffering from Parkinson’s dis-
ease (PD) worldwide (Elbaz and Moisan 2008; Wirdefeldt 
et al. 2011). PD is a neurodegenerative disease with multiple 
etiological factors associated with the onset of PD such as 
genetics, age, smoking, dairy products consumption, and 
exposure to manganese and lead (Elbaz and Moisan 2008; 
Hughes et al. 2017; Ma et al. 2017). In substantia nigra pars 
compacta (SNC), there is dopaminergic neuronal loss in 
PD, thus resulting in striatal dopamine depletion which ulti-
mately causes disturbance of the smooth coordinated muscle 
resulting in rigidity, tremor, bradykinesia, and postural prob-
lems (Tansey et al. 2007; Maguire-Zeiss and Federoff 2010). 
A number of reports have demonstrated the age-related PD 
is accompanied with oxidative pressure (Padurariu et al. 
2013). In the onset of PD, free radicals are the initiating 
factors. The integral features of this disease are insomnia 
and depression in PD, and disturbances in sleep are related 
to psychiatric signs and decline in cognitive feature. The 
various factors that cause PD are shown in Fig. 2.

In the striatum and hippocampus, melatonin administra-
tion prevents peroxidation of lipids thereby arresting the 
neuronal death in an MPTP-induced PD model (Antolin 
et al. 2002). In animal models induced with PD, melatonin 
regulates the antioxidant enzyme activity of SOD and cata-
lase in the nigrostriatal pathway in 6-OHDA. Therefore, it 
can be seen that melatonin exhibits its neuroprotective prop-
erties through its antioxidant and anti-inflammatory actions.

Melatonin and Hypertension

Hypertension is more frequently observed in obese individu-
als in comparison to lean cases, and melatonin’s role in mod-
ulating and regulating blood pressure seems an interesting 
subject for researchers from many years (Poirier et al. 2006; 
Qin et al. 2013; Cook et al. 2011). In mammals, melatonin 
regulates heart rate and arterial blood pressure (BP) (Simko 
and Pechanova 2009; Reiter et al. 2010) as the receptors 
for melatonin are identified in heart and different arterial 
beds (Capsoni et al. 1994; Krause et al. 1995; Pang et al. 
1993, 1996). Subjects with hypertension exhibit disturbed 
day–night rhythms with changes in sympathetic and para-
sympathetic cardiac tone (Nakano et al. 2001). Individuals 
suffering from coronary heart ailment an outcome of the 
hypertension show reduced melatonin levels during the night 
hours (Brugger et al. 1995). Similarly, pinealectomy in rats 
has been reported to result in hypertension, and administra-
tion of endogenous melatonin has inhibited the increase in 
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BP in pinealectomised rats (Simko and Paulis 2007). There 
is strong evidence that people with hypertension during 
day hours have disordered circadian rhythms (Simko and 
Paulis 2007). From pineal gland, the melatonin secretion 
is controlled by SCN (Buijs et al. 2003), melatonin through 
its high affinity receptors sends feed back to SCN there by 
controls its own production and other circadian rhythms 
(Amaral and Cipolla-Neto 2018). Night hour’s melatonin 
secretion directly boosts circadian rhythms through the 
principal pacemaker and has a critical role in improving the 
day–night rhythms (Cipolla-Neto and Amaral 2018) and BP 
(Scheer et al. 2004). Grossman et al. (2006) reported that 
administration of melatonin (2 mg for 4 weeks) at bed time 
reduced the nocturnal systolic and diastolic BP. There are 
a number of ways by which melatonin exerts its influence 
on BP. ROS and reactive nitrogen species (RNS) have sig-
nificant role in the occurrence of hypertension (Anwar et al. 
2001; Pechanova et al. 2006), while antioxidants diminish 
the hypertensive effects of ROS and NOS. The melatonin is 
reported to reduce BP by lowering the intracellular super-
oxide anion content, malondialdehyde, NF-κB expression, 
and enhancing GPx activity (Girouard et al. 2004; Nava et al. 
2003; Paulis 2006). In young women patients with hyperten-
sion, lower levels of nocturnal melatonin were considered 
as risk factor in hypertension development (Forman et al. 
2010). In hypertensive patients, impairment in secretion of 
melatonin resulted in decrease of nocturnal levels of mel-
atonin (Zeman et al. 2005). As a result of these findings, 
melatonin is a potent therapeutic molecule in non-dipper 
patients or cases with hypertensive heart disease or noctur-
nal hypertension (Reiter et al. 2010). The intake of mela-
tonin in individuals with nocturnal hypertension reduced 
systolic and diastolic blood pressure (Grossman et al. 2011).

