Skip to main content

Advertisement

Log in

The Role of Mitophagy in Various Neurological Diseases as a Therapeutic Approach

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondria are critical to multiple cellular processes, from the production of adenosine triphosphate (ATP), maintenance of calcium homeostasis, synthesis of key metabolites, and production of reactive oxygen species (ROS) to maintain necrosis, apoptosis, and autophagy. Therefore, proper clearance and regulation are essential to maintain various physiological processes carried out by the cellular mechanism, including mitophagy and autophagy, by breaking down the damaged intracellular connections under the influence of various genes and proteins and protecting against various neurodegenerative diseases such as Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD), and Huntington disease (HD). In this review, we will discuss the role of autophagy, selective macroautophagy, or mitophagy, and its role in neurodegenerative diseases along with normal physiology. In addition, this review will provide a better understanding of the pathways involved in neuron autophagy and mitophagy and how mutations affect these pathways in the various genes involved in neurodegenerative diseases. Various new findings indicate that the pathways that remove dysfunctional mitochondria are impaired in these diseases, leading to the deposition of damaged mitochondria. Apart from that, we have also discussed the therapeutic strategies targeting autophagy and mitophagy in neurodegenerative diseases.

Graphical Abstract

The mitophagy cycle results in the degradation of damaged mitochondria and the biogenesis of new healthy mitochondria, also highlighting different stages at which a particular neurodegenerative disease could occur

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AD:

Alzheimer's disease

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

DCT-1:

(DAF-16/FOXO-controlled germline-tumor-affecting-1)-dependent pathway

CMA:

Chaperone-mediated autophagy

HD:

Huntington’s disease

HTT:

Huntington

IMM:

Inner mitochondrial membrane

LB:

Lewy bodies

LN:

Lewy Neuritis

mtDNA:

Mitochondrial DNA

Mfn1 and Mfn2:

Mitofusin 1 and 2

MND:

Motor neuron disease

MPAT:

Microtubule-linked protein Tau

MUL1:

Mitochondrial ubiquitin ligase 1

OMM:

Outer mitochondrial membrane

OPA1:

Optic dominant atrophy 1

OPTN:

Optineurin

OXPHOS:

Oxidative phosphorylation

PD:

Parkinson's disease

PINK1:

PTEN-induced kinase1

PDR-1:

Parkinson disease-related-1; parkin

ROS:

Reactive oxygen species

SREBF1:

Sterol regulatory element-binding transcription factor1

References

  • Al-Bari M, Alim A (2020) A current view of molecular dissection in autophagy machinery. J Physiol Biochem 76:357–372

    PubMed  Google Scholar 

  • Amati-Bonneau P, Milea D, Bonneau D, Chevrollier A, Ferré M, Guillet V, Gueguen N, Loiseau D, de Crescenzo MAP, Verny C (2009) OPA1-associated disorders: phenotypes and pathophysiology. Int J Biochem Cell Biol 41:1855–1865

    CAS  PubMed  Google Scholar 

  • Ambivero CT, Cilenti L, Main S, Zervos AS (2014) Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal 26:2921–2929

    CAS  PubMed  Google Scholar 

  • Beach TG, Walker R, McGeer E (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2:420–436

    CAS  PubMed  Google Scholar 

  • Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60:557–569

    CAS  PubMed  Google Scholar 

  • Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284:6476–6485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Jeong YY (2020) Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 9:150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B, Hetz C (2013) Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9:1308–1320

    CAS  PubMed  Google Scholar 

  • Catalán García M (2017) Mitochondrial profile and amyloidogenic molecules in sporadic inclusion body myositis. Universitat de Barcelona

    Google Scholar 

  • Cen X, Chen Y, Xu X, Wu R, He F, Zhao Q, Sun Q, Yi C, Wu J, Najafov A (2020) Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer’s disease mouse model. Nat Commun 11:1–13

