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Abstract
Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with cho-
rioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in 
Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm 
lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), 
lambs were surgically delivered at gestational day 128–129. Expression of inflammatory markers was assessed in different 
brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP pres-
ence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral 
tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C–X–C chemokine receptor (CXCR) 4 
mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence 
in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study 
confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. 
Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been 
associated with inflammatory central nervous system (CNS) diseases and impaired blood–brain barrier function. According 
to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor 
responses affect CNS barrier properties and thus facilitate neuroinflammation.
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U.	� Ureaplasma
UP	� Ureaplasma parvum Group
VEGF	� Vascular endothelial growth factor
VCAM-1	� Vascular cell adhesion molecule 1

Background

Prematurity, particularly delivery at gestational 
ages < 30 weeks, remains the most important contributor to 
neonatal morbidity and mortality, thus constituting a major 
medical challenge (Liu et al. 2012; Stoll et al. 2015). Chorio-
amnionitis is one of the major risk factors for preterm birth 
(Ireland and Keelan 2014) and has been strongly related to 
ascending infection with Ureaplasma species (spp.) (Kasper 
et al. 2010; Goldenberg et al. 2000). As some of the small-
est self-replicating bacteria, Ureaplasma (U.) urealyticum 
and U. parvum (UP) are common colonizers of the adult 
genitourinary tract (Waites et al. 2005). Although they are 
often regarded as low virulent, Ureaplasma spp. may evoke 
ascending infections in pregnant women (Waites et al. 2005). 
Consecutive amniotic invasion may lead to maternal and 
fetal inflammation, ultimately provoking preterm birth. In 
preterm and term neonates, Ureaplasma spp. may cause 
invasive infections, such as pneumonia and sepsis (Sweeney 
et al. 2017; Goldenberg et al. 2008; Silwedel et al. 2017; 
Viscardi 2014). In preterm neonates, Ureaplasma spp. 
have furthermore been associated with the development of 
chronic morbidities, such as bronchopulmonary dysplasia 
(BPD) (Silwedel et al. 2017; Viscardi 2014; Kasper et al. 
2011; Groneck et al. 2001; Glaser et al. 2019). There is also 
culminating evidence linking Ureaplasma spp. to neonatal 
neuroinflammation and associated sequelae. Ureaplasma 
spp. were identified as causative pathogens in a relevant 
number of cases of neonatal meningitis, and some authors 
described an association between Ureaplasma spp. and intra-
ventricular hemorrhage (IVH) or adverse neurodevelopmen-
tal outcome (Silwedel et al. 2017, 2020; Kasper et al. 2011; 
Viscardi et al. 2008; Glaser and Speer 2015; Berger et al. 
2009; Rittenschober-Böhm et al. 2021). These observations 
are supported by in vitro data showing Ureaplasma spp. 
modulating brain immune defense mechanisms (Silwedel 
et al. 2018, 2019ab, c).

Inflammation is orchestrated and carefully balanced by 
numerous mediators. Among these are pro-inflammatory 
cytokines, including tumor necrosis factor (TNF), interleu-
kin (IL)-1β, IL-6, and interferons (IFN); cytokines bearing 
anti-inflammatory effects, such as IL-10 and IL-1 recep-
tor antagonist (RA); the chemokines IL-8 and macrophage 
inflammatory proteins (MIP); as well as monocyte chem-
oattractant proteins (MCP) (Le Thuc et al. 2015). Adhesion 
molecules such as intercellular adhesion molecule (ICAM) 
1 and vascular cell adhesion molecule (VCAM) 1 promote 

inflammatory tissue invasion (Wevers and Vries 2016), 
and growth factors like vascular endothelial growth factor 
(VEGF) or granulocyte colony-stimulating factor (G-CSF) 
facilitate vascular permeability and neutrophil inflammation, 
respectively (Wevers and Vries 2016; Hamilton 2008). Cell 
death appears to be closely associated with inflammation, 
with caspases acting as key mediators in inflammatory cell 
death as well as apoptosis (Cohen 1997; Shaalan et al. 2018). 
Furthermore, the blood–brain barrier (BBB) is highly rel-
evant for neuroinflammation, physiologically shielding the 
brain from external injurious impacts (Williams et al. 2014). 
Several neuroinflammatory conditions are accompanied by 
BBB impairment, and mediators potentially involved include 
the transmembrane receptors atypical chemokine receptor 
(ACKR) 3 as well as C–X–C chemokine receptor (CXCR) 4, 
both permitting inflammatory cell migration into the central 
nervous system (CNS) (Williams et al. 2014; Huang et al. 
2013; Moll et al. 2009).

To date, only few animal data are available on Urea-
plasma-driven neuroinflammation, and the overall results 
are contradictory (Normann et al. 2009; Kelleher et al. 2017; 
Gussenhoven et al. 2017; Senthamaraikannan et al. 2016; 
Novy et al. 2009). Using an established preclinical animal 
model of Ureaplasma-mediated chorioamnionitis (Gus-
senhoven et al. 2017), the present study addressed brain 
inflammatory responses in preterm lambs after intrauterine 
UP exposure.

Methods

Animal Experiments

This study was performed with approval of the institutional 
Animal Ethics Research Committee of Maastricht University 
and the Dutch Central Animal Research Commission (CCD) 
(number AVD107002015225-2). As a comprehensive trial 
assessing the effects of prenatal UP exposure on different 
organ systems, the study was powered for the primary end-
point BPD, and sample size calculations were performed 
accordingly. Due to animal welfare regulations, the total 
number of animals included in the study was limited and, 
therefore, the study has not been powered for the secondary 
outcomes addressed in this manuscript.

Time-mated ewes were randomly assigned to one of two 
study groups (Table 1). At 121 or 122 days of gestation, 
animals received ultrasound-guided intra-amniotic injec-
tion of 5 × 105 color changing units of UP serovar 3 (strain 
HPA5 (Rowlands et al. 2021), kindly provided by Prof. Dr. 
Owen B. Spiller) (UP group) or saline (control group). This 
concentration was shown to induce systemic organ inflam-
mation in the ovine fetus (Ophelders et al. 2021). Lambs 
were delivered via cesarean section at day 128 or 129 (term 
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~ 150 days) and sacrificed by an intravenous injection of 1 g 
pentobarbital. Natural differences in breeding success were 
responsible for differing numbers of lambs in the UP group 
(n = 10) and the control group (n = 11). Due to hygienic rea-
sons, blinding of the animal experiments was not possible, 
whereas data analysis was conducted blinded.

Sampling Protocol

Upon necropsy, body weight was determined, and cerebro-
spinal fluid (CSF) was collected by lumbar puncture imme-
diately postmortem to be stored at − 80 °C. Brains were 
removed, weighted, and hemispheres were separated. The 
left hemisphere was dissected into different regions and snap 
frozen at − 80 °C. The right hemisphere was fixed using 4% 
paraformaldehyde solution (PFA, VWR Chemicals, Amster-
dam, the Netherlands, cat. no. 11699408). After 3 months, 
PFA was replaced with phosphate-buffered saline (PBS, 
Gibco, Thermo Fisher Scientific, Waltham, MA, USA, cat. 
no. 11503387) containing 1% sodium azide (Merck, Kenil-
worth, NJ, USA, cat. no. 103692K).

MRI Tissue Procedure and Brain Analysis

For magnetic resonance imaging (MRI), brain hemispheres 
were washed with PBS and placed in a closed vessel contain-
ing Fomblin solution (Sigma-Aldrich, St. Louis, MO, USA) 
to reduce artifacts and mimic in vivo brain surroundings. 
MR imaging was performed using a 3 Tesla MRI scanner 
(Achieva, Philips Healthcare, Best, the Netherlands) and a 
flex-M coil. Sagittal, axial, and coronal T2-weighted MRI 
sequences were used as well as axial inversion recovery 
T1-weighted sequences. Acquisition parameters were as 
follows: sagittal T2: field of view (FOV) 100 mm, slice 
thickness 1.8 mm, repetition time (RT) 3000 ms, echo time 
(ET) 90 ms, acquisition time (AT) 120,953 ms, and matrix 
288 × 252; axial T2: FOV 120 mm, slice thickness 2 mm, RT 

4000 ms, ET 90 ms, AT 120,512 ms, and matrix 300 × 242; 
coronal T2: FOV 100 mm, slice thickness 1.8 mm, RT 
3000 ms, ET 90 ms, AT 121,539 ms, and matrix 312 × 271; 
and axial inversion recovery: FOV 100 mm, slice thickness 
2 mm, RT 7000 ms, ET 15 ms, inversion time 600 ms, AT 
122,136 ms, and matrix 200 × 154. Sagittal plane was used 
to determine cortical folding by calculation of the ratio 
between surface area and gyration, whereas white mat-
ter area in cm2 was measured in coronal plane. Syngo.via 
software (Siemens Healthineers, Erlangen, Germany) was 
employed for post-acquisition processing.

Cytokine and Caspase Quantitative Real‑Time 
Reverse Transcriptase Polymerase Chain Reaction 
(qRT‑PCR)

Snap frozen tissue from brain frontal cortex (BFC) and brain 
periventricular zones (BPZ) was homogenized (BioMasherII 
Closed System Micro Tissue Homogenizer, Thermo Fisher 
Scientific, cat. no. 15344182). The NucleoSpin® RNA Kit 
(Macherey–Nagel, Dueren, Germany, cat. no. 740955.250) 
was employed to extract total RNA, which was eluted in 
60 μL RNAse-free H2O (Macherey–Nagel) and stored at 
− 80 °C until reverse transcription. Total RNA was quan-
tified (Qubit RNA BR Assay Kit, cat. no. Q10211, and 
Qubit® 2.0 Fluorometer, both Thermo Fisher Scientific), 
and 0.19–0.25 μg of total RNA was reverse transcribed 
using the High-Capacity cDNA Reverse Transcription Kit 
(Thermo Fisher Scientific, cat. no. 4368814). Following 1:10 
dilution with nuclease-free H2O (Sigma-Aldrich, cat. no. 
W3513), cDNA was analyzed in duplicates of 25 μL reaction 
mixture containing 12.5 μL iTaq™ Universal SYBR® Green 
Supermix (Bio-Rad Laboratories, Hercules, CA, USA, cat. 
no. 172-5124), 0.5 μL nuclease-free H2O, and 1 μL each of a 
forward and reverse 10 μM primer solution (Sigma-Aldrich, 
Merck, Germany). Primer sequences are given in Table 2. 
Employing an Applied Biosystems® 7500 Real-Time PCR 
System (Thermo Fisher Scientific), the 2-step PCR protocol 
included an initial denaturation at 95 °C for 10 min and 
40 cycles of 95 °C for 15 s and 60 °C for 1 min. Each run 
was concluded with a melt curve analysis confirming single 
PCR products. Amplification was normalized to the house-
keeping gene peptidylprolyl isomerase C (PPIC, Sigma-
Aldrich, Table 2). Mean fold changes in mRNA expression 
were determined with the help of the ΔΔCT method (Livak 
and Schmittgen 2001).

CSF Ureaplasma qPCR

CSF samples were assessed for DNA of UP at the Institute 
of Medical Microbiology and Hospital Hygiene, Duessel-
dorf, Germany, using ureB-specific primers (UP-F: AGG​
AAA​TGA​AGA​TAA​AGA​ACG​CAA​A and UP-R: AAC​

Table 1   Study animals and main characteristics

Animals did not significantly differ between control and UP group
a Data available for the given numbers of animals

Control UP p

N (total) 11 10
Sex (m:f) 2:3 (n = 5a) 1:1 (n = 10a) n.s
Gestational age 

(days)
128.6 ± 0.5 (n = 9a) 128.6 ± 0.5 (n = 10a) n.s

Birth weight (g) 2508 ± 613 (n = 9a) 2364 ± 665 (n = 10a) n.s
Brain weight (g) 35.3 ± 5.4 (n = 7a) 37.1 ± 5.6 g (n = 9a) n.s
Brain tissue (PCR) (n = 5a) (n = 10a)
Brain MRI (n = 5a) (n = 4a)
CSF samples (n = 5a) (n = 5a)
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GAA​TAG​CAG​TAC​CTG​ATG​GAA​T) and probe (UP-S: 
HEX-TTG​CTT​ATG​GAC​GAC​GTT​TCG-BHQ1) and a 
qPCR protocol described previously (Mobius et al. 2012). 
UP serovar 3 (strain HPA5) was included as a positive 
control.

Multi‑analyte Immunoassay

CSF concentrations of pro- and anti-inflammatory media-
tors were determined by means of bead-based immuno-
assay using Luminex® reagent kits (Merck Millipore, 

Table 2   Ovine primers used for qRT-PCR

Name Gene symbol Sequence accession # Orientation Sequence [5′ to 3′]

PPIC PPIC XM_004008676.4 Forward GCA​CAT​TTC​ATC​GCG​TCA​TCA​
Reverse TGA​CCC​ACC​CAA​TGC​CAT​AA

CXCR4 CXCR4 NM_001277168.1 Forward GGA​CTT​GAG​TAG​CCG​GTA​GC
Reverse CGG​AAG​CAG​GGT​TCC​TTC​AT

IL-6 IL6 NM_001009392.1 Forward ACC​TGG​ACT​TCC​TCC​AGA​AC
Reverse TTG​AGG​ACT​GCA​TCT​TCT​CC

IL-8 CXCL8 NM_001009401.2 Forward ATG​AGT​ACA​GAA​CTT​CGA​
Reverse TCA​TGG​ATC​TTG​CTT​CTC​

IL-10 IL10 NM_001009327.1 Forward CCA​GGA​TGG​TGA​CTC​GAC​TAGAC​
Reverse TGG​CTC​TGC​TCT​CCC​AGA​AC

MCP-1 MCP1 XM_027956985.1 Forward TGG​GAA​GCT​CAA​TCA​GCG​
Reverse GCT​GCA​GTA​ACA​TGA​TGT​CG

MCP-3 MCP3 NM_001009411.2 Forward CAC​CAT​CAC​GGA​CCA​AGA​GAG​
Reverse ATC​CGT​CAT​CTC​AGC​CTT​CC

TNF TNF NM_001024860.1 Forward CTG​GGC​AGG​TCT​ACT​TTG​GG
Reverse GAA​GGG​GAT​GAG​GAG​GGT​CT

VEGF VEGFA NM_001025110.1 Forward TTG​CCT​TGC​TGC​TCT​ACC​TT
Reverse GGG​CAC​ACA​CTC​CAG​ACT​TT

ACKR3 ACKR3 XM_004001768.3 Forward CGG​TCT​GGG​ATA​CGG​AAC​AA
Reverse GCC​GTG​TTA​CAG​ACT​GGG​AT

G-CSF CSF3 XM_027975456.1 Forward TGC​GCT​ATA​GAC​GCC​ATG​AG
Reverse CCA​TGT​TCC​CAG​TCT​CAC​CC

IL-1RA IL1RN NM_001308595.1 Forward AGA​TAG​ATG​TGG​TAC​CCA​TCG​
Reverse TTC​ACA​GCC​TCT​AAC​TTG​AGC​

ICAM-1 ICAM1 XM_027969187.1 Forward TAT​GTC​CTG​CCA​TCG​ACC​G
Reverse ACA​TAG​ACC​TCA​GCG​TCC​G

VCAM-1 LOC101113636 XM_004002233 Forward GGT​GAA​GCT​CTA​CTC​CTT​CC
Reverse AAA​CAA​TTC​AAT​CTC​CAG​CCG​

Caspase 1-like LOC101117013 XM_004015962.4 Forward CTC​ACT​TCA​GGT​TCA​CAG​TC
Reverse TAT​TCT​TTG​GGC​TGT​TTC​TGG​

Caspase 2 CASP2 XM_012177298.3 Forward CTG​CCG​TGG​AGA​TGA​AAC​AG
Reverse GCG​TAG​CCA​CAA​ATC​ATG​TC

Caspase 3 CASP3 XM_015104559.2 Forward AAA​TGC​AAC​TCT​TCC​ACC​AG
Reverse TGT​TTC​TTC​CTC​CTA​CCT​CAC​

Caspase 7 CASP7 XM_012102956.3 Forward AAA​CCC​TGT​TAG​AGA​AGC​CC
Reverse TGA​ATA​ATA​GCC​TGG​AAC​TGTG​

Caspase 9 CASP9 XM_012187488 Forward GAT​GTC​CTG​TGT​CCG​TTG​AG
Reverse GTC​TTT​CTG​CTC​TCC​ACC​AC

Caspase 14 CASP14 XM_004008465.4 Forward GCC​CTT​TCT​CCA​AGG​TCA​G
Reverse TGT​CGT​ATG​TCT​CCT​CTT​CC
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Merck group, Darmstadt, Germany, cat. no. BCYT1-
33  K-PX15). Lower detection limits were 0.05  pg/
mL (IFN-γ), 0.02 pg/mL (IL-1α), 0.71 pg/mL (IL-1β), 
1.81 pg/mL (IL-4), 1.68 pg/mL (IL-6), 5.6 pg/mL (IL-
8), 0.12 pg/mL (IL-10), 0.06 pg/mL (IL-17A), 0.0 pg/
mL (IL-36 RA), 1.82  pg/mL (IFN-γ-induced protein 
(IP) 10), 2.89 pg/mL (MCP-1), 8.39 pg/mL (MIP-1α), 
3.11 pg/mL (MIP-1β), 2.01 pg/mL (TNF), and 0.52 pg/
mL (VEGF); values underneath were set to 0. A standard 
curve was aligned using xPonent® Software (Luminex 
Cooperation, Austin, TX, USA), and cytokine concen-
trations were calculated from this curve. Samples were 
analyzed in duplicate.

Statistical Analysis

Results were analyzed using GraphPad Prism software 
(version 6.01, GraphPad Software, San Diego, CA, USA). 
Non-parametric Mann–Whitney U test was employed 
for assessment of differences among groups. Data were 
expressed as means ± standard deviation (SD), and results 
at p < 0.05 were considered significant.

Results

Study Population and Animal Characteristics

Animals assigned to the two study groups did not sig-
nificantly differ in sex, gestational age, and birth weight 
(Table  1). No significant differences in brain weight 
were observed between UP exposed and control animals 
(Table 1).

Brain MRI

Apart from minor intraventricular air due to the ex vivo 
experiment, no macroscopic abnormalities were detected. 
Cortical folding and white matter area did not differ signifi-
cantly between the UP and the control group (Fig. 1).

Tissue Inflammation Markers

ACKR3 mRNA expression was found to be signifi-
cantly elevated in the UP group (BFC: 1.78-fold ± 0.42, 
Mann–Whitney U test, U = 1.000, p = 0.001, vs. con-
trol animals, Fig. 2). Moreover, Mann–Whitney U tests 
revealed significant differences for caspase 1-like mRNA 
(BFC: 1.93-fold ± 0.62, U = 3.000, p = 0.005; BPZ: 1.74-
fold ± 0.54, U = 3.500, p = 0.005, vs. control animals), cas-
pase 2 mRNA (BFC: 1.87-fold ± 1.40, U = 8.500, p = 0.044; 
BPZ: 1.52-fold ± 0.62, U = 8.000, p = 0.039), caspase 7 
mRNA (BFC: 1.80-fold ± 0.62, U = 5.000, p = 0.013; BPZ: 
2.12-fold ± 1.07, U = 3.000, p = 0.005), and CXCR4 mRNA 
(BFC: 2.21-fold ± 1.79, U = 7.000, p = 0.025) (Fig. 2). Cas-
pase 3, caspase 9, ICAM-1, VCAM-1, and VEGF mRNA 
levels did not differ between both groups (Fig. 2). Caspase 
14, G-CSF, IL-1RA, IL-6, IL-8, IL-10, MCP-1, MCP-3, and 
TNF were weakly or not expressed in either group (data not 
shown). Comparing frontal cortex tissue and tissue from the 
periventricular zone, no differences were detected (Fig. 2).

CSF Cytokine Protein Expression

Analysis of CSF cytokine levels showed a signifi-
cant increase of IL-8 protein in UP-exposed animals 
(11.2 ± 11.9-fold, Mann–Whitney U test, U = 2.000, 
p = 0.032 vs. control, Fig. 3). No significant differences 
among both study groups were observed for IFN-γ, IL-1α, 

Fig. 1   MRI scans were used to assess a potential influence of prenatal 
U. parvum exposure on cortical folding (a, sagittal plane) and brain 
white matter area (b, coronal plane). Results are presented in scatter 

plots showing means ± SD, comparing the control group (n = 5) and 
the group exposed to U. parvum (UP, n = 4). The animal with a posi-
tive CSF Ureaplasma PCR is marked in red
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IL-6, IL-10, IL-17A, IL-36 RA, IP-10, MCP-1, MIP-1α, 
TNF, and VEGF (Fig. 3). IL-1β, IL-4, and MIP-1β protein 
were undetectable in either group.

Detection of Ureaplasma spp. in CSF Samples

While all CSF samples of the control group remained 
PCR negative, UP DNA of the reference strain HPA5 was 
detected in 1 out of 5 samples of the UP group (1.63 × 104 
copy numbers / mL CSF).

Singular Case: Ureaplasma CNS Invasion

The one animal with proven UP invasion into the CSF 
distinguished itself from the rest of the study group in 
several categories (Figs. 1–4). With a birth weight below 
average, the animal’s relative brain weight was, vice versa, 
increased (Fig. 4). Cortical folding and white matter area 
were below average (Fig. 1). CSF IL-36A and IP-10 pro-
tein concentrations were distinctly higher than in all other 

Fig. 2   Brain tissue mRNA expression of ACKR3, caspase (CASP) 
1-like, CASP2, CASP3, CASP7, CASP9, CXCR 4, ICAM-1, VCAM-
1, and VEGF was assessed for BFC and BPZ. Scatter plots present 
individual data points as well as means ± SD. U. parvum-exposed 

animals (UP, n = 10) were compared to control animals (n = 5). The 
animal tested positive for UP is marked in red. *p < 0.05, **p < 0.01 
vs. control
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animals (Fig. 3). Brain tissue mRNA levels were increased 
for ACKR3, caspase 1-like, caspase 2, caspase 7, caspase 
9, CXCR4, ICAM-1, and VEGF (Fig. 2).

Discussion

Prenatal, perinatal, and postnatal Ureaplasma exposure 
have been associated with neurological morbidities par-
ticularly in preterm infants, including meningitis, IVH, 

Fig. 3   CSF protein concentrations of IFN-γ, IL-1α, IL-6, IL-8, IL-10, 
IL-17A, IL-36 RA, IP-10, MCP-1, MIP-1α, TNF, and VEGF depict 
responses to Ureaplasma exposure of fetal lambs (UP, n = 5) com-

pared to control animals (n = 5). The CSF Ureaplasma-positive ani-
mal is marked in red. Data are shown as means ± SD, *p < 0.05 vs. 
control

Fig. 4   Scatter plots present somatic parameters itemized for the individual animals as well as means ± SD (please refer to Table 1 for n). The sin-
gle animal with a positive CSF Ureaplasma PCR is marked in red
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and adverse neurodevelopmental outcome (Silwedel et al. 
2017, 2020; Kasper et al. 2011; Viscardi et al. 2008; Gla-
ser and Speer 2015; Berger et al. 2009). So far, data on 
Ureaplasma-driven neuroinflammation are scarce, and 
current knowledge is based on single animal and few 
in vitro studies (Silwedel et al. 2020). This is the first 
study addressing inflammatory brain responses to acute 
intrauterine UP exposure in preterm sheep. Our results 
confirm a particular role of receptors regulating CNS 
barrier function as well as cell death-related caspases in 
Ureaplasma-driven neuroinflammation. The present data 
support the hypothesis that Ureaplasma infection affects 
CNS integrity (Silwedel et al. 2019a, b, c, 2018). Finally, 
our results demonstrate that Ureaplasma spp. are able to 
cross the BBB and enter the CNS.

Inflammation is a host defense mechanism triggered by 
infectious or non-infectious stimuli. A complex interplay 
of pro- and anti-inflammatory mediators is aimed at patho-
gen elimination, confining, at the same time, associated tis-
sue injury (Le Thuc et al. 2015; Wevers and Vries 2016; 
Hamilton 2008). Apart from elevated CSF levels of IL-8, 
we did not detect a significant induction of classic pro- and 
anti-inflammatory mediators in response to UP exposure 
in this study (Figs. 2, 3). These findings are in line with 
previous clinical and in vitro studies. Whereas pronounced 
pro-inflammation was described in the airways and blood 
upon Ureaplasma infection, CSF invasion by Ureaplasma 
spp. did not evoke inflammatory cytokine responses in neo-
nates and, similarly, in vitro studies did not reveal cytokine 
responses in Ureaplasma-stimulated human brain microvas-
cular endothelial cells (HBMEC) (Glaser et al. 2019; Vis-
cardi et al. 2008, 2006, 2002; Silwedel et al. 2019b, c; Glaser 
et al. 2018a, b; Glaser et al. 2017). These findings may be 
attributable to both an immune privileged state of the CNS 
and the pathogen itself. Either way, attenuated local cytokine 
responses upon Ureaplasma CNS infection may impede bac-
terial elimination and, ultimately, facilitate chronic infection 
and long-term neuroinflammation (Silwedel et al. 2020; For-
rester et al. 2018). Notably, cases of chronic Ureaplasma 
meningitis with a history as long as 8 months have repeti-
tively been described (Glaser and Speer 2015; Glaser et al. 
2015).

Inflammation appears to be closely interlinked with 
programmed cell death (Shaalan et al. 2018). Caspases act 
as key agents both in inflammatory cell death as well as 
in apoptosis, with caspase 1 mainly mediating the former 
and caspases 2, 3, 7, and 9 being primarily involved in the 
latter (Cohen 1997; Man and Kanneganti 2016; Jorgensen 
et al. 2017). Our data revealed significantly enhanced brain 
mRNA levels of caspases 1-like, 2, and 7 in UP-exposed 
fetal lambs, as well as an increase in caspase 3 mRNA of 
borderline significance (Fig. 2). We furthermore observed 
Ureaplasma-induced increases in mRNA levels of the BBB 

receptors ACKR3 and CXCR4. These results are in accord-
ance with previous in vitro data published by our group 
demonstrating Ureaplasma-driven cell death in HBMEC 
mediated by caspases as well as an induction of ACKR3 and 
CXCR4 in Ureaplasma-stimulated HBMEC (Silwedel et al. 
2018, 2019a, c). Enhanced expression of these receptors has 
been recognized to promote inflammatory cell migration into 
the CNS and both have been associated with inflammatory 
CNS diseases (Moll et al. 2009; Liu and Dorovini-Zis 2009; 
Cruz-Orengo et al. 2011). Cell death, on the other hand, is 
intrinsically intended to eliminate particularly intracellular 
pathogens (Jorgensen et al. 2017). However, cell death in 
cells exerting physiological barrier and / or immune func-
tion may inadvertently facilitate tissue invasion by immune 
cells as well as pathogens. Since the present experimental 
setting did not allow functional assays, we cannot ultimately 
prove the impact of Ureaplasma-driven interferences with 
caspases and transmembrane receptors on in vivo brain bar-
rier function. However, previous in vitro data confirmed 
reduced barrier properties in Ureaplasma-exposed HBMEC 
(Silwedel et al. 2019a). We hypothesize that induction of 
apoptosis-related caspases and up-regulation of receptors 
regulating passage into the CNS may impair CNS barrier 
properties and brain integrity.

In this study, prenatal UP exposure resulted in inva-
sive CNS infection in one of the lambs, demonstrating 
the ability of UP to cross the BBB and invade the CNS. 
Closer assessment showed some interesting features in the 
respective animal, including the lowest birth weight within 
the cohort (Fig. 4). In neonates, Ureaplasma detection in 
cord blood has been associated with a significantly lower 
birth weight (Goldenberg et al. 2008). Vice versa, the 
CSF-positive animal held the highest relative brain weight 
(Fig. 4), possibly indicating brain edema as a reaction to 
invasive Ureaplasma CNS infection. MRI revealed corti-
cal folding and white matter area below average in this 
animal (Fig. 1). These findings may be in line with previ-
ous animal studies showing structural changes upon pre-
natal Ureaplasma exposure (Normann et al. 2009; Kelle-
her et al. 2017). Furthermore, we observed pronounced 
caspase, ACKR3 and CXCR4 expression in this lamb’s 
brain tissue (Fig. 2), whereas only isolated CSF cytokines 
were increased (Fig. 3). The latter is in accordance with 
a clinical study in neonates, documenting no significant 
elevation of inflammatory cytokines in infants with CSF 
invasion by Ureaplasma spp. (Viscardi et al. 2008). Inter-
estingly, however, IP-10 (syn. C–X–C chemokine ligand 
10) was one of the mediators most pronounced in this 
animal’s CSF (Fig. 3). IP-10 has been ascribed a role in 
BBB disruption in neurodegenerative morbidities as well 
as in infectious diseases, emphasizing a potential role 
of barrier impairment in Ureaplasma-driven neuroin-
flammation (Wang et al. 2018; Ramesh et al. 2013). It 
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remains to be determined if the presence of Ureaplasma 
in the CSF induced the exaggerated caspase and receptor 
response or, vice versa, if these reactions allowed pas-
sage of Ureaplasma into the CNS in the first place. Only 
two previous studies in rhesus macaques reported Urea-
plasma CNS invasion upon Ureaplasma chorioamnionitis 
(Senthamaraikannan et al. 2016; Novy et al. 2009).

The few previous animal studies addressing Ureaplasma-
driven neuroinflammation reported ambiguous results (Nor-
mann et al. 2009; Kelleher et al. 2017; Gussenhoven et al. 
2017; Senthamaraikannan et al. 2016). In line with our own 
data, no evidence for brain inflammation, i.e., no cellular or 
cytokine responses in terms of classic pro- and anti-inflam-
matory mediators, was found upon acute intrauterine Urea-
plasma infection in rhesus macaques (Senthamaraikannan 
et al. 2016). Whereas chronic prenatal Ureaplasma exposure 
was associated with abnormal brain development and cel-
lular alterations in a macaque and ovine model, respectively 
(Kelleher et al. 2017; Gussenhoven et al. 2017), we did not 
detect consistent structural abnormalities upon intrauterine 
UP exposure in our study (Fig. 1). Timing and duration of 
prenatal Ureaplasma infection might be an important con-
tributor determining clinical manifestation and potentially 
long-term outcome. A limitation of the present study was 
therefore the single time point of assessment. A longer dura-
tion of exposure reflecting chronic infection may have had 
induced different results. Furthermore, this study, like most 
animal studies, was limited by rather low numbers of ani-
mals within each group. Further in vivo and in vitro studies 
are essential to gain a full understanding of the impact of 
prenatal, perinatal, and postnatal Ureaplasma exposure in 
preterm infants and to gain better understanding of underly-
ing mechanisms of Ureaplasma CNS infection.

Conclusion

This is the first ovine study addressing preterm brain inflam-
matory responses upon acute intrauterine Ureaplasma infec-
tion. In line with previous in vitro data from our group, the 
current results depict that interference with BBB receptors 
and caspases rather than classic pro-inflammation appears 
to be the major mechanism in Ureaplasma-driven neuroin-
flammation. By increasing ACKR3 and CXCR4 expression, 
Ureaplasma spp. may impair CNS barrier function, while 
induction of caspases may induce cell death and tissue dam-
age. Absent or mitigated local inflammatory responses could 
hamper pathogen eradication. In susceptible infants, ultimate 
consequence may be chronic infection and sustained neuro-
inflammation with subsequent long-term sequelae, as seen 
in clinical cases of Ureaplasma meningitis in preterm and 
term neonates.
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