Melatonin and Diabetes

Diabetes mellitus (DM) is a disorder of carbohydrate metabo-
lism that is associated with elevated glucose levels in blood 
and defects in secretion and action of insulin (Ali et al. 2017a, 
b; Bhat et al. 2017). Melatonin has gained its importance 
because of its role in sleep and circadian regulation. How-
ever, during recent past, it has gained importance for its role 
in glucose tolerance and type 2 diabetes (T2D) risk or treat-
ment. This is due to partial discovery of T2D risk variants 
in MTNR1B and partially negative impact of disturbed cir-
cadian rhythms on glucose metabolism (Mason et al. 2020). 
The disturbance in circadian rhythm has been reported to 
result in metabolic syndrome including obesity and diabetes 
(Pulimeno et al. 2013). There are many reports about the role 
of melatonin in insulin secretion and glucose homeostasis. A 
diminished level of melatonin has been reported in patients 
with T2D (Prokopenko et al. 2009). A study conducted on 

the role of melatonin glucose homeostasis in young Zucker 
diabetic fatty (ZDF) rats, an experiment model of metabolic 
syndrome and T2D revealed that oral administration of mela-
tonin results in anti-hyperglycemic effect in young ZDF rats 
through improvement in β-cell function (Agil et al. 2012). 
Studies have revealed that deficiency of melatonin receptor 
has a direct bearing on levels of pancreatic islet hormones and 
glucose transporters (Glut 1 and Glut 2) (Bazwinsky-Wutschke 
et al. 2014). The relation between melatonin and T2D on the 
basis of a finding that secretion of insulin is inversely pro-
portional to concentration of melatonin in plasma (Peschke 
et al. 2013). Subduing the secretion of melatonin as a result 
of nocturnal light exposure could be vital parameter in onset 
of T2D (Fonken and Nelson 2014). A large number of lit-
erature suggest a correlation between disturbed sleep orders 
and decreased glucose tolerance and T2D (Donga et al. 2010; 
Yaggi et al. 2006). A study reported by Hajam et al. (2022) 
has reported the therapeutic efficacy of coadministration of 
insulin and melatonin rat models with diabetes-induced renal 
injury. The outcome of the study reported has revealed that the 
combination of insulin and melatonin may be quite effective 
to treat renal alterations caused by diabetes as confirmed by 
sera biochemical parameters, anti-inflammatory molecules in 
serum, and histoarchitecture changes in kidney (Hajam et al. 
2022). The melatonin administration modulates the synthesis 
of insulin in the pancreatic β-cells as well as enhancing the 
optimistic insulin effect (Hajam and Rai 2019).

Melatonin and Cancer

During the last century, different reports have assessed the 
oncostatic properties of melatonin against various malignan-
cies like colorectal, breast cancer, prostate cancer, leukemia, 
pancreatic cancer, and melanoma (Foon 1989). These studies 
provided a promising result in the breast cancer cells that 
express estrogen receptors. Cancer accounts for the most 
number of deaths globally after cardiovascular diseases 
(Ferlay et al. 2012; Fitzmaurice et al. 2015). Statistically 
lung cancer results in most number of deaths in both sexes, 
while prostate cancer figures top in male deaths and breast 
cancer among female deaths (Ferlay et al. 2012; Fan et al. 
2015; Torre et al. 2016; James et al. 2017). The availabil-
ity of data of neoplastic diseases upto now clearly suggests 
the progression of human cancers not only depends disease 
biological characteristics like mutation, overexpression of 
genes, grading, histology, but also on immunobiological 
response of patient that includes immune and endocrine 
system status as well (Foon 1989). Similarly, the malfunc-
tioning of the immune system does not rely on immune cells 
activity but also on modulation of neuroendocrine physi-
ology, that is primarily influenced by pineal system. The 
pineal gland exerts anti-tumor anti-proliferative functions 
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through secretion of peptide hormones and various anti-
cancer indole molecules and mostly widely the melatonin 
hormone (Brzezinski 1997). Prior to the characterization of 
pineal gland hormones, it was known that the onset of tumor 
and dissemination was due to pinealectomy (Buswell 1975). 
The associations between melatonin and cancer have been 
studied from many decades and a large number of epidemio-
logical studies favor the protective potential of melatonin 
against cancer (Nooshinfar et al. 2017; Li et al. 2017). Dif-
ferent research studies have reported other than melatonin, 
many anticancer hormones may be produced by pineal gland 
(Anisomov et al. 2001). Various studies have demonstrated 
the preventive role of melatonin in different type of cancers 
(Cos and Sanchez-Barcelo 2000; Wang et al. 2012; Kanishi 
et al. 2000; Subramanian et al. 2007). An important property 
of melatonin that makes it helpful in combating the tumor 
is its ability to diminish neoplastic amplification with cyto-
static and cytotoxic actions (Martin et al. 2007; Liu et al. 
2016). Several other studies reported the protective role 
of melatonin against mammary cancer (Kosar et al. 2016; 
Gatti et al. 2017). A decrease in circulating melatonin has 
been reported to be associated with increased prevalence of 
mammary tumors through carcinogen 7,12-dimethylbenz(a)-
anthracene (DMBA) the treatment with melatonin minimizes 
the incidence (Chu et al. 2018). Melatonin in combination 
with retinoic acid on MCF-7 hormone-dependant breast can-
cer cells has completely blocked the cell growth and reduced 
the cell number by activation of apoptosis (Margheri et al. 
2012). Other researchers have reported that melatonin sup-
presses the progress of tumor through its ability to inhibit the 
differentiation of cell cycle (Sánchez-Sánchez et al. 2011; 
Cabrera et al. 2010; Martin et al. 2007).