    Google Scholar 

  • Chen Y, Liu H, Guan Y, Wang Q, Zhou F, Jie L, Ju J, Pu L, Du H, Wang X (2015) The altered autophagy mediated by TFEB in animal and cell models of amyotrophic lateral sclerosis. Am J Trans Res 7:1574

    CAS  Google Scholar 

  • Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15:1197–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Correia SC, Perry G, Moreira PI (2016) Mitochondrial traffic jams in Alzheimer’s disease-pinpointing the roadblocks. Biochim Biophys Acta (BBA)-Mol Basis Dis 1862:1909–1917

    CAS  Google Scholar 

  • Crews L, Rockenstein E, Masliah E (2010) APP transgenic modeling of Alzheimer’s disease: mechanisms of neurodegeneration and aberrant neurogenesis. Brain Struct Funct 214:111–126

    CAS  PubMed  Google Scholar 

  • Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deas E, Wood NW, Plun-Favreau H (2011) Mitophagy and Parkinson’s disease: the PINK1–parkin link. Biochim Biophys Acta (BBA)-Mol Cell Res 1813:623–633

    CAS  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    CAS  PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel J, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    CAS  PubMed  Google Scholar 

  • Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P (2016) Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166:408–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans CS, Holzbaur EL (2019) Autophagy and mitophagy in ALS. Neurobiol Dis 122:35–40

    CAS  PubMed  Google Scholar 

  • Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J (2022) The different autophagy degradation pathways and neurodegeneration. Neuron 110:935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Follett J, Bugarcic A, Yang Z, Ariotti N, Norwood SJ, Collins BM, Parton RG, Teasdale RD (2016) Parkinson disease-linked Vps35 R524W mutation impairs the endosomal association of retromer and induces α-synuclein aggregation. J Biol Chem 291:18283–18298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M, Martinez-Vicente M (2021) Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy 17:672–689

    CAS  PubMed  Google Scholar 

  • Franco-Iborra S, Vila M, Perier C (2018) Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 12:342

    PubMed  PubMed Central  Google Scholar 

  • Gao H, Yang W, Qi Z, Lu L, Duan C, Zhao C, Yang H (2012) DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. J Mol Biol 423:232–248

    CAS  PubMed  Google Scholar 

  • Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, De Mey J, MacDonald ME, Leßmann V, Humbert S (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    CAS  PubMed  Google Scholar 

  • Haywood AF, Staveley BE (2004) Parkin counteracts symptoms in a Drosophila model of Parkinson’s disease. BMC Neurosci 5:1–12

    Google Scholar 

  • Huang B, Wu Q, Zhou H, Huang C, Xia XG (2016) Increased Ubqln2 expression causes neuron death in transgenic rats. J Neurochem 139:285–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C-Y, Sivalingam K, Shibu MA, Liao PH, Ho T-J, Kuo WW, Chen RJ, Day CH, Viswanadha VP, Ju DT (2020) Induction of autophagy by vasicinone protects neural cells from mitochondrial dysfunction and attenuates paraquat-mediated Parkinson’s disease associated α-synuclein levels. Nutrients 12(6):1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itagaki S, McGeer P, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24:173–182

    CAS  PubMed  Google Scholar 

  • Jiang TF, Zhang YJ, Zhou HY, Wang HM, Tian LP, Liu J, Ding JQ, Chen SD (2013) Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 8:356–369

    PubMed  Google Scholar 

  • Johri A, Chandra A, Beal MF (2013) PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radical Biol Med 62:37–46

    CAS  Google Scholar 

  • Joshi AS, Thompson MN, Fei N, Hüttemann M, Greenberg ML (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287:17589–17597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan V, Jiang J, Huang Z, Tyurina Y, Desbourdes C, Cottet-Rousselle C, Dar H, Verma M, Tyurin V, Kapralov A (2016) NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ 23:1140–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamat PK, Kalani A, Kyles P, Tyagi SC, Tyagi N (2014) Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease. Cell Biochem Biophys 70:707–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198

    CAS  PubMed  Google Scholar 

  • Kim H, Cho M, Shim W, Kim J, Jeon E, Kim D, Yoon S (2017) Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 22:1576–1584

    CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    CAS  PubMed  Google Scholar 

  • Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:120080

    PubMed  PubMed Central  Google Scholar 

  • Korac J, Schaeffer V, Kovacevic I, Clement AM, Jungblut B, Behl C, Terzic J, Dikic I (2013) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 126:580–592

    CAS  PubMed  Google Scholar 

  • Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D (2010) Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS ONE 5:e9367

    PubMed  PubMed Central  Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci 104:5925–5930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagrange E, Vernoux J, Reis J, Palmer V, Camu W, Spencer P (2021) An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J Neurol Sci 427:117558

    CAS  PubMed  Google Scholar 

  • Langeh U, Kumar V, Kumar A, Kumar P, Singh C, Singh A (2022) Cellular and mitochondrial quality control mechanisms in maintaining homeostasis in ageing. Rejuvenat Res. 25:208

    CAS  Google Scholar 

  • Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, Larsson N-G (2012) Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet 21:4827–4835

    CAS  PubMed  Google Scholar 

  • Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59

    CAS  PubMed  Google Scholar 

  • Li X, Huang L, Lan J, Feng X, Li P, Wu L, Peng Y (2021) Molecular mechanisms of mitophagy and its roles in neurodegenerative diseases. Pharmacol Res 163:105240

    CAS  PubMed  Google Scholar 

  • Lin CY, Tsai CW (2019) PINK1/parkin-mediated mitophagy pathway is related to neuroprotection by carnosic acid in SH-SY5Y cells. Food Chem Toxicol 125:430–437

    CAS  PubMed  Google Scholar 

  • Lin KL, Lin KJ, Wang PW, Chuang JH, Lin HY, Chen SD, Chuang YC, Huang ST, Tiao MM, Chen JB (2018) Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radical Res 52:1371–1386

    CAS  Google Scholar 

  • Lin TK, Chen SD, Chuang YC, Lin HY, Huang CR, Chuang JH, Wang PW, Huang ST, Tiao MM, Chen JB, Liou CW (2014) Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 15:1625–1646

    PubMed  PubMed Central  Google Scholar 

  • Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349:650–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T (2021) Silibinin attenuates motor dysfunction in a mouse model of Parkinson’s disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 239:113510

    CAS  PubMed  Google Scholar 

  • Liu Y, Jin S, Yang YT, Bai Y, Yong H, Bao W (2020) Cognitive dysfunction associated with activation of the mTOR signaling pathway after TSH suppression therapy in rats. Endocr J 67:1063–1070

    PubMed  Google Scholar 

  • Lontay B, Kiss A, Virág L, Tar K (2020) How do post-translational modifications influence the pathomechanistic landscape of Huntington’s disease? A comprehensive review. Int J Mol Sci 21:4282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luthi-Carter R, Cha JJ (2003) Mechanisms of transcriptional dysregulation in Huntington's disease. Clin Neuro Res 3(3):165–177. https://doi.org/10.1016/S1566-2772(03)00059-8.

    Article  CAS  Google Scholar 

  • Maday S, Holzbaur EL (2016) Compartment-specific regulation of autophagy in primary neurons. J Neurosci 36:5933–5945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427

    CAS  PubMed  Google Scholar 

  • Marrone L, Poser I, Casci I, Japtok J, Reinhardt P, Janosch A, Andree C, Lee HO, Moebius C, Koerner E (2018) Isogenic FUS-eGFP iPSC reporter lines enable quantification of FUS stress granule pathology that is rescued by drugs inducing autophagy. Stem Cell Reports 10:375–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38:26–35

    CAS  PubMed  Google Scholar 

  • Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, De Vries R, Arias E, Harris S, Sulzer D (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou Y-s, Saiki S, Kawajiri S, Sato F (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2012) Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 16:706–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • McBride HM (2008) Parkin mitochondria in the autophagosome. J Cell Biol 183:757–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345–357

    CAS  PubMed  Google Scholar 

  • Moore AS, Holzbaur EL (2016) Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci 113:E3349–E3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukaetova-Ladinska E, Harrington C, Roth M, Wischik C (1996) Alterations in tau protein metabolism during normal aging. Dement Geriatr Cogn Disord 7:95–103

    CAS  Google Scholar 

  • Muyderman H, Chen T (2014) Mitochondrial dysfunction in amyotrophic lateral sclerosis–a valid pharmacological target? Br J Pharmacol 171:2191–2205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neisch AL, Neufeld TP, Hays TS (2017) A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J Cell Biol 216:441–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16:394–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otero MG, Alloatti M, Cromberg LE, Almenar-Queralt A, Encalada SE, Pozo Devoto VM, Bruno L, Goldstein LS, Falzone TL (2014) Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function. J Cell Sci 127:1537–1549

    CAS  PubMed  Google Scholar 

  • Panicker N, Ge P, Dawson VL, Dawson TM (2021) The cell biology of Parkinson’s disease. J Cell Biol 220:e202012095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K (2017) VCP/p97 cooperates with YOD 1, UBXD 1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 36:135–150

    CAS  PubMed  Google Scholar 

  • Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723

    CAS  PubMed  Google Scholar 

  • Peng J, Ren KD, Yang J, Luo XJ (2016) Mitochondrial E3 ubiquitin ligase 1: a key enzyme in regulation of mitochondrial dynamics and functions. Mitochondrion 28:49–53

    CAS  PubMed  Google Scholar 

  • Poe BG, Duffy CF, Greminger MA, Nelson BJ, Arriaga EA (2010) Detection of heteroplasmy in individual mitochondrial particles. Anal Bioanal Chem 397:3397–3407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo Devoto VM, Falzone TL (2017) Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein? Dis Model Mech 10:1075–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Praharaj PP, Naik PP, Panigrahi DP, Bhol CS, Mahapatra KK, Patra S, Sethi G, Bhutia SK (2019) Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics. Cell Mol Life Sci 76:1641–1652

    CAS  PubMed  Google Scholar 

  • Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer-Lorente R, Raya A, López-García C, Torres J (2016) Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun 7:1–13

    Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    CAS  PubMed  Google Scholar 

  • Rogov V, Dötsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178

    CAS  PubMed  Google Scholar 

  • Rojansky R, Cha MY, Chan DC (2016) Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife 5:e17896

    PubMed  PubMed Central  Google Scholar 

  • Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    CAS  PubMed  Google Scholar 

  • Rui Y-N, Xu Z, Patel B, Cuervo AM, Zhang S (2015) HTT/Huntingtin in selective autophagy and Huntington disease: a foe or a friend within? Autophagy 11:858–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scrivo A, Bourdenx M, Pampliega O, Cuervo AM (2018) Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17:802–815

    PubMed  PubMed Central  Google Scholar 

  • Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31:5970–5976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaltouki A, Sivapatham R, Pei Y, Gerencser AA, Momčilović O, Rao MS, Zeng X (2015) Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Rep 4:847–859

    CAS  Google Scholar 

  • Sharma M, Jarquín UNR, Rivera O, Kazantzis M, Eshraghi M, Shahani N, Sharma V, Tapia R, Subramaniam S (2019) Rhes, a striatal-enriched protein, promotes mitophagy via Nix. Proc Natl Acad Sci 116:23760–23771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimura H, Hattori N, Kubo SI, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    CAS  PubMed  Google Scholar 

  • Simmons E (2021) 5-Ht1f receptor agonism for the treatment of spinal cord injury. The University of Arizona

    Google Scholar 

  • Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95:6469–6473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stavoe AK, Hill SE, Hall DH, Colón-Ramos DA (2016) KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell 38:171–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su YC, Qi X (2013) Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet 22:4545–4561

    CAS  PubMed  Google Scholar 

  • Sung H, Tandarich LC, Nguyen K, Hollenbeck PJ (2016) Compartmentalized regulation of Parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J Neurosci 36:7375–7391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12:1631–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206

    PubMed  PubMed Central  Google Scholar 

  • Terry RD, Masliah E, Hansen LA (1994) Structural basis of the cognitive alterations in Alzheimer disease. American Psychological Association

    Google Scholar 

  • Todorov A, Harris LT, Fiske ST (2006) Toward socially inspired social neuroscience. Brain Res 1079:76–85

    CAS  PubMed  Google Scholar 

  • Trushina E, Dyer RB, Badger JD, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V, McPherson PS, Mandavilli BS (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24:8195–8209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    CAS  PubMed  Google Scholar 

  • Van der Merwe C, Van Dyk HC, Engelbrecht L, van der Westhuizen FH, Kinnear C, Loos B, Bardien S (2017) Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 54:2752–2762

    PubMed  Google Scholar 

  • Wang C, Zhang X, Teng Z, Zhang T, Li Y (2014) Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol 740:312–320

    CAS  PubMed  Google Scholar 

  • Wang H, Dou S, Zhu J, Shao Z, Wang C, Xu X, Cheng B (2021) Ghrelin protects against rotenone-induced cytotoxicity: involvement of mitophagy and the AMPK/SIRT1/PGC1α pathway. Neuropeptides 87:102134

    CAS  PubMed  Google Scholar 

  • Wang H, Jiang T, Li W, Gao N, Zhang T (2018) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 282:100–108

    CAS  PubMed  Google Scholar 

  • Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci 105:19318–19323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21:1931–1944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu N, Lu B (2019) Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 25:859–875

    PubMed  PubMed Central  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4:295–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson TL, Bruijn LI, Zhu Q, Anderson KL, Anderson SD, Julien J-P, Cleveland DW (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci 95:9631–9636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong YC, Holzbaur EL (2014a) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci 111:E4439–E4448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong YC, Holzbaur EL (2014b) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong YC, Holzbaur EL (2015) Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Autophagy 11:422–424

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies FM, Rubinsztein DC (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7:1–17

    CAS  Google Scholar 

  • Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19:163–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi Y, Dhaliwal J, Ceizar M, Vaculik M, Kumar K, Lagace D (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127–e2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Zhuang XX, Niu Z, Ai R, Lautrup S, Zheng S, Jiang Y, Han R, Gupta TS, Cao S (2022) Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 6:76–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ze R, Zhuang X (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Investig 119:650–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Shen J, Ran Z (2020) Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 16:3–17

    CAS  PubMed  Google Scholar 

  • Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17:300–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasoba T, Someya S, Yamada C, Weindruch R, Prolla TA, Tanokura M (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res 226:185–193

    CAS  PubMed  Google Scholar 

  • Yoo SM, Jung YK (2018) A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells 41(1):18–26. https://doi.org/10.14348/molcells.2018.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J, Puri R, Yang H, Lizzio MA, Wu C, Sheng ZH, Guo M (2014) MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife 3:e01958

    PubMed  PubMed Central  Google Scholar 

  • Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1:19–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen S, Lu K, Wang F, Deng J, Xu Z, Wang X, Zhou Q, Le W, Zhao Y (2019) Verapamil ameliorates motor neuron degeneration and improves lifespan in the SOD1G93A mouse model of als by enhancing autophagic flux. Aging Dis 10:1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, Le W (2014) MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 10:588–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci 107:5018–5023

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Institute.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SK and NS conducted the literature search and drafted the manuscript. SK prepares the illustration for the manuscript. VK and CS helped revise the manuscript. AS conceived the original idea and designed the outline of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arti Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed Consent

Not applicable.

Consent for Publication

All authors give full consent for publication.

Research Involving Human and Animals Participants

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Sharma, N., Kumar, V. et al. The Role of Mitophagy in Various Neurological Diseases as a Therapeutic Approach. Cell Mol Neurobiol 43, 1849–1865 (2023). https://doi.org/10.1007/s10571-022-01302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-022-01302-8

Keywords

Navigation