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Abstract The regioselective oxidation of the pri-
mary hydroxyl groups of cellulose, usually medi-
ated by the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl 
radical (TEMPO), is highly popular in the scientific 
literature. However, the lack of efficient monitoring 
techniques imposes a severe limitation to its upscal-
ing. This work involves a portable, user-friendly 
near-infrared spectroscopy device, optimized pre-
processing techniques, and multivariate calibration 
to quickly estimate the carboxyl group content of 
modified cellulose (i.e., the extent of the oxidation). 
For that, bleached pulps from eucalyptus, pine, hemp, 
and sisal were submitted to TEMPO-mediated oxida-
tion, varying the dosage of spent oxidizer (NaClO) 
and thus attaining samples of different values of 
carboxyl group content. These values were related 
to near-infrared spectra (908–1676  nm) by Partial 
Least Squares regression, yielding cross-validation 

coefficients  (RCV
2) above 0.97 for wood pulps, 0.95 

for sisal pulp, and 0.91 for hemp pulp. Based on the 
residual prediction deviation, the model for each pulp 
was found to show good predictability. Nonetheless, 
the overall regression model, comprising the four dif-
ferent materials, was unreliable. In light of this, spec-
tra were submitted to principal components analysis 
(PCA), hinting that pulps could be classified in terms 
of their hemicellulose to cellulose ratio. Consider-
ing all the statistical parameters, the overall proposal 
presented here begins with a PCA—Linear Discrimi-
nant Analysis model to classify the sample by its fiber 
type, subsequently selecting a specific regression 
model for that class. Overall, the presented models in 
this work allow the determination of the extent of oxi-
dation of different cellulosic feedstocks, expressed as 
carboxyl content, in a fast and simple approach using 
a benchtop near-infrared equipment.

Keywords Cellulose · Linear discriminant 
analysis · Partial least squares · Principal components 
analysis · Near-infrared spectroscopy · TEMPO-
mediated oxidation

Introduction

The growing interest in cellulose nanomaterials, 
either in the form of cellulose nanofibers (CNFs), 
cellulose nanocrystals (CNCs), or even bacterial 
cellulose (BC), has opened a new paradigm on the 
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development of value-added lignocellulosic materi-
als for a myriad of applications (Eichhorn et al. 2010; 
Moon et  al. 2011; Abitbol et  al. 2016; Boufi et  al. 
2016; Li et  al. 2021). CNFs are generally obtained 
from a top-down approach, involving different stages 
that suitably transform lignocellulosic fibers at the 
microscale to the nanoscale, particularly in terms of 
fiber width (Li et  al. 2021). For this, lignocellulosic 
feedstocks are usually pretreated by means of either 
chemical, enzymatic, or mechanical methods, to be 
later fibrillated. Depending on the pretreatment (type 
and intensity), and the fibrillation intensity and strat-
egy, the resulting CNFs will possess different mor-
phological and chemical features (Sanchez-Salvador 
et  al. 2022; Signori-Iamin et  al. 2022). Among the 
most widely used pretreatments, TEMPO-mediated 
oxidation has been reported to provide highly charged 
and homogeneous CNFs after low-intensity fibrilla-
tion. Actually, the regioselective oxidation effectively 
transforms hydroxyl groups from the primary alcohol 
in C6 into carboxyl groups, being highly anionic and 
more voluminous, which promotes fibrillation in the 
subsequent stages (Saito and Isogai 2004; Isogai and 
Zhou 2019).

While TEMPO-mediated oxidation is a relatively 
simple process that has been successfully imple-
mented at laboratory scale, its scaling up is still lack-
ing on appropriate real-time monitoring systems, able 
to deliver the carboxyl content, for instance, as func-
tion of time in a fast and simple manner. In this line, 
several efforts have been paid to monitor the evolution 
of the carboxyl content with oxidation time and con-
ditions, mainly based on kinetic modelling (Sun et al. 
2005; Dai et al. 2011; Mazega et al. 2023). However, 
these models require the analysis of counter-samples 
by analytical methods, namely conductometric titra-
tion or methylene blue absorption (Im et al. 2018; Lin 
et al. 2018). These processes usually require special-
ized laboratory technicians to perform time-consum-
ing analytical determinations, which generate a delay 
between the process and the relevant information that 
can be extracted from, hindering any possibility of 
implementing process control loops.

Near-infrared spectroscopy (NIR) has been consid-
ered as a valuable technique for providing chemical 
and structural information about organic molecules, 
because NIR spectra are influenced by characteris-
tic vibration modes of some functional groups that 
have C-H, N–H, S–H and O–H bonds (Blanco and 

Villarroya 2002; Pu et al. 2020). This type of vibra-
tional spectroscopy uses the region of the electromag-
netic spectrum with wavelengths ranging from 780 
to 2500  nm, where the absorption bands of electro-
magnetic energy correspond mainly to overtones and 
combination of fundamental vibration bands (Santos 
et al. 2013a, b). Therefore, the NIR spectrum gener-
ally involves overlapped and broad bands, and also 
weak signal without distinct signature of individual 
compounds. For many years, these aspects made 
this spectral region to be considered too difficult to 
interpret. However, with the advent of modern com-
puters and advances in multivariable data analysis 
algorithms and chemometrics, NIR spectroscopy 
received a major boost being able to provide effi-
cient correlation between spectral data and several 
variables linked or not to composition (Badaró et al. 
2022; Simon et al. 2022). Besides, due to its capacity 
of being rapid and a non-destructive method which 
requires minimal or no sample preparation, NIR spec-
troscopy has become useful for process monitoring 
and control (Pu et al. 2020).

The application of NIR to determine the composi-
tion of cellulosic materials has been addressed in the 
literature with the aim of replacing time-consuming 
analytical characterization techniques that require a 
variety of chemicals. In this sense Mayr et al. (2015) 
and Zhou et al. (2019) determined the cellulose con-
tent in dry samples of wood pulp using information 
from NIR spectra. The study by Mayr et  al. showed 
that the spectra in the NIR region were also sensi-
tive to hemicellulose and lignin contents as well 
as the composition of hemicellulose (mannose and 
xylose). Quantitative studies were carried out by Li 
et al. (2015), Jin et al. (2017) and Zhang et al. (2017) 
correlating the NIR spectra with the content of the 
main lignocellulosic components (cellulose, hemicel-
lulose and lignin) in different cellulosic biomasses 
(wood and plants). A few studies have investigated 
the quantification of specific functional groups in cel-
lulosic samples. Thus, Simon et al. (2022) determined 
the degree of oxidation of dialdehyde celluloses via 
NIR spectroscopy. Henniges et  al. (2009) developed 
a method for quantifying the content of carboxyl and 
carbonyl groups in pulp hand sheets and rag papers. 
In all cited studies, the NIR spectra were calibrated 
using experimental data from analytical characteriza-
tion techniques with the help of multivariate calibra-
tion techniques such as Partial Least Squares (PLS) 
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and Multiple Linear Regression (MLR) (Geladi and 
Kowalski 1986; Brereton 2003).

NIR spectroscopy has been also used together 
with discrimination/classification algorithms to 
identify samples with distinct compositional charac-
teristics (Brereton 2003). In this sense, Cazón et al. 
(2022) classified cellulosic films as a function of the 
nature of the cellulose (vegetable or bacterial) and 
Diniz et al. (2019) identified samples of wood saw-
dust from two different species of eucalyptus.

Recently, the number of applications of NIR 
spectroscopy on plant products has increased signif-
icantly due to the development of portable spectro-
photometers that are fast, low-cost, easy to use, and 
robust. Moreover, these miniature spectrophotom-
eters can be used directly in-line and do not require 
a large physical laboratory space, such as benchtop 
equipments usually do (Dos Santos et al. 2013a, b; 
Beć et al. 2021).

Among the main differences between bench and 
portable NIR spectrophotometers, one should cite 
the technology used in the selection of wavelengths. 
For benchtop equipment, the selection is made 
using dispersive elements or interferograms that 
take up a lot of space. Commercial portable instru-
ments have varied designs and mainly employ linear 
variable filter (LVF) or digital micromirror array 
(Beć et  al. 2021). This means that portable instru-
ments have a restricted wavelength range, lower res-
olution and poor signal-to-noise-ratios (Mayr et al. 
2021). Due to these characteristics, the performance 
of portable NIR equipment for each specific appli-
cation must be investigated and such studies are 
currently part of a very active research area. How-
ever, there are still few applications of this type of 
NIR spectrophotometer in determining the compo-
sition of cellulosic materials. In this sense, Chavez 
Lozano et al. (2023) successfully used NIR spectra 
collected from a portable equipment to determine 
the substitution content of acetate functions during 
the hydrolysis of these groups in cellulose acetate 
films. Also, Diniz et  al. (2019) compared the per-
formance of the portable instrument with benchtop 
equipment for identifying eucalyptus species from 
different sawdust. The portable equipment proved 
to be quite efficient in classifying the samples and 
the benchtop equipment only presented an accu-
racy between 7 and 10% greater. In both studies, the 
portable equipment used was the MicroNIR 1700 

(Viavi Solutions) with a spectral range between 908 
and 1676 nm.

As noted above, the use of portable NIR devices 
to evaluate the composition of cellulosic materials 
is still a recent topic. Worse yet, there are no stud-
ies in the literature relating the use of compact and 
low-cost spectrophotometers to analyze the content 
of carboxylic groups of cellulose fibers. In fact, the 
development of robust and low-cost monitoring 
techniques is essential for controlling the cellulose 
production process. Through a sensor capable of 
providing reliable information about the carbox-
ylic contents, the fiber oxidation process can be 
correctly adjusted, ensuring the quality of the final 
product. For all the above, in this work, we propose 
the application of a portable NIR spectrophotometer 
to evaluate the carboxylic content of oxidized cel-
lulose fibers, as an alternative method to traditional 
analytical techniques. The joint use of NIR spectra 
and multivariate analysis techniques allow to pre-
dict the carboxylic contents of cellulosic materials 
well. Moreover, calibration and validation perfor-
mance of the NIR PLS models built using the port-
able NIR instrument were similar to those obtained 
from a benchtop NIR instrument. Finally, a strategy 
to expand the NIR spectra correlation for carboxylic 
contents of fibers from different sources, through 
the sequential use of classification algorithms and 
PLS models, is provided.

Experimental section

Materials

Four different commercial bleached pulps were 
selected, consisting of four different raw materials: 
(i) eucalyptus, (ii) pine, (iii) hemp, and (iv) sisal. 
In the case of eucalyptus and pine, both consisted 
of bleached kraft pulps (BKEP and BKPP, respec-
tively) and were kindly provided by LECTA group 
(Zaragoza, Spain), in the case of BKEP, and by Celu-
losa Arauco y Constitución S.A. (Los Horcones, 
Chile), in the case of BKPP. Both hemp and sisal 
pulps were provided by Celulosa de Levante S.A. 
(Tortosa, Spain). In all cases, the pulps were provided 
in the form of dry laps with a moisture content around 
10%. All the reagents required for TEMPO-mediated 



 Cellulose

1 3
Vol:. (1234567890)

oxidation, sample processing and characterization, 
were acquired at Merck (Barcelona, Spain).

Characterization of the raw materials

The bleached pulps were characterized in terms of 
chemical composition and morphology. Samples 
were firstly dried at 105  °C until constant weight, 
to be later milled and sieved (40 mesh). On portion 
was used for ash content determination by calcina-
tion (525  °C), according to TAPPI T211 standard. 
In parallel, another portion was submitted to solvent 
extractives determination by Soxhlet extraction using 
ethanol-toluene mixture as solvent, as detailed in 
TAPPI T204 standard. Acid-insoluble lignin of the 
extractive-free samples was determined according to 
the Klason lignin method, described by TAPPI T222 
standard. Finally, cellulose content was determined 
by high-performance anion exchange chromatogra-
phy (HPAEC), as described elsewhere (Tarrés et  al. 
2017). Hemicellulose was then determined by differ-
ence from 100%.

The morphological features of the selected pulps 
were determined in a MorFi equipment (TechPap, 
France), equipped with a CCD video camera. The 
equipment is run by the MorFi v9.2 software and is 
able to analyzed about 30,000 fibers per test. Among 
other parameters, the software provides information 
on length, diameter, kink angle, and fines content of 
the analyzed fiber suspensions, both in the for of dis-
tribution and average values.

TEMPO-mediated oxidation

TEMPO-mediated oxidation was performed over 
the four selected pulps at different oxidizer amounts, 
ranging from 2 to 12 mmol of NaClO/g. In a typical 
experiment, 0.24  g of (2,2,6,6-tetramethylpiperidin-
1-yl)oxyl (TEMPO) and 1.5  g of NaBr were sus-
pended in 1000 mL of deionized water and kept under 
stirring, at room temperature, until complete dissolu-
tion of the co-catalysts. Then, 15 g (over dry weight) 
were suspended in the dissolution and additional 
water was added to reach a total volume of 1500 mL. 
Once the fiber was completely suspended in water 
and under gentle stirring, the selected amount of 
NaClO was added to the suspension at once, observ-
ing an increase in the pH. The pH was maintained at 
10.5 by means of the dropwise addition of a 0.1  M 

NaOH solution until no changes were observed in the 
pH. The resulting fibers were rinsed with deionized 
water and filtered. The oxidized fibers were stored 
in hermetic plastic bags at 4  °C for further use and 
characterization (Saito and Isogai 2004). The samples 
were labelled according to the raw material, indicat-
ing the first letter of the plant specie (E, P, H, or S, 
for eucalyptus, pine, hemp, or sisal), and the amount 
of added NaClO (in mmol/g). For instance, the hemp 
pulp oxidized with 8 mmol/g of NaClO was labelled 
as H8.

Carboxyl content determination of the oxidized pulps

The carboxyl content (CC) of the oxidized pulps was 
determined according to a previously reported meth-
odology. Briefly, 3–5 mg of dry fiber were added in 
a solution containing 5 mL of methylene blue at the 
concentration of 300 mg/L and 5 mL of borate buffer 
solution at pH 8.5. The samples were kept under stir-
ring and later centrifuged for 20 min at 3500 G-force. 
After centrifugation, 2  mL of the supernatant were 
transferred into a 25  mL flask containing 2.5  mL 
of HCl 0.1 N, and the volume was completed with 
deionized water. The absorbance at 664  nm was 
measured and correlated to a previously calibration 
curve (Mazega et  al. 2023). These measurements 
were performed in triplicate.

Samples preparation and NIR spectra acquisition

Cellulose samples with approximately 1% fiber con-
tent involving different contents of carboxyl groups 
and prepared from different vegetable raw materials 
were freeze-dried (Liobras, model L101, São Carlos, 
Brazil) to completely remove water. At the end of the 
process, 0.35  g of dry cellulose from each sample 
was inserted into a glass vial and compacted in order 
to remove as much air as possible. Each sample was 
prepared in triplicate. Table S1 of the supplementary 
material summarizes the content of carboxyl groups 
and the raw material used for each sample. Note that 
the carboxyl content in the samples varied from 0.002 
to 1.292 mmol.g−1.

Handheld spectrophotometer

NIR Spectra were collected using a portable Micro-
NIR 1700ES spectrophotometer (Viavi Solutions) 
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configured to scan the spectral region ranging from 
908 to 1676 nm. Each spectrum corresponded to the 
average of 100 scans measured using an integration 
time of 7  ms. The spectral resolution of the equip-
ment was 6.2 nm. A linear variable filter (LVF) as a 
wavelength selector directly connected to a set of lin-
ear detectors, resulting in a spectral system without 
moving parts. This compact system is coupled to a 
tungsten lamp as a source of thermal radiation illu-
mination. All measurements were performed using 
a glass vial. Before each measurement, the reference 
spectrum was measured using the Spectralon NIR 
standard with a reflection coefficient of 99% as well 
as the spectrum with 0% reflection (dark) with the 
equipment lamp turned off. Reference spectra were 
collected before characterizing a new sample. Spec-
tral data were obtained with MicroNIR Pro v.2.5.1 
software supplied with the instrument. For each sam-
ple, 5 spectra were taken, from which an average 
spectrum was determined.

Benchtop spectrophotometer

The spectral data were also taken using the FT-NIR 
spectrophotometer (Bruker, Vertex 70), in the spectral 
region from 1000 to 2500  nm, with a resolution of 
0.17 nm and taking 32 scans per spectrum. Each scan 
consists of measuring 3111 wavelength points. The 
instrument was equipped with an extented InGaAs 
detector and a tungsten lamp as source of light radia-
tion. Spectra acquisition was performed using the 
reflectance immersion probe and applying the Fou-
rier transform to the interferogram signal. The back-
ground spectrum was acquired once at the beginning 
of the characterizations with the empty probe and the 
NIR data were obtained using OPUS 4.0 software 
provided with the FT-NIR instrument.

In both NIR instruments the spectral mode used 
was reflectance. This spectral mode is suitable for 
characterizing solid samples (Lohumi et  al. 2015; 
Badaró et  al. 2022). The reflectance measurements 
(R) were transformed into absorbance spectrum (A) 
through its logarithmic relationship: A = log(1/R).

Data analysis and NIR spectra preprocessing

The spectra in the NIR region obtained by the 
instruments’ own software were transferred to the 

multivariate analysis software Unscrambler X 10.5.1 
(Aspentech), which was used for NIR data preproc-
essing, calibration and validation.

In solid samples such as those used in this work, 
differences in spectra in the NIR region can be highly 
influenced not only from changes in the chemi-
cal composition of the samples but also from vari-
ations in physical properties such as compaction 
and surface roughness (Rinnan et  al. 2009; Robert 
and Gosselin 2022). Changes in spectra can also be 
caused by undesirable variations, such as changes in 
temperature, environment, sampling, etc. (Brereton 
2003). Thus, mathematical preprocessing techniques 
aim to remove the effects caused by physical prop-
erties (additive and multiplicative effects) and other 
unwanted variations not directly related to the prop-
erty of interest. Preprocessed spectra can be better 
correlated with sample composition through chemo-
metric techniques such as multiple linear calibration 
models. The preprocessing techniques used were 
Standard Normal Variate (SNV), Savitzky-Golay 
(SG) First and Second Derivative and Orthogonal 
Signal Correction (OSC) (Wold et  al. 1998; Brere-
ton 2003; Rinnan et al. 2009). These techniques were 
tested separately and sequentially, in such a way that 
the best technique (or combination of techniques) was 
identified using the trial and error method and evalu-
ating the lowest error obtained in validating the quan-
titative calibration models (Engel et  al. 2013; Jiao 
et al. 2020). In the current work, the Results section 
encompasses just those models that yielded the low-
est validation errors.

The detection of outlier samples and their removal 
from the set of samples for calibration was performed 
by analyzing the residuals (Q) vs Hotelling’s T2 plots. 
Q is a measure of the model’s error in describing 
each sample and T2 determines the distance from the 
model projection of each sample to the center of the 
projections (Standards 2000).

Qualitative model (PCA/LDA)

Classification algorithms were applied to classify 
samples with different levels of carboxyl groups 
depending on the vegetable raw material used to 
manufacture the fibers, that is, identifying whether 
the sample belongs to one of these four classes: euca-
lyptus, pine, sisal or hemp. Among the algorithms, 
supervised pattern recognition methods stand out for 
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which the classification of the samples is known and 
this information is used to optimize the model param-
eters (Brereton 2003; Bakeev 2010). Model fit based 
on these algorithms is evaluated on a validation data-
set by comparing model predictions with actual cate-
gory values. Within this group of algorithms, the Lin-
ear Discriminant Analysis (LDA) Method was chosen 
due to its wide use in various applications involving 
NIR spectroscopy (Wu et al. 1996; Esteki et al. 2018; 
de Almeida et al. 2021; Ribeiro et al. 2021).

LDA is an algorithm based on the assumption that 
the population of each class can be described as a 
normal distribution and the covariance matrix of each 
class is the same. LDA is also a dimensionality reduc-
tion algorithm by maximizing the distance between 
samples belonging to different classes and minimiz-
ing the separation within the same class. When apply-
ing LDA to NIR spectroscopy data, in general, the 
number of variables is greater than the number of 
samples, which leads to a problem of ill-conditioned 
matrices. In this case, dimensionality reduction can 
be performed through Principal Component Analysis 
(PCA) by applying the LDA algorithm to the prin-
cipal components (PCs). It is noteworthy that PCA 
reduces the dimension of the spectra by creating new 
variables called PCs (which are linear combinations 
of the first ones) in the direction of maximum data 
variability (Maćkiewicz and Ratajczak 1993; Brere-
ton 2003). The combination of the two algorithms 
is called PCA-LDA. This study employed the LDA 
based on the PC scores of the spectra.

The performance of the classification model was 
evaluated in terms of accuracy (ACC), which repre-
sents a measure of how well the model is able to clas-
sify samples, in accordance with Eq. 1 (Ballabio and 
Consonni 2013; Hicks et al. 2022):

where, TP and TN are the number of true positive and 
true negative samples, respectively and FP and FN 
stand for the number of false positive and false nega-
tive samples, respectively.

(1)

ACC(%) =
# corrected classified samples

# all samples

= TP + TN
TP + TN + FP + FN

100

Calibration model (PLS)

To build the calibration models, the Partial Least 
Squares multivariate calibration technique was used 
as it is the most popular regression method applied to 
instrumental NIR spectroscopy data (Geladi and Kow-
alski 1986; Wold et  al. 2001; Pasquini 2018). In this 
method, the experimental data is summarized in two 
matrices, X and Y, which correspond to the absorbance 
data and the property of interest (composition), respec-
tively. This is a method of reducing the dimension of 
the data space where the new subspace is determined 
based on a compromise between explaining the vari-
ance of X and the correct prediction of Y. The varia-
bles X and Y are decomposed into a sum of λ latent 
variables (LVs). The best number of latent variables for 
each model was estimated from the minimum values 
of the root mean squared error of the results predicted 
by cross-validation (RMSECV, from Eq. 2). This error 
and the coefficient of determination  R2 of the validation 
results were both used as quality parameters of model 
performance.

Another useful statistics used to interpret calibration 
models performance is the residual prediction devia-
tion (RPD, from Eq. 3), which is defined as the ratio 
between the standard deviation of the experimental data 
(SD) and the bias-corrected standard error of validation 
(SDV), given by Eq. 4:

where, yi represents the values of property y of sam-
ple i estimated by cross-validation, yi is the corre-
sponding reference value and n is the number of sam-
ples. Bias is calculated from Eq. 5 and stands for the 
average systematic error of the difference between the 
estimated and reference y value. Equations 2–5 com-
ply with specific ASTM standards (Standards 2000).

(2)RMSECV =

�

∑i=n

i=1

�

yi − yi
�2

n

(3)RPD =
SD

SDV

(4)SDV =

�

∑i=n

i=1

�

yi − yi − Bias
�2

n − 1
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The RPD was used for the first time by Williams 
and Sobering 1993 in order to compare PLS calibra-
tion models developed from different NIR spectro-
photometers for the prediction of the same property. 
According to the literature, calibration models with 
good predictability have RPD > 2.4, while values 
between 1.5 and 2.4 indicate a satisfactory model 
prediction. Models with RPD values lower than 1.5 
should not be used (Zhao et al. 2015; Baqueta et al. 
2020).

In this work, due to the limited number of samples, 
RMSECV was calculated using the typical leave-one-
out cross-validation procedure (Burns and Ciurczak 
2007). In brief, a single sample is removed from the 
dataset, and the analysis is run on the rest of the data. 
This process is repeated for each sample in the data-
set, allowing the model to be tested on different vali-
dation datasets.

Results and discussion

Chemical and morphological characteristics of the 
fibers

As described in the previous section, the selected 
pulps were characterized in terms of morphology and 

(5)Bias =

i=n
∑

i=1

(

yi − yi
)

n

chemical composition, as revealed in Table 1, where 
the main characteristics of the fibers can be observed.

In terms of chemical composition, the eucalyp-
tus pulp exhibited the lowest cellulose content, 
accounting for 74.0%, while the pine pulp revealed 
the highest value for this constituent, reaching the 
87.4%. These values, together with the hemicel-
lulose content, are of the same order of magnitude 
than some previous results reported in the litera-
ture for bleached kraft pulps (Syverud et al. 2011). 
Similarly, hemp fibers exhibited a high cellulose 
content (86.5%) and approximately the same hemi-
cellulose content than pine pulp (10.6%). Finally, 
sisal pulp exhibited a slightly higher cellulose con-
tent than eucalyptus and, at the same time, a mod-
erately lower hemicellulose content (Marques et al. 
2010). The differences on the chemical composition 
will directly influence two relevant aspects from 
the present work. On the one hand, the MicroNIR 
and NIR spectra, which strongly depends on the 
chemical composition (Krasznai et al. 2018). On the 
other, the differences on the hemicellulose content 
and, more concretely, the xylose content due to the 
lack of C6 primary hydroxyls to be oxidized, affect-
ing the selectivity of TEMPO-mediated oxidation 
(Saito et  al. 2006; Syverud et  al. 2011). The mor-
phological analysis revealed significant differences 
between the selected fibers, particularly between 
the two woody pulps. The fiber morphology is not 
expected to significantly affect the oxidation process 
catalyzed by TEMPO, but in subsequent stages (e.g. 
fibrillation) it may have a direct impact, particularly 
in terms of energy consumption and CNF character-
istics (Serra-Parareda et al. 2021; Sanchez-Salvador 
et al. 2022). However, effects of morphological fea-
tures on the collected spectra are hypothesized and 
further research is required in this direction.

While significant differences on the chemical 
composition and morphology of the selected pulps 
were found, the CC after TEMPO-mediated oxida-
tion did not vary significantly from one feedstock 
to another at certain amounts of oxidizer (Fig.  1). 
However, at low NaClO additions, the eucalyptus 
pulp exhibited a higher CC, observing an oppo-
site behavior for the case of sisal, where the addi-
tion of high NaClO amounts resulted in remarkably 
higher CC. Noticeably, both pine and hemp exhib-
ited a similar tendency of the CC with the NaClO 

Table 1  Morphological and chemical features of the starting 
bleached pulps

a Klason lignin
b Average length (weighted in length)
c Expressed as percentage in length

Pulp Eucalyptus Pine Hemp Sisal

Ash (%) 0.4 0.7 0.6 1.1
Extractives 

(%)
1.2 0.5 0.9 0.9

Lignina (%) 1.3 0.9 1.4 0.7
Hemicellulose 

(%)
23.1 10.5 10.6 18.5

Cellulose (%) 74.0 87.4 86.5 78.8
Lengthb (µm) 742 ± 31 1691 ± 48 1007 ± 25 955 ± 31
Diameter (µm) 16.6 ± 0.8 24.7 ± 0.7 25.4 ± 0.4 21.6 ± 0.6
Finesc (%) 16 ± 3 12 ± 2 28 ± 2 22 ± 2
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addition, being in consonance with the similarities 
in the chemical composition of the starting pulps.

Correlations between MicroNIR and NIR spectra

The use of economic, small, and portable equipment 
presents a series of advantages when compared to 
classic, large, and expensive benchtop equipment, 
especially for in-situ applications. Benchtop spectro-
photometers present better optical properties in addi-
tion to a wider spectral range (Puig-Bertotto et  al. 
2019; Beć et al. 2021). In this sense, it is important 
to identify the potential of MicroNIR in this specific 
application and compare its performance with that 
obtained from a spectrophotometer widely applied to 
lignocellulosic materials.

Figure 2A, B present the collected raw spectra, in 
quintuplicate, for eucalyptus fiber samples at increas-
ing oxidation degrees using the benchtop NIