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Abstract Brain-derived neurotrophic factor (BDNF) is

one of the most widely distributed and extensively studied

neurotrophins in the mammalian brain. Among its promi-

nent functions, one can mention control of neuronal and

glial development, neuroprotection, and modulation of

both short- and long-lasting synaptic interactions, which

are critical for cognition and memory. A wide spectrum of

processes are controlled by BDNF, and the sometimes

contradictory effects of its action can be explained based

on its specific pattern of synthesis, comprising several

intermediate biologically active isoforms that bind to dif-

ferent types of receptor, triggering several signaling path-

ways. The functions of BDNF must be discussed in close

relation to the stage of brain development, the different

cellular components of nervous tissue, as well as the

molecular mechanisms of signal transduction activated

under physiological and pathological conditions. In this

review, we briefly summarize the current state of knowl-

edge regarding the impact of BDNF on regulation of

neurophysiological processes. The importance of BDNF

for future studies aimed at disclosing mechanisms of acti-

vation of signaling pathways, neuro- and gliogenesis, as

well as synaptic plasticity is highlighted.
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Introduction

In 1989, Yves-Alain Barde and Hans Thoenen isolated

brain-derived neurotrophic factor (BDNF) from pig brain,

and shortly afterwards its biochemical structure was

revealed (Barde et al. 1982; Leibrock et al. 1989). The

human BDNF gene consists of 11 exons, and its different

splicing enables formation of transcripts specific to various

tissues and responsive to different stimuli (Pruunsild et al.

2007). The conservative structure of BDNF, with

85.9–100 % identity among genes of various vertebrates

and humans, determines its physiological function, to a

large extent independently of the stage of phylogenetic

development (Yeh et al. 2015). BDNF is a member of the

neurotrophin family, which also includes nerve growth

factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4

(NT4) (Hohn et al. 1990; Ip et al. 1992; Maisonpierre et al.

1990; Rosenthal et al. 1990).

A constantly growing body of evidence indicates

involvement of BDNF in a wide range of neurophysio-

logical processes. This can be explained based on its

characteristic pattern of synthesis, which involves several

biologically active isoforms that interact with different

receptors, thereby controlling numerous signaling path-

ways. BDNF is present in nearly all brain regions (Hofer

et al. 1990; Yan et al. 1997). Its function differs depending

on both the stage of brain development as well as the

neuronal, glial, or vascular constituents of the brain tissue.

The most important functions of BDNF include develop-

mental processes, regulation of neuro-, glio-, and synap-

togenesis, neuroprotection, and control of short- and long-
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kowiansk@gumed.edu.pl

1 Department of Anatomy and Neurobiology, Medical

University of Gdansk, 1 Debinki Street, 80-211 Gdańsk,
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lasting synaptic interactions that influence mechanisms of

memory and cognition (for review, see Foltran and Diaz

2016; Gonzalez et al. 2016; Park and Poo 2013; Sasi et al.

2017).

In this review, we present current views on BDNF

synthesis and elaborate its active isoforms, their interac-

tions with specific receptors, and hypotheses explaining the

role of BDNF in regulation of signaling pathways involved

in developmental processes, neuroprotection, and synaptic

plasticity.

Functionally Active BDNF Precursor Isoforms are
Produced in the Course of Multistage Synthesis

Synthesis and maturation of BDNF is a multistage process,

involving formation of several precursor isoforms. The

BDNF protein is synthesized and folded in the endoplasmic

reticulum as a precursor form, pre-pro-BDNF (Fig. 1)

(Foltran and Diaz 2016; Lu 2003). Upon translocation to

the Golgi apparatus, the signal sequence of the pre-region

is cleaved, resulting in formation of the precursor

proneurotrophin isoform of BDNF (pro-BDNF). This pro-

tein consists of 129 amino acids containing an N-terminal

pro-domain and 118 amino acids with a C-terminal mature

domain (Mowla et al. 2001; Rosenthal et al. 1991). The

pro-BDNF is further cleaved to reach the mature isoform

(m-BDNF) (Foltran and Diaz 2016; Mizui et al. 2016).

Intracellular proteolytic cleavage of pro-BDNF may occur

in the trans-Golgi network by constitutively released furin,

or in intracellular secretory vesicles by regulated conver-

tases (Lu et al. 2005). Extracellular cleavage of pro-BDNF

is dependent on plasmin (Pang et al. 2004) and matrix

metalloproteases 2 and 9 (MMP2 and MMP9) (Hwang

et al. 2005; Mizoguchi et al. 2011; Vafadari et al. 2016).

Secretion of m-BDNF and pro-BDNF into the extracellular

space enables their physiological action. The characteristic

pattern of neurotrophin synthesis provides, on the one

hand, an opportunity to control the enzymatic activity

involved in generation of BDNF isoforms, while on the

other, it can explain their role in regulation of several

physiological processes, frequently having opposite final

effects.