Melatonin and Obesity

There is substantial evidence connecting impaired circadian 
clock and obesity development. Despite the fact that the 
causal association between obesity and chronodisruption is 
bi-directional (Bray and Young 2012), melatonin and its ago-
nists administration have proven to be effective in circadian 
rhythm resetting (Zawilska et al. 2009) and correcting dis-
orders associated to obesity (Cardinali et al. 2011; She et al. 
2009; Oxenkrug and Summergrad 2010). Furthermore, obesity 
is linked to a variety of comorbidities like sleeping disorders 
and melatonin or other medications have shown to be effec-
tive (Cardinali et al. 2011). Melatonin is hypothesized to play 
a role in energy metabolism and body weight management. 
In the body of seasonal animals, melatonin’s involvement in 
modulating metabolism and fat mass was first studied and 
established (Bartness and Wade 1985), and it was connected 
to its activity as a seasonal and circadian rhythm regulator 
(Arendt 2006). Depending on the animal species, any rise in 

circulation melatonin levels owing to photoperiodic variations 
or exogenous melatonin injection was eventually related with 
a loss or increase in body fat mass in these seasonal animals 
(Bartness and Wade 1985). Exposure to long photoperiod con-
ditions of obese Zucker rats resulted in increased body weight 
as compared to short photoperiod exposed animals (Larkin 
et al. 1991). In accord, the elimination of the pineal gland 
decreased levels of melatonin in circulation and in obese rats 
elevated body weight as compared to healthy rats after 3 weeks 
(Prunet-Marcassus et al. 2003). In normal rats when postop-
erative duration was increased to 2 months, they gained weight 
in both the body and the heart (Kurcer et al. 2006). Melatonin 
(30 mg/kg/day, i.p. 1 h before lights-out) could prevent these 
pinealectomy-induced changes for 3 weeks (Prunet-Marcassus 
et al. 2003). The same researchers found that melatonin given 
in the same way could minimize body weight gain caused by 
a high-fat meal while having no effect on overall food intake 
(Prunet-Marcassus et al. 2003). Obesity-induced dyslipi-
demia symptoms have been demonstrated to be improved by 
melatonin. This was first noticed in non-obese hypercholes-
terolemia rats (Hussain 2007), and later validated in differ-
ent obesity-induced rat models (Agil et al. 2012). Melatonin 
performs its diverse functions via receptor-mediated or non-
receptor-mediated routes, as previously indicated (Venegas 
et al. 2012). The therapeutic potency of melatonin in treat-
ment and prevention of obesity has been well summarized with 
high efficacy results in animal models (Barrenetxe et al. 2004; 
Shieh et al. 2009).

Melatonin and Autoimmunity

Multiple studies have linked onset of immune-compro-
mised diseases like rheumatoid arthritis (RA), multiple 
sclerosis (MS), systemic lupus erythematosus (SLE) 
with exogenous and endogenous production of melatonin 
despite the scarcity of data on the relationship of mela-
tonin to other autoimmune diseases. In this regard, psori-
atic patients have shown to have disturbances in secretion 
of circadian melatonin (Mozzanica et al. 1988). In indi-
viduals with autoimmune hearing loss, melatonin inhibits 
proliferation of lymphocytes induced by type II collagen 
(Lopez-Gonzalez et al. 1997) and protects against idio-
pathic membranous nephropathy in an experimental model 
(Wu et al. 2012). Globally, 1% of the population is affected 
by Rheumatoid arthritis (RA) and the effects of melatonin 
on this autoimmune disorder appear to be debatable (McI-
nnes and Schett 2011). RA is a progressively inflamma-
tory disease that severely affects joints thereby leading 
to severe disability (Ali et al. 2017a, b). Several studies 
using experimental arthritis models suggest melatonin 
(endogenous and exogenous) has a negative effect. As a 
result, animals kept in constant darkness develop severe 
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form of collagen-induced arthritis with increased titers of 
sera anti-collagen antibodies in comparison to animals liv-
ing in constant light. Pinealectomy was used to counter-
act the effect of constant darkness (Hansson et al. 1993). 
Furthermore, a severe type of arthritis was developed in 
mice placed under constant light and immunized with type 
II collagen, whereas melatonin administration at disease 
onset (days 30–39) had no effect on the clinical signs of 
the disease (Hansson et al. 1992). In an adjuvant-induced 
arthritis model, a preventive and/or therapeutic therapy 
with the indoleamine lowers hind paw swelling in a com-
parable fashion to indomethacin (Chen and Wei 2002) 
in comparison to studies that showed the harmful effect 
of melatonin. Enhanced RA incidence and severity have 
been linked to higher latitudes, suggesting that increased 
melatonin production during long winter nights may be 
linked to RA. The development of RA is inversely related 
to UV-B exposure as these rays tend to decrease mela-
tonin synthesis from pineal gland (Arkema et al. 2013). In 
individuals with RA, levels of nocturnal melatonin were 
higher in patients from Europe as compared to people from 
Italy (Cutolo et al. 2005). In early morning, the symp-
toms of RA get worsen (Cutolo and Masi 2005). Different 
studies have reported that individuals with RA had raised 
levels of sera melatonin in early morning in comparison to 
healthy individuals (Cutolo et al. 2005; Sulli et al. 2002). 
In individuals with RA, melatonin levels were signifi-
cantly reduced in plasma (West and Oosthuizen 1992). In 
RA-cultured synovial macrophages, the sites for binding 
of melatonin molecule had higher affinity and intake of 
melatonin increased levels of NO and IL-12, respectively 
(Maestroni et al. 2002; Cutolo et al. 1999). The melatonin 
levels were higher synovial fluid of individuals with RA 
(Maestroni et al. 2002).

In young adults, Multiple sclerosis (MS) is the most preva-
lent neurological disorder with global incidence of 1.1–2.5 
million cases and an increased worldwide incidence in middle-
aged women. It is a neurodegenerative disease that is caused 
by an immunological response to myelin (Lassmann and Hors-
sen 2011). Even though etiology of MS is still unknown, one 
of the environmental elements that appears to be involved 
is latitude, as the disease's incidence in northern countries 
increases (Kurtzke 1977). Because the incidence decreases in 
hilly areas compared to nearby lower areas (Kurtzke 1967), 
this has been linked to a reduction in sunshine exposure (van 
der Mei et al. 2003). Lately, shift work at an early age has been 
linked to an elevated risk of MS, with a positive association 
between MS risk and shift work length (Hedstrom et al. 2011). 
Melatonin and a MT6 circadian rhythms are both disrupted in 
MS patients. Melatonin had an inverted circadian rhythm in a 
large percentage of patients with worsened MS (Sandyk and 
Awerbuch 1992).

Systemic lupus erythematosus (SLE) is a complex auto-
immune condition with an estimated incidence of 20–150 
cases per 100,000 individuals and 1–10 new cases per 
100,000 individuals yearly. In blood and tissues, the forma-
tion of immune complexes causes substantial tissular dam-
age which is a prominent feature of SLE (Tsokos 2011). In 
the case of melatonin and lupus, a circadian rhythm uncou-
pling has been seen in lupus-prone mice (Lechner et al. 
2000).

In mouse models of SLE, melatonin therapy has incon-
sistent effects, depending on the various criteria such as the 
administration timing and animal sex. Morning melatonin 
administration improved survival in lupus-prone mice, but 
the benefit was not replicated with evening treatment (Lenz 
et al. 1995). In kidney of female mice, melatonin supplemen-
tation effectively reduced vascular lesions and inflamma-
tory infiltration, decreasing anti-collagen II and antidsDNA 
autoantibody titers, lowering production of pro-inflamma-
tory cytokine, and increasing anti-inflammatory cytokine 
generation both in animals prone to lupus (Jimenez-Caliani 
et al. 2006) and in pristane-induced lupus (Zhou et al. 2010). 
Melatonin had little impact or aggravated the condition in 
male lupus-prone mice (Jimenez-Caliani et al. 2006).

Melatonin and Sepsis

Primarily sepsis is a microbial infection that causes sys-
temic inflammation in the host body. Generally, microbial 
pathogens like bacteria, viruses, fungi, and other parasites 
(Annane et al. 2005; Calandra and Cohen 2005) cause it. It 
has been found that gram-negative bacteria possess lipopoly-
saccharide (LPS) in their cell wall that is ultimately been 
found to be responsible for sepsis initiation (Sriskandan and 
Cohen 1995). LPS causes significant induction of gene and 
expression of inflammatory molecules such as cytokines, 
chemokines, iNOS, and heat shock proteins by activating 
intracellular signaling pathways such as nuclear factor κB 
(Victor et al. 2004; Tsiotou et al. 2005). The natural balance 
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between pro-inflammatory and anti-inflammatory mediators 
is broken during sepsis, resulting in the release of several 
inflammatory mediators (Pinsky 2001). In early phase of 
sepsis, soluble inflammatory molecules such as IL-1 and 
TNF-α are released. IL-1 causes ROS generation and pro-
tease stimulation, whereas cell activation is caused by TNF-
α. In the onset of sepsis, mediators such as interferons and 
interleukins are involved. In both humans and animal mod-
els, melatonin supplementation has been effective in treating 
septic shock. The beneficial characteristics of melatonin in 
sepsis and bacterial infections are shown in Fig. 3.

Melatonin and Malaria

Malaria is one of the severe protozoal diseases that affects 
about 200 million people worldwide and kills over one mil-
lion people each year (Sato 2021). Apart from Plasmodium 
falciparum, which in humans commonly causes malaria, a 
more known virulent parasite is Plasmodium knowlesi that 
rapidly spread not only in Malaysia but also throughout the 
world (White 2008; Yusof et al. 2014; Singh and Danesh-
var 2013). In the past, a global malaria eradication initia-
tive involving insecticide spraying yielded positive results. 
Malaria infections have been successfully eradicated thanks 
to potent antimalarial drugs, but with the increased drug 
resistance there is a reemergence of drug-resistant-asso-
ciated malaria. Melatonin works as a trigger for Plasmo-
dium falciparum growth and development, according to 
recent discoveries in malarial parasite genetic investiga-
tions (Mallaupoma et al. 2022). The same might be true for 

Plasmodium knowlesi. As a result, therapeutic strategies that 
successfully inhibit melatonin action on species of Plasmo-
dium throughout the night involve therapy of bright light or 
blocking receptors of melatonin can be regarded as viable 
options for eradicating malaria in humans. The therapeutic 
implication of melatonin on Plasmodium falciparum cell 
cycle is represented in Fig. 4.

Melatonin in Vaccination

Vaccines are a significant effort to develop immunity to a 
specific disease and a growing attention toward enhanc-
ing the efficiency of preexisting vaccines. Vaccination’s 
immune-promoting efficacy is defined by antigenic part 
and appropriate adjuvants that are efficient in generating 
and supporting an effective immune response to pathogenic 
pathogens. Some in vivo research have looked into using 
melatonin as a vaccine agent, based on its immunoregula-
tory qualities. In sheep, lameness (Katz et al. 1991) is caused 
by Dichelobacter nodosus (Regodón et al. 2005) and the 
administration of melatonin enhanced humoral response in 
vaccinated sheep. The melatonin administered via injections 
or implants also increased response of platelets to thrombin 
stimulation thus improving aggregation rate, percentage, and 
lag time (Regodón et al. 2012). In sheep’s vaccinated with 
Clostridium perfringens type D, the administration of mela-
tonin evoked beneficial immune response (Regodón et al. 
2012). Interestingly, it was also found that immunization 
time also plays a vital part in imparting beneficial effects of 
melatonin as highest concentration of sera antibodies was 
found after vaccination prepartum. In vaccine development 
against prostrate cancer, the potential use of melatonin has 
been described; however, no data have been published till 
now (Connor 2008). Melatonin significantly improved the 
vaccine effectiveness of cercarial and soluble worm anti-
gens, and also elevated GSH levels (Soliman et al. 2008). In 
the vaccination development against Alzheimer’s disease, 
melatonin use as a adjuvant has proved quite effective.

Melatonin and Reproduction

Melatonin is a potential molecule with wide variety of physi-
ological properties and is known to affect reproductive status 
in different species (Thiéblot and Le Bars 1955). Before the 
discovery of melatonin, a study by Huebner in 1898 reported 
that the tumor of pineal gland in humans affected pubertal 
development and suggested that some molecule of pineal 
lineage influences reproductive function. Many researchers 
have investigated the relationship between the pineal and 
reproductive state in a number of species as a result of this 
finding, but few have been successful in proving a functional 
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relationship (Thiéblot and Le Bars 1955). A study reported 
that in female rats that were administered with exogenous 
melatonin reduced ovarian weight (Wurtman et al. 1963). 
Ever since, there has been a plethora of evidence suggesting 
that reproductive function in numerous species is influenced 
by the pineal gland, via melatonin (Reiter 1993). There is 
substantial evidence that the photoperiod-mediated fre-
quency of melatonin secretion has a direct impact on repro-
ductive capacity. Melatonin’s key physiological purpose is 
to describe the daily light/dark (LD) cycle. The potential 
impact of melatonin on reproductive functions is shown in 
Fig. 5.

Melatonin in Mood Disorders

The role of melatonin has been found in the development 
of various mood disorders such as bipolar disorder (BD), 
major depressive disorder (MDD), and seasonal affective 
disorder (SAD). The major abnormalities associated with 
BD patients are the disturbances in sleep especially reduced 
sleep during night and abnormal circadian rhythms (Har-
vey 2008; Mansour et al. 2005). In individuals affected with 
BD, a marked decrease in secretion of melatonin is seen 
in depressed stage, and with symptoms remission, it was 
restored to normal. In individuals with MDD disturbances 
like wakefulness in early morning hours, mood, alertness, 
and fatigue during day time are more commonly known. 
The individuals with MDD have increased levels of mela-
tonin in their body, and a phase wise shift of this hormone 
is considered as the utmost clinical feature of this disorder. 
In SAD, patients during winter season experience depres-
sion episodes and euthymia in summer time. The seasonal 
variations of melatonin are found in SAD individuals. In the 
pathogenesis of mood disorders, most of the patients suffer 
from disturbances in circadian rhythms and sleep. In indi-
viduals with several mood disorders, altered melatonin lev-
els cause abnormalities in the biological clock functioning 

located in suprachiasmatic nuclei of anterior hypothalamus. 
Hence, treatment procedures should be developed on using 
antidepressant medications that can restore circadian clock 
functioning, and in this context, Agomelatine has been found 
to be quite effective as an antidepressant drug. Agomelatine 
is a chemically synthesized naphthalenic compound that 
primarily acts on MT1 and MT2 receptors. The half-life of 
this drug is higher than melatonin and is primarily metabo-
lized in the liver via CYP isoenzymes (CYPA1, CYPA2, 
and CYP2C9). Agomelatine shows no significant affinity 
against receptors of adrenergic, dopaminergic, muscarinic, 
and histaminergic. In the treatment of mood disorders, Ago-
melatine is quite useful as it resynchronizes abnormal circa-
dian rhythms and disturbed patterns of sleep (Kennedy et al. 
2011). In addition to antidepressant property of Agomela-
tine, no adverse effects like disturbances in sleep patterns, 
discontinuation of medications, and sexual dysfunction were 
not found. Agomelatine has also found to be quite efficient 
in treating obsessive compulsory disorders (Fornaro 2011). 
In recent times, a number of research studies have reported 
that Agomelatine shows good clinical efficacy, safety, and 
tolerability (Rouillon 2006; Kennedy and Rizvi 2010).

Melatonin in Transplantation

The role of melatonin has also been found in prolonged 
survival of graft as beneficial in animal models. In a rat 
model with cardiac transplant, melatonin (200 mg/kg) was 
found to inhibit allograft immune response as it reduced 
proliferation of lymphocytes thus stopping rejection and 
increasing survival of graft (Jung et al. 2004). Simultane-
ously, after prolonged ischemia in lungs with reperfusion 
injury similar effects were observed (Inci et al. 2002). In 
non-obese diabetic mice, high administration of melatonin 
predominantly enhanced survival of islet graft as it inhib-
ited T cell proliferation and increased IL-10 cell population 
(Lin et al. 2009). In a rat model with ovary transplantation, 
the melatonin administration depicted immunosuppressive 
property (Sapmaz et al. 2003). A comparable research study 
of ovarian grafts in humans treated with melatonin showed 
reduced apoptosis (Friedman et al. 2012). In ischemia–reper-
fusion injured animal models, protective effects of melatonin 
administration have been reported (Fildes et al. 2009). The 
intake of melatonin caused reduction in apoptotic cells, oxi-
dative molecules, recruitment of neutrophils, and also raised 
GSH (Baykara et al. 2009).
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Melatonin and Other Infections

