Skip to main content

Advertisement

Log in

Memantine Prevents Sensitivity to Excitotoxic Cell Death of Rat Cortical Neurons Expressing Human Truncated Tau Protein

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have previously shown that human misfolded tau proteins strongly perturb mitochondrial transport and induce accumulation of free radicals in neurons. This interference is underlying cause of increased susceptibility to oxidative stress and could be linked to excitotoxic pathways. In order to understand integral mechanisms of misfolded tau driven neurodegeneration, we have investigated the role of human truncated tau protein, derived from Alzheimer’s disease, in rat cortical neurons under the conditions of excitotoxic stress induced by glutamate. We found that primary neurons expressing truncated tau protein are highly susceptible to glutamate-induced cell death. Pre-treatment with memantine (N-methyl-d-aspartate receptor antagonist) significantly improved survival of rat neurons exposed to glutamate and its effect was associated with overall decrease of reactive oxygen species (ROS) in both transgenic and nontransgenic neurons. Interestingly, despite of this overall effect, memantine was not able to decrease misfolded tau-induced ROS level specifically in transgenic cells. Our data suggest that memantine does not interfere with specific pathological pathways induced by misfolded tau protein nevertheless is able to attenuate oxidative stress in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aliev G, Smith MA, de la Torre JC, Perry G (2004) Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease. Mitochondrion 4:649–663. doi:10.1016/j.mito.2004.07.018

    Article  PubMed  CAS  Google Scholar 

  • Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739:216–223

    PubMed  CAS  Google Scholar 

  • Bojarski L, Herms J, Kuznicki J (2008) Calcium dysregulation in Alzheimer’s disease. Neurochem Int 52:621–633. doi:10.1016/j.neuint.2007.10.002

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7:548–554. doi:10.1016/S1471-4914(01)02173-6

    Article  PubMed  CAS  Google Scholar 

  • Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME, Perry G, Smith MA (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360. doi:10.1002/jnr.10389

    Article  PubMed  CAS  Google Scholar 

  • Cente M, Filipcik P, Pevalova M, Novak M (2006) Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J NeuroSci 24:1085–1090. doi:10.1111/j.1460-9568.2006.04986.x

    Article  PubMed  Google Scholar 

  • Chang TW, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. doi:10.1016/j.pneurobio.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371. doi:10.1073/pnas.88.14.6368

    Article  PubMed  CAS  Google Scholar 

  • Doody R, Wirth Y, Schmitt F, Möbius HJ (2004) Specific functional effects of memantine treatment in patients with moderate to severe Alzheimer’s disease. Dement Geriatr Cogn Disord 18:227–232. doi:10.1159/000079833

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sierra F, Ghoshal N, Quinn B, Berry RW, Binder LI (2003) Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. J Alzheimers Dis 5:65–77

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. doi:10.1073/pnas.83.13.4913

    Article  PubMed  CAS  Google Scholar 

  • Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, Horowitz PM, Fu Y, Wang T, Cahill ME, Bigio EH, Berry RW, Binder LI (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 26:1015–1022. doi:10.1016/j.neurobiolaging.2004.09.019

    Article  PubMed  CAS  Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595. doi:10.1016/j.neuint.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  • Koch HJ, Uyanik G, Fischer-Barnicol D (2005) Memantine: a therapeutic approach in treating Alzheimer’s and vascular dementia. Curr Drug Target CNS Neurol Disord 4:499–506. doi:10.2174/156800705774322021

    Article  CAS  Google Scholar 

  • Kril JJ, Patel S, Harding AJ, Halliday GM (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol 103:370–376. doi:10.1007/s00401-001-0477-5

    Article  PubMed  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170. doi:10.1038/nrd1958

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622. doi:10.1056/NEJM199403033300907

    Article  PubMed  CAS  Google Scholar 

  • Lupp A, Kerst S, Karge E (2003) Evaluation of possible pro- or antioxidative properties and of the interaction capacity with the microsomal cytochrome P450 system of different NMDA-receptor ligands and of taurine in vitro. Exp Toxicol Pathol 54:441–448. doi:10.1078/0940-2993-00280

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085. doi:10.1016/j.neurobiolaging.2003.04.007

    Article  PubMed  CAS  Google Scholar 

  • Mondragon-Rodriguez S, Basurto-Islas G, Santa-Maria I, Mena R, Binder LI, Avila J, Smith MA, Perry G, García-Sierra F (2008) Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer’s disease. Int J Exp Pathol 89:81–90. doi:10.1111/j.1365-2613.2007.00568.x

    Article  PubMed  CAS  Google Scholar 

  • Myhrer T (1998) Adverse psychological impact, glutamatergic dysfunction, and risk factors for Alzheimer’s disease. Neurosci Biobehav Rev 23:131–139. doi:10.1016/S0149-7634(98)00039-6

    Article  PubMed  CAS  Google Scholar 

  • Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12:365–370

    PubMed  CAS  Google Scholar 

  • Perry G, Nunomura A, Hirai K, Zhu X, Perez M, Avila J, Castellani RJ, Atwood CS, Aliev G, Sayre LM, Takeda A, Smith MA (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 33:1475–1479. doi:10.1016/S0891-5849(02)01113-9

    Article  PubMed  CAS  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574. doi:10.1023/A:1025682611389

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129. doi:10.1385/MN:24:1-3:107

    Article  PubMed  CAS  Google Scholar 

  • Scott GS, Bowman SR, Smith T, Flower RJ, Bolton C (2007) Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-d-aspartate (NMDA) receptor activation. Biochem Pharmacol 73:228–236. doi:10.1016/j.bcp.2006.09.021

    Article  PubMed  CAS  Google Scholar 

  • Skrabana R, Sevcik J, Novak M (2006) Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 26:1085–1097. doi:10.1007/s10571-006-9083-3

    Article  PubMed  CAS  Google Scholar 

  • Ward MW, Rego AC, Frenguelli BG, Nicholls DG (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 20:7208–7219

    PubMed  CAS  Google Scholar 

  • Wilkinson D, Andersen HF (2007) Analysis of the effect of memantine in reducing the worsening of clinical symptoms in patients with moderate to severe Alzheimer’s disease. Dement Geriatr Cogn Disord 24:138–145. doi:10.1159/000105162

    Article  PubMed  CAS  Google Scholar 

  • Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506–4510. doi:10.1073/pnas.85.12.4506

    Article  PubMed  CAS  Google Scholar 

  • Zilka N, Filipcik P, Koson P, Vechterova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E, Novak M (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580:3582–3588. doi:10.1016/j.febslet.2006.05.029

    Article  PubMed  CAS  Google Scholar 

  • Zilka N, Kontsekova E, Novak M (2008) Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. J Alzheimers Dis 15:169–179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research funding agencies of Slovak republic: VEGA, No. 2/0148/08; 2/7130/27 and APVV No. 0634-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Filipcik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cente, M., Mandakova, S. & Filipcik, P. Memantine Prevents Sensitivity to Excitotoxic Cell Death of Rat Cortical Neurons Expressing Human Truncated Tau Protein. Cell Mol Neurobiol 29, 945–949 (2009). https://doi.org/10.1007/s10571-009-9379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9379-1

Keywords

Navigation