Depending on the cell type, BDNF secretion can be

constitutive or activity dependent (Mowla et al. 2001). In

neuronal cells, both pro-BDNF and m-BDNF are released

following cellular membrane depolarization (Conner et al.

1997; Dieni et al. 2012; Yang et al. 2009). The above-

mentioned mechanisms maintain a dynamic balance

between various isoforms of BDNF. The ratio of pro-

BDNF to m-BDNF varies between particular stages of

brain development and regions. While in the early post-

natal period higher concentration of pro-BDNF is reported,

m-BDNF prevails in adulthood (Yang et al. 2014). Con-

sequently, pro-BDNF may be regarded as an important

factor modulating brain function, especially in its devel-

opment, whereas m-BDNF reveals its significance for

processes occurring in adulthood, such as neuroprotection

and synaptic plasticity.

Apart from the two above-mentioned isoforms, the

functioning of BDNF is significantly affected by the single-

nucleotide polymorphism of methionine (Met) to valine

(Val) substitution at position 66 within the BDNF gene in

the pro-domain encoding region (Egan et al. 2003).

According to some recently published data, the Met66 pro-

domain variant can be regarded as another ligand with

independent significance for BDNF communication (for

review, see Hempstead 2015).

In conclusion, the multistage pattern of BDNF synthesis

and maturation facilitates the contribution of its isoforms to

regulation of processes that occur at different stages of

brain development, in various cellular populations, as well

as in several functional systems.

The BDNF Isoforms Interact with Different Types
of Receptors, Triggering a Wide Range
of Signaling Cascades

Pro-BDNF interacts preferentially with the p75 neu-

rotrophin receptor (p75NTR), a member of the tumor

necrosis factor (TNF) receptor family, through its mature

domain, and with the sortilin receptor or other vacuolar

protein sorting 10 protein (Vps10p) of the sorting receptor

family, through its pro-domain (Fig. 2) (for review, see

Anastasia et al. 2013; Teng et al. 2005). m-BDNF binds

the tyrosine kinase B (TrkB) receptor, belonging to the

tropomyosin-related kinase (Trk) family of receptor tyr-

osine kinases (Chao and Hempstead 1995; Ebendal 1992;

Reichardt 2006). In resting form, both types of receptor are

located in the membrane of intracellular vesicles. Stimu-

lation with Ca2?, cyclic adenosine monophosphate

(cAMP), or electrical impulse initiates their transfer and

fusion with the cellular membrane (Du et al. 2000; Meyer-

Franke et al. 1998).

Activation of p75NTR requires formation of com-

plexes within the cellular membrane which consist of

different types of precursor neurotrophins and signaling

adaptors. This allows signal transfer and activation of

transduction pathways (Chao and Hempstead 1995). The

changing composition of such membrane complexes is

responsible for the wide spectrum of functions con-

trolled, often with opposing character of final effect,

which can vary from supporting neuronal survival to

inhibition of growth, or even apoptotic death (Teng et al.

2005).
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Fig. 1 Schematic presentation of synthesis and maturation of BDNF.

BDNF synthesis and maturation is a multistage sequence of intra- and

extracellular processes. In the intracellular pathway, the pre-pro-

BDNF precursor sequence is produced in the endoplasmic reticulum

and transported to the Golgi apparatus. In the course of intracellular

cleavage, the pre-region sequence is removed, resulting in formation

of immature proneurotrophin isoform of BDNF (pro-BDNF). Further,

after removal of the pro-domain sequence, the mature isoform of

BDNF (m-BDNF) is produced. Intracellular cleavage leading to

formation of m-BDNF also occurs in intracellular vesicles, allowing

transport of this neurotrophin to axonal terminals and subsequent

release into the extracellular space, via presynaptic membrane.

Processing of BDNF is accomplished by intracellular proteases,

regulated convertases, and furin. As a result, both pro-BDNF and

m-BDNF isoforms are released into the extracellular space. In the

extracellular pathway, pro-BDNF released into the extracellular space

is processed by metalloproteinases 2 and 9 (MMP2 and MMP9),

plasmin, and extracellular proteases. Consequently, functionally

effective isoforms of m-BDNF and pro-BDNF can be found in the

extracellular space. BDNF brain-derived neurotrophic factor, m-

BDNF mature isoform of BDNF, MMP2 metalloprotease 2, MMP9

metalloprotease 9, pre-pro-BDNF primary, uncleaved precursor form

of BDNF, pre-region region of precursor sequence, pro-BDNF

proneurotrophin isoform of BDNF after cleavage of pre-region

precursor sequence, pro-domain sequence cleaved from proneu-

rotrophin isoform of BDNF when it becomes mature BDNF
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Activation of receptors and formation of specific com-

plexes within the cellular membrane triggers several sig-

naling pathways. The pro-BDNF/p75NTR/sortilin binding

complex initiates signaling cascades leading to activation

of c-Jun amino terminal kinase (JNK), Ras homolog gene

family member A (RhoA), and nuclear factor kappa B

(NF-jB) (Fig. 3) (Anastasia et al. 2013; Reichardt 2006).

The functional implications resulting from activation of the

above-mentioned signaling cascades have been systemati-

cally studied.

The JNK-related pathway, which is activated by the pro-

BDNF/p75NTR/sortilin complex, triggers neuronal apop-

tosis (Anastasia et al. 2013; Teng et al. 2005). This

mechanism of cell elimination has been confirmed by

reports indicating high level of p75NTR expression during

brain development and posttraumatic recovery (Barker

1998; Martı́nez-Murillo et al. 1993; Roux et al. 1999).

Activation of the RhoA-dependent signaling pathway is

reported to regulate neuronal growth cone development

and motility (Reichardt 2006). Finally, p75NTR-dependent

activation of NF-jB supports processes promoting

neuronal survival and maintenance of their adequate

number during brain development (Reichardt 2006).

Hence, pro-BDNF binding to specific receptors triggers

signaling pathways which can determine neuronal fate via

promoting their death or survival. It can also determine the

pathway of further development and morphological dif-

ferentiation. Neurons influenced by high level of pro-

BDNF or remaining under low concentration of m-BDNF

prevalently undergo elimination (Bamji et al. 1998). This

pattern of pro-BDNF-related regulation can occur during

both brain development and postlesion recovery.

The m-BDNF isoform, binding with the high-affinity

TrkB receptor, initiates its dimerization and autophospho-

rylation of intracellular tyrosine residues, which results

in formation of phosphorylated-TrkB receptor (Fig. 4)

(Kaplan and Miller 2000). An important process deter-

mining the stimulatory effect of the m-BDNF/TrkB

receptor complex is its translocation toward cellular

membrane lipid rafts, i.e., microdomains rich in cholesterol

and sphingolipids (Suzuki et al. 2004). Phosphorylated-

TrkB activates several enzymes: phosphatidylinositol

Fig. 2 Interaction of BDNF isoforms with specific receptors. As a

consequence of intra- or extracellular cleavage, the primary sequence

of pre-pro-BDNF is divided into functionally active isoforms of pro-

domain, pro-BDNF, and m-BDNF, each of which exhibits character-

istic affinity to a specific type of receptor. The BDNF pro-domain

binds preferentially to the sortilin receptor. Although the Val66Met

polymorphism of the pro-domain does not exclude its binding with

sortilin, the receptor affinity and functional effects resulting from

Val66 or Met66 pro-domain binding are characteristic for each of

them. The pro-BDNF isoform consisting of two sequences (pro-

domain and mature domain) interacts with specific receptors (sortilin

and p75NTR, respectively). The mature domain of BDNF, being the

only constituent of the m-BDNF isoform, exhibits highest affinity for

the TrkB receptor, which when stimulated undergoes homodimeriza-

tion and autophosphorylation. P phosphate group, p75NTR p75

neurotrophin receptor, sortilin sortilin-related vacuolar protein sorting

10 protein (Vps10p)-domain sorting receptor 2, TrkB tyrosine

kinase B receptor, Val66Met polymorphism polymorphism of BDNF

pro-domain resulting from methionine to valine substitution at

position 66 within the BDNF gene in the pro-domain encoding region
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3-kinase (PI3K), mitogen-activated protein kinase

(MAPK), phospholipase C-c (PLC-c), and guanosine

triphosphate hydrolases (GTP-ases) of the Ras homolog

(Rho) gene family (Gonzalez et al. 2016; Huang and

Reichardt 2003; Minichiello 2009). All of these trigger

signaling cascades with determined cellular functions.

The PI3K/Akt-related pathway exerts antiapoptotic and

prosurvival activity and modulates N-methyl-D-aspartate

receptor (NMDAR)-dependent synaptic plasticity (Baydyuk

and Xu 2014; Gonzalez et al. 2016; Park and Poo 2013). The

PI3K/Akt/mTOR cascade, through regulation of protein

synthesis and cytoskeleton development, enhances dendritic

growth and branching (Jaworski et al. 2005; Kumar et al.

2005).

The MAPK/Ras signaling cascade regulates protein

synthesis during neuronal differentiation (Reichardt 2006).

MAPK-related signaling is also required for activation of

extracellular-signal-regulated kinase 1/2 (ERK 1/2) and

cAMP response element-binding protein (CREB)

(Finkbeiner et al. 1997; Xing et al. 1998). This pathway is

critical not only for early response gene expression (e.g.,

c-Fos and ARC), but also for cytoskeleton protein synthesis

(e.g., Arc and cypin) (Gonzalez et al. 2016), as well as

dendritic growth and branching in hippocampal neurons

(Kwon et al. 2011; Segal 2003).

The PLC-c-dependent pathway evokes activation of

Ca2?-calmodulin-dependent protein kinase (CAM kinase)

and protein kinase C (PKC), which subsequently increase

the 1,2-diacylglycerol (DAG) and Ca2? ion concentrations

(Alcántara et al. 1997; Minichiello 2009). The PKC-

dependent pathway is reported to enhance synaptic plas-

ticity (Reichardt 2006). BDNF/TrkB complex-initiated

activation of GTP-ases, representing the Rho family,

stimulates actin and microtubule synthesis, which results in

growth of neuronal fibers (Gonzalez et al. 2016).

In summary, the specific role of BDNF in regulation of

numerous physiological processes in the brain is a conse-

quence of interaction of its isoforms with different types of

Fig. 3 Intracellular signaling

cascades activated by

interaction of pro-BDNF

isoform with p75NTR and

sortilin receptors. The

sequences of pro-domain and

mature domain (m-BDNF),

which form the proneurotrophin

isoform (pro-BDNF), reveal

preferential affinity for sortilin

and p75NTR, respectively. This

results in formation of pro-

BDNF/p75NTR/sortilin binding

complex and triggering of

signaling pathways related with

RhoA, NF-jB and JNK, which

promotes processes leading to

neuronal development and

survival, but also to

programmed cell death. JNK

c-Jun amino terminal kinase,

NF-jB nuclear factor kappa B,

p75NTR p75 neurotrophin

receptor, pro-BDNF

proneurotrophin isoform of

BDNF, RhoA Ras homolog gene

family member A, sortilin

sortilin-related Vps10p-domain

sorting receptor 2
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receptor. This allows triggering of signaling pathways that are

critical for maintaining a dynamic balance between stimu-

lating and inhibitory effects exerted upon processes of brain

development, synaptic plasticity, and brain regeneration after

damage. Understanding the physiological function of BDNF

may be critical for further research on regulatory mechanisms

of cellular signaling. Disorders of BDNF synthesis, resulting

in dysfunction of regulated signaling cascades, may be

responsible for triggering several pathological processes.

The BDNF Isoforms Positively and Negatively
Contribute to Maintenance of Brain Homeostasis

One of the most important features of BDNF synthesis is

the elaboration of several functionally active isoforms,

such as pro-BDNF, m-BDNF, pro-domain sequence, and

Val66Met polymorphic pro-domain variant. All of these

exert characteristic influences on numerous physiological

processes. The positive or negative impact exerted by these

Fig. 4 Intracellular signaling cascades activated by interaction of

m-BDNF isoform with TrkB receptor. Binding of the m-BDNF

isoform to TrkB receptor triggers its homodimerization and phos-

phorylation with subsequent translocation to cellular membrane lipid

rafts, rich in cholesterol and sphingolipids. The m-BDNF/TrkB

receptor complex triggers signaling pathways associated with activa-

tion of PI3K, MAPK, PLC- c, and GTP-ases of the Rho family. CAM

kinase Ca2?-calmodulin-dependent protein kinase, CREB cAMP

response element-binding protein, DAG 1,2-diacylglycerol, ERK

extracellular-signal-regulated kinase, GTP-ases guanosine triphos-

phate hydrolases, MAPK mitogen-activated protein kinase, m-BDNF

mature isoform of BDNF, NMDAR N-methyl-D-aspartate receptor,

P phosphate group, PI3K phosphatidylinositol 3-kinase, PKC protein

kinase C, PLC-c phospholipase C-c, Rho Ras homolog gene family

member, TrkB tyrosine kinase B receptor
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isoforms enables precise control of the dynamic balance

which is essential for maintenance of physiological

homeostasis. Additional factors, such as brain develop-

mental stage, brain structure, targeted cellular population,

and environmental factors, are also important for this type

of regulation.

During brain development, the most important issues

related to BDNF isoforms include neuro-, glio-, and

synaptogenesis, regulation of cell death, and elimination of

improperly formed connections. In adulthood, the prevail-

ing processes enhance the efficiency of stimulus trans-

mission and synaptic plasticity, which support memory and

cognition.

The biological function of pro-BDNF has been a subject

of discussion for many years (for review, see Gonzalez

et al. 2016; Hempstead 2015; Mizui et al. 2016). Initially,

it was regarded rather as an inactive protein. However,

recently it has been characterized as an independent ligand,

demonstrating specific biological activity (Anastasia et al.

2013; Dieni et al. 2012). Among the most important

functions of pro-BDNF, one can mention promotion of

apoptosis and its negative influence on neuronal remodel-

ing, reflected by growth cone retraction and dendritic spine

shrinkage (Gehler et al. 2004; Yamashita et al. 1999). Due

to the reduction in the number of neurons and deterioration

of synaptic function, these processes contribute to long-

term depression (LTD), as revealed in hippocampal neu-

rons (Park and Poo 2013; Woo et al. 2005; Yang et al.

2014). The physiological significance of all these appar-

ently negative processes can be explained by the reduction

of an excessive number of maturing neurons, elimination of

damaged or malfunctioning cells, as well as elimination of

abnormal connections that are ineffective for formation of

synaptic plasticity, memory, and cognition.

In contrast to pro-BDNF, m-BDNF supports develop-

mental processes of neuro- and gliogenesis (Gonzalez et al.

2016; Vilar and Mira 2016), neurite outgrowth, dendritic

arborization, and dendritic spine formation (Encinas et al.

1999; Yamada et al. 2001). The physiological effect of

m-BDNF is mainly related to maintenance of synaptic

strength and decreased excitability of hippocampal GABA-

ergic interneurons, together enhancing hippocampal long-

term potentiation (LTP) (Leal et al. 2015; Park and Poo 2013).

Hence, the physiological function of m-BDNF is linked to

enhancement of developmental processes, as well as to pro-

cesses in adulthood that require increased brain activity and

support efficient stimulus transmission in the synaptic system,

finally resulting in improved memory and cognition.

The results of early studies did not reveal the physio-

logical activity of BDNF pro-domain, but more recent data

have shed more light on its potential function (Anastasia

et al. 2013). The concentration of BDNF pro-domain rises

during adolescence and adulthood, following the increase

of m-BDNF, which may provide evidence of its functional

significance. It is released from neurons after depolariza-

tion, as an activity-dependent ligand with definite physio-

logical properties (Dieni et al. 2012). BDNF pro-domain

interacts with the sortilin receptor. However, it reveals

different bioactivity depending on the pro-domain variant

(Val66 or Met66), most probably due to interaction via

different residues. The molecular mechanism of Val66Met

polymorphism in BDNF pro-domain relies on its impaired

interaction with the sortilin receptor (sortilin-related

Vps10p-domain sorting receptor 2) (Chen et al. 2005).

This has been postulated to be responsible for altered

spatial conformation, changed intracellular sorting and

trafficking, as well as impaired release of neurotrophin into

the synaptic cleft (Anastasia et al. 2013; Chen et al.

2004, 2005). The consequences of these effects can include

changes in neuronal growth cone morphology, or their

retraction, as well as impaired synaptic plasticity. There is

well-documented evidence indicating that these processes

are responsible for initiating characteristic phenotypical

manifestations that are critical in the development of sev-

eral neurodegenerative disorders and processes related to

episodic cognition and memory disturbances, increased

risk of depression, and anxiety development (Dincheva

et al. 2012; Egan et al. 2003; Isackson et al. 1991; Soliman

et al. 2010; Verhagen et al. 2010).

The Neuroprotective Effects of BDNF are Related
to Modulation of NMDAR/Ca21-Dependent
Signaling

m-BDNF-dependent neuroprotection regulates the dynamic

balance between prosurvival NMDAR-dependent synaptic

signaling and death-inducing extrasynaptic communication

(Lau et al. 2015). The m-BDNF/TrkB receptor complex

triggers the synaptic NMDAR/Ca2?-driven signaling cas-

cade, leading to increased expression of inhibin b-A (ac-

tivin A in homodimer form) (Lau et al. 2015; Zhang et al.

2009). The postulated neuroprotective effect is related to

elimination of glutamatergic excitotoxicity, resulting from

inhibition of the extrasynaptic NMDAR-mediated Ca2?

influx. This prevents the mitochondrial dysfunction and

apoptotic cell death observed in the course of neurode-

generative diseases (Zuccato and Cattaneo 2009).

The neuroprotective effect can also be achieved due to

synaptic NMDAR stimulation and subsequent increase of

the nuclear Ca2? influx, which results in activation of

CREB and increased expression of genes coding proteins

involved in neuroprotection (Bading 2013; Zhao et al.

2017). The above-mentioned mechanisms enable determi-

nation of the neuronal fate during brain development and in

adulthood. Impairment of these mechanisms has been
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demonstrated in neurodegenerative diseases, such as

Huntington’s and Alzheimer’s (Zuccato and Cattaneo

2009).

BDNF Contributes to Neurogenesis by Modulating
Its Advanced Stages

Among the most important aspects of neurogenesis, one

could mention maintenance of an adequate number of

proliferating neural progenitors and conditions that enable

their further growth and differentiation (Dwyer et al. 2016;

Germain et al. 2010). Brain development, on the one hand,

relies on coordinated processes of neuro- and gliogenesis,

formation of neuronal projections, and synaptogenesis, but

on the other hand, is related to programmed cell death and

elimination of improperly formed connections, together

resulting in the formation of the functionally and mor-

phologically adjusted structure of the adult brain. In spite

of intensive studies, the role of BDNF in these processes

remains unclear, and available data frequently remain

contradictory.

Whereas the prosurvival function of BDNF exerted

upon neurons in the developing brain is not evident, it has

been reported to enhance survival of neurons in the adult

brain after trauma or during neurodegeneration (Ebadi

et al. 1997). In vivo studies showed that BDNF is involved

in regulation of neurogenesis in the adult hippocampus

(Katoh-Semba et al. 2002; Lee et al. 2002; Scharfman

et al. 2005). However, some authors question the role of

this neurotrophin in survival of new neurons in the adult

dentate gyrus (Vilar and Mira 2016).

In the light of current views, based on the results of

in vivo studies, the role of BDNF in neurogenesis could be

summarized more as a differentiating factor, rather than a

survival factor. An accumulating body of evidence indi-

cates action of BDNF during the later stages of neuroge-

nesis (Bergami et al. 2008; Chan et al. 2008; Wang et al.

2015). Binding of BDNF to TrkB receptor stimulates

neuronal differentiation and dendritic morphogenesis in the

subgranular zone of the hippocampus, confirming its

function during advanced stages of neurogenesis. While

BDNF deficit does not result in a significant decrease in the

number of neurons, it does cause inhibition of dendritic

arborization and deteriorated synaptic plasticity (Gao et al.

2009; Rauskolb et al. 2010; Wang et al. 2015). Reduction

of BDNF concentration induced in cultured rat hip-

pocampal neurons was related to decreased expression of

genes that are functionally related to vesicular trafficking

and synaptic communication (Mariga et al. 2015). The

pattern of gene expression changes was similar to the

profile observed in material coming from patients with

Alzheimer’s disease and cognitive impairment.

BDNF has been shown to stimulate cellular proliferation

in several brain regions. Its overexpression along with

p75NTR binding correlated with generation of neuronal

precursors in the olfactory bulb (Young et al. 2007; Bath

et al. 2008). BDNF is also involved in regulation of

migration of neuronal progenitors along the rostral migra-

tory stream and neuronal settlement in the olfactory bulb

(Snapyan et al. 2009). Interestingly, BDNF stimulation led

to an increase in neuronal number in the olfactory bulb of

rat (Benraiss et al. 2001; Henry et al. 2007). However, the

same effect was not observed in mouse (Galvao et al. 2008;

Reumers et al. 2008), which may be explained by species-

specific differences in regulatory mechanisms.

An interesting effect revealing the practical significance

of BDNF is prosurvival enhancement, exerted upon neu-

rons representing dopaminergic, cholinergic, and seroton-

ergic neurotransmitter systems (Foltran and Diaz 2016).

Although an explanation for the role of BDNF in this

process requires further study, it indicates an important

function of this neurotrophin, potentially related to control

of neurotransmitter systems and prevention of development

of neurodegenerative or psychiatric disorders.

Apart from the influence of BDNF on development of

neuronal subpopulations representing different neuro-

transmitter systems, results of recent studies have demon-

strated a stimulatory effect of the serotoninergic system on

BDNF/TrkB receptor complex-initiated neurogenesis

(Gould 1999). An increase in neuronal proliferation has

been reported after administration of serotonin agonists of

several receptors, e.g., 5-HT1A (Banasr et al. 2004; San-

tarelli et al. 2003), 5-HT2B (Diaz et al. 2012), and 5-HT4

(Mendez-David et al. 2014), which may be related to their

binding to the BDNF/TrkB receptor complex. This mech-

anism could explain the proneurogenic effect of antide-

pressants from the selective serotonin reuptake inhibitor

(SSRI) group. These data may stimulate future studies on

the mechanisms of action of SSRIs and extend potential

indications in therapy for psychiatric and neurodegenera-

tive disorders.

Sotthibundhu et al. reported a stimulatory effect exerted

by amyloid b (Ab) upon neural progenitor cells in the adult

subventricular zone (Sotthibundhu et al. 2009). This effect

is mediated by Ab-dependent stimulation of p75NTR, a

receptor preferentially binding pro-BDNF, indicating a

possible significance of this neurotrophin in neurogenesis.

However, this type of Ab-induced overstimulation of

neurogenesis, when occurring in the early stages of

development, has been claimed to be responsible for seri-

ous disturbances in adult neurogenesis by reducing the

number of available neural progenitors.

Another interesting issue that remains to be elucidated is

the modulating effect of environmental factors and neu-

ronal activity on the course of BDNF-regulated
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neurogenesis, which has been documented in numerous

publications (Berchtold et al. 2005; Cotman et al. 2007;

Vaynman and Gomez-Pinilla 2005). Neurogenesis could be

induced by environmental enrichment (Kempermann et al.

1997; Rossi et al. 2006), hippocampus-dependent learning

(Gould 1999), and physical exercise (Aimone et al. 2014;

Vivar et al. 2013). Although the regulatory mechanisms of

neurogenesis induced by these factors are complex and

only partially disclosed, increased expression of BDNF

was found in each case.

Apart from its role in neurogenesis and neuronal dif-

ferentiation, BDNF has also been reported to stimulate

gliogenesis and glial proliferation during brain develop-

ment and in some pathological processes (Frisen et al.

1993). Results of animal studies have shown increased

expression of the truncated TrkB receptor in the region of

reactive gliosis after brain injury. Binding of m-BDNF to

the truncated form of TrkB receptor stimulates gliogenesis

and differentiation of neural progenitors into glial lineage

(e.g., astrocytes) in conditions of reactive gliosis (Cheng

et al. 2007). At the same time, however, it enhances the

inhibitory effect upon neurogenesis. This interesting

aspect of the function of BDNF, in relationship to the

neuroglial reactive response, offers promising opportuni-

ties related to modulation of the glial response in the

course of various neurodegenerative and neurovascular

pathologies. However, this potentially effective strategy,

based on BDNF-dependent manipulation of the neuroglial

response to pathological stimuli, requires further

investigation.

BDNF Modifies Morphological and Functional
Aspects of Synaptic Plasticity

The role of BDNF in regulation of synaptic plasticity and

learning mechanisms has been extensively studied both

in vivo and in vitro (Messaoudi et al. 2002; Minichiello

et al. 1999). BDNF influences both functional and struc-

tural aspects of synaptic transmission, enhancing activity-

induced changes, which leads to increased efficiency of

signal transfer (Lynch 2004). The impact of BDNF can be

analyzed along several dimensions, with the final results

depending on the level of neuronal activity, the isoform of

neurotrophin considered (e.g., pro- or m-BDNF), the time

period of the action (short- or long-term effects), its

localization (pre- versus postsynaptic effects), and coop-

eration with neurotransmitters, in particular nitric oxide

(NO), glutamate (Glu), and GABA, and their receptors.

Silhol et al. reported that learning increases not only

BDNF gene expression but also pro-BDNF and TrkB

protein level in hippocampus (Silhol et al. 2007). More-

over, increased level of BDNF in mouse hippocampus

evoked by voluntary exercises correlated with improved

performance in the Morris water maze test and behavioral

tasks related to learning (Vaynman et al. 2004). This is in

line with reports showing a correlation between physical

activity-evoked BDNF overexpression and augmented

excitatory transmission (Canossa et al. 1997; Castren et al.

1993; Patterson et al. 1992; Zafra et al. 1990), as well as

enhanced synaptic plasticity in the dentate gyrus (Lynch

2004).

According to an interesting hypothesis, the activity-

dependent increase of BDNF level is a consequence of

stimulation of glutamatergic NMDARs with subsequent

Ca2? intracellular influx. This results in activation of

CREB and its binding to BDNF promoter, which leads to

initiation of transcription (Ghosh et al. 1994; Tao et al.

1998, 2002; Zafra et al. 1991).

Altogether, BDNF expression depends on various forms

of cellular and synaptic activity, initiated by stimuli of

different modalities. The relationship between BDNF

expression level and stimulus-evoked cellular activity

reveals reciprocal character. On the one hand, increased

expression of BDNF is the result of stimulation, while on

the other hand, higher BDNF content strengthens synaptic

potentiation, modulates the axo-dendritic morphology, and

positively influences neuronal activity.

Numerous studies have shown that m-BDNF expressed

after high-frequency hippocampal stimulation enhanced

long-term potentiation (LTP) (Chen et al. 1999; Figurov

et al. 1996; Kang et al. 1997; Minichiello et al. 1999). In

contrast, pro-BDNF expressed during low-frequency

stimulation has been reported to induce LTD (Woo et al.

2005; Yang et al. 2014). These observations confirm a

close relationship between the chemical structure of the

BDNF isoform and the effects of its action in the context of

synaptic plasticity. This can also explain the wide range of

BDNF-initiated physiological effects exerted by different

stimuli.

Molecular processes responsible for hippocampal

synaptic potentiation can be categorized, depending on the

time course, into short and long term (Abraham 2003;

Kandel 2001; Leal et al. 2015; Sweatt 1999), and BDNF

can modify both of them. The short-lasting processes

controlled by BDNF are based on regulation of neuro-

transmitter release, modification of preexisting proteins or

synapse structure (Leal et al. 2015). The long-term effects

are related to changes in gene expression or protein syn-

thesis (Korte et al. 1998; Park and Poo 2013). The BDNF-

controlled long-lasting effects of LTP and alterations in the

synaptic proteome may result from modulation of micro-

RNA (miRNA) expression (Jaitner et al. 2016; Leal et al.

2014; Smalheiser et al. 2010). Another route for synaptic

proteome modification, which is dependent on BDNF-re-

lated protein degradation, involves calpains and ubiquitin–
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proteasome system activation (Leal et al. 2015; Santos

et al. 2015).

Apart from this time-based categorization, the influence

of BDNF on synaptic plasticity can also be investigated

according to the target of its action, i.e., at pre- or post-

synaptic elements. Whereas the former is related to regu-

lation of release of neurotransmitters, the latter is

concerned with changes in expression of receptors, their

molecular characteristics, as well as regulation of signaling

pathways (Edelmann et al. 2014).

The presynaptic effect of BDNF on hippocampal LTP has

been reported in Schaffer’s collaterals (Zakharenko et al.

2003). This relies on BDNF-induced changes of Glu and

GABA release into the synaptic cleft (Figurov et al. 1996).

The postsynaptic mechanism of BDNF action has been

reported in dentate gyrus (Kovalchuk et al. 2002). In this part

of the hippocampus, BDNF modifies the glutamatergic

postsynaptic receptors. The m-BDNF/TrkB receptor com-

plex triggers phosphorylation of NR1 and NR2B subunits of

NMDA receptor (Caldeira et al. 2007b) and upregulates the

GluR1 and GluR2/3 subunits of a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptors (AMPARs)

(Caldeira et al. 2007a; Fortin et al. 2012). These modifica-

tions enhance the synaptic strength and initiate LTP in a

Ca2? ion concentration dependent manner (Kang et al. 1997;

Korte et al. 1998; Messaoudi et al. 2002; Minichiello et al.

1999). It has been revealed that the BDNF-dependent

increase in the number of AMPARs in the postsynaptic

membrane positively enhances LTP, whereas their elimi-

nation results in LTD (Derkach et al. 2007; Fortin et al.

2012). Another mechanism of synaptic strength control

relies on BDNF-dependent reduction of GABAA receptor

expression and decreased inhibitory GABA-ergic neuro-

transmission in the hippocampus (Jovanovic et al. 2004).

Apart from the above-mentioned molecular mechanisms

involving changes in receptor expression, BDNF also

induces some structural modifications, enhancing the

activity-related efficiency of synaptic transmission. The

BDNF/TrkB receptor signaling cascade triggers processes

leading to increase in the number of dendritic spines and

increased dendritic arborization, which improves the effi-

ciency of synaptic transmission (Amaral and Pozzo-Miller

2007; Gonzalez et al. 2016; Kumar et al. 2005).

The function of BDNF in modulation of synaptic plas-

ticity is also dependent on its cooperation with neuro-

transmitters, in particular NO. Although the role of NO in

the hippocampal mechanisms of learning and in brain

development has been extensively studied, the relationship

between NO and neurotrophins involved in these processes

remains mostly unknown. Results from recent studies

suggest a reciprocal and modulatory relationship between

BDNF and NO, which effectively influences synaptic

plasticity (Biojone et al. 2015). Binding of BDNF to TrkB

receptor upregulates neuronal nitric oxide synthase (nNOS)

expression and increases production of NO (Biojone et al.

2015). This effect has been reported in neural progenitors,

astrocytes, as well as neocortical and hippocampal neurons

(Cheng et al. 2003; Colombo et al. 2012; Kolarow et al.

2014; Sandoval et al. 2011; Xiong et al. 1999).

An interesting hypothesis explaining the role of BDNF and

NO in strengthening the synaptic system has been proposed. It

has been reported that BDNF-induced increase in NO triggers

expression of CREB-dependent genes, which finally results in

stimulation of dendritic arborization and enhancement of

long-lasting effects of synaptic potentiation (Hardingham

et al. 2013; Nott et al. 2008; Riccio et al. 2006). Acting

presynaptically, NO can modulate release of Glu and GABA

(Steinert et al. 2010). On the contrary, postsynaptic action of

NO increases the number of AMPARs, which results in LTP

(Malinow and Malenka 2002).

NO-dependent posttranslational modifications of BDNF,

such as nitration or S-nitrosylation of amino acid residues in

the BDNF sequence, negatively change its affinity to TrkB

receptor and consequently decrease the impact of BDNF on

development of neuronal connections, as well as on synaptic

strength as evidenced by LTP (Biojone et al. 2015). Hence,

through regulation of NO production, it may be possible to

control the BDNF-dependent effects on synaptic plasticity.

The physiological significance of BDNF–NO interplay can

be attributed to regulation of synaptic strength and elimi-

nation of improperly shaped neuronal projections, ultimately

resulting in an adequate pattern of connections and mainte-

nance of proper brain functions (Ernst et al. 2000). Better

understanding of this relationship requires further research

aimed at explaining cognitive, developmental or neu-

ropathological aspects of NO function.

Conclusions

A large and constantly growing body of evidence indicates

involvement of BDNF in numerous neurophysiological

processes. In general, the functions of this neurotrophin are

related to control of development of neuronal and glial

cells, as well as activity-dependent regulation of the

synaptic structure and its maintenance, which are critical

for memory and cognition. A wide spectrum of processes

are controlled by BDNF, exerting sometimes opposite

effects in the brain, which can be explained based on the

specific pattern of its synthesis, with several biologically

active isoforms that interact with different types of recep-

tor, finally initiating a large number of signaling pathways.

The physiological role of BDNF, as summarized herein,

renders it a potentially valuable tool for many therapeutic

strategies. However, clinical applications of this neu-

rotrophin require further intensive study.
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