During past century, melatonin has been considered as a 
significant antibiotic, anti-parasitic, and antiviral entity 
(Bagnaresi et al. 2012). The protective role of melatonin 
has been found against Venezuelan equine encephalomyeli-
tis virus (VEEV) that causes viral infections (Montiel et al. 
2015). From 1920 to 1970, the outbreaks of this viral infec-
tion occurred in northern part of South America wherein 
thousands of people, donkeys, and horses were affected 
(Bowen and Calisher 1976). This infection also resurfaced 
in 1995 and caused mortality in the affected area (Weaver 
et al. 1996). This infection caused excitation and hypermotil-
ity, subsequently followed by hypomotility, coma, paralysis, 
and death. In mice, a series of experimental studies with the 
infected virus were carried out and after melatonin adminis-
tration the disease onset was delayed with reduced mortality 
rate as the viral load decreased in brain and blood (Bonilla 
et al. 1997). In immunocompetent mice, VEEV levels were 
reduced in brain by melatonin treatment as compared to 
immunodepressed mice, proposing that for depicting anti-
viral activity melatonin requires immune system integrity 
(Bonilla et al. 2001). In encephalitis, a disease caused by 
pathogenic encephalomyocarditis virus (EMCV), the mela-
tonin supplementation in mice prevented paralysis and death 
in rodents infected with EMCV sublethal doses (Wongchi-
trat et al. 2010). A study reported that Semliki forest virus 
(SFV)-infected mice had defects in central nervous system 
and causes death, the administration of melatonin decreased 
viremia, delayed disease onset, and reduced mortality (Car-
rillo-Vico et al. 2013). In various developed models of bac-
terial infections, melatonin seems to have a potent role in 
scavenging of toxic free radicals and also antioxidant proper-
ties (Manchester et al. 2015). In M. tuberculosis, few stud-
ies have reported seasonality in infection cases which peaks 
at start of summer and end of winter season (Liao et al. 
2019). All of the seasonality changes have been reported, 
and few researchers have proposed that annual variations 
in the melatonin concentrations cause seasonal variations 
in the immune system (Ozkank et al. 2012). The melatonin 
supplementation has found to be quite efficient in treating 
parasitic infections.

Melatonin and Pain

The potential damage to a tissue causes pain that is an 
unpleasant sensory feeling. The perception of pain mech-
anism is a multifactorial event consisting of biochemical, 
neurophysiological, humoral, and psychological param-
eters (Shavali et al. 2005). During tissue damage, a range of 
inflammatory molecules such as cytokines, prostaglandins, 

TNF-α, bradykinin, and leukotrienes are released into the 
blood circulation. These inflammatory substances act either 
directly or release agents that act on receptors that promote 
excitability of neurons involved in pathways of pain trans-
mission (Meyer 2006). To control and manage, pain is a sub-
ject of great concern and interest and various drugs are pos-
sibly used for this purpose. Most of the drugs used whether 
non-steroidal anti-inflammatory drugs or aspirin show 
their effect by inhibiting cyclooxygenases (Fokunang et al. 
2018). In humans and rodents, pain perceptions with diurnal 
variations have been described (Tappe‐Theodor and Kuner 
2014). It has been found that during dark phase, individu-
als experienced less pain, whereas in healthy human cases, 
prolonged delay in pain levels was reported (Tappe‐Theo-
dor and Kuner 2014). This phenomenon was possibly attrib-
uted to elevated levels of melatonin at night, and with this 
observation, a number of experimental designs and models 
were developed. The antinociceptive property of melatonin 
as reported by early studies demonstrates the involvement 
of benzodiazepinergic (BZD) and opiate pathways. Besides 
these, melatonin influences its effects via neurotransmitter 
systems and associated receptor sites sigma system, BZD, 
adrenergic, serotonergic, glutamatergic, dopaminergic, and 
directly via MT1/MT2 receptors (Mantovani et al. 2006). 
Antinociceptive property is also exerted by nitric oxide mol-
ecule interacting via cyclooxygenase (COX) and NMDA 
receptors (Cury et al. 2011).

Melatonin and Polycystic Ovary Syndrome 
(PCOS)

Polycystic ovary syndrome (PCOS) is a complex endo-
crine disorder affecting 20% of women at reproductive age 
(Shaikh et al. 2014). PCOS occurs due to the interaction 
of various environmental and genetic factors. The clini-
cal features associated with PCOS are hyperandrogenism, 
anovulatory infertility, menstrual irregularity, and obesity 
and due to these complaints women often seek treatment. 
Despite the recent developments made in the understanding 
and treatment procedures over the years, many questions 
still remain unanswered; however, changing lifestyle includ-
ing weight loss and nutritional counseling are included in 
treatment plan. The oocytes, follicular cells, and cytotropho-
blasts are some of the sites of melatonin production in the 
female reproductive system. The receptors of melatonin in 
the ovary and intra-follicular fluid maintain the secretion of 
sex steroid at various phases of follicular maturation. Dur-
ing the follicular maturation, melatonin protects the ovar-
ian follicles as it is a strong antioxidant and scavenges free 
radicals effectively. In the female reproductive physiology, 
the melatonin effects are mediated via the receptors located 
in ovarian, hypothalamic, and pituitary sites (Reiter et al. 
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2009). Melatonin has been known to protect oocytes and 
developing fetus from oxidative stress (Tan et al. 2003). In 
women affected with PCOS, the levels of melatonin have 
been measured by various studies to know about its role in 
pathogenesis (Luboshitzky et al. 2003, 2004). Some research 
studies have suggested that the administration of exogenous 
melatonin improves glucose hemostasis and endothelial 
vascular function in experimental animal models (Pai and 
Majumdar 2014). In PCOS individuals, the melatonin intake 
imparts protective features against reproductive and meta-
bolic abnormalities.

Melatonin Agonists

As melatonin hormone possesses various beneficial prop-
erties as a result of which many agonists of it have been 
synthesized. In numerous pathologies, a combination of 
melatonin with other drugs has proven to be quite useful. 
The therapeutic potential of melatonin molecule is limited 
because of its short half-life in circulation. Some of the ago-
nists of melatonin are depicted below.

Agomelatine

It is synthetic and effectively potential agonist of MT1/MT2 
receptors. A > 100 fold selectivity is shown by Agomela-
tine to MT1/MT2 receptors. The half-life of Agomelatine 
is higher (2 h) as compared to melatonin. In more than 40 
countries of the world, this drug is available now in the 
market and is mostly used for treatment of adult depres-
sion (Fornaro 2011; Carney and Shelton 2011). In patients 
with depressive disorders, this drug relives symptoms and 
restores circadian rhythms. Even though the clinical aim of 
this drug was to target moderate to severe depression, how-
ever, this agonist of melatonin has been found to be quite 
effective in treating GAD, SAD, and BD (da Rocha and Cor-
rea 2011). The chronobiotic and sleep inducing effects of 
Agomelatine are due to its melatonergic receptors located in 
SCN. In all the research studies conducted so far, Agomela-
tine has shown good safety and tolerability.

Tasimelteon

A non-selective agonist of MT1/MT2 receptor family is 
Tasimelteon drug. This drug has successfully passed Phase 
III trials where it was found quite effective in improving 
maintenance and onset of sleep with minimal side effects 
(Arendt and Rajaratnam 2008).

Ramelteon

In 2005, FDA approved this drug for treating sleep disorders, 
insomnia, and other alterations in sleep (Cajochen 2005). 
This drug is quite selective agonist with high affinity (3–16 
times than melatonin) for receptors of MT1/MT2 (Kato et al. 
2005). In patients of insomnia with different age groups 
(18–83 years), this drug was found to elevate total sleep 
duration in affected individuals (Greenblatt et al. 2007). Fur-
thermore, this drug showed no affinity to MT3, dopamine, 
benzodiazepine, opiate, and serotonin receptors (Zammit 
et al. 2009). In the circulation, the half-life of Ramelteon is 
much longer (1–2 h) than melatonin. In the gastrointestinal 
tract, about 84% of Ramelteon is quickly absorbed.

Piromelatine

This drug is agonist of  5HT
1A,  5HT

1D, and  5HT
2B and is still 

under development with studies in rodent animal mod-
els. This drug has completed Phase II study and its target 
includes treatment of insomnia, anxiolytic, and antidepres-
sant effects.

Conclusion

Melatonin is a ubiquitous molecule with wide distribution 
in nature and is synthesized by animals, humans, plants, 
fungi, and unicellular organisms. Biologically melatonin 
mostly acts through G-protein-coupled receptors located in 
the plasma membrane with  MT1 and  MT2 being the two 
functional receptors. All mammals express these in dif-
ferent organs of the body including the humans. A wide 
range of functions is displayed by melatonin like immune 
regulating, antioxidant, reproduction, puberty timing, hyp-
notic, oncostatic, mood, behavior, pain and chronobiotic. 
Deficiencies in the production of melatonin or impaired 
receptor expression have been linked to various anomalies 
like obesity, breast cancer, neurological disorders, diabetes, 
hypertension, prostate cancer, autoimmune disorders, mood 
disorders, and transplantation. The involvement of melatonin 
molecule in chronic insomnia and sleep disorders has been 
found. In decreasing oxidative damage, melatonin function 
seems to be quite vital. To prevent and treat various disor-
ders, the administration of exogenous melatonin has been 
used by many clinical trials. Many melatonin agonists have 
been synthesized and developed with the aim to treat various 
disorders. A novel clinical area has been formed with the 
development of new melatonin agonists as they possess bet-
ter pharmacokinetics. Thus, melatonin is a quite important 
hormonal molecule in the biological living world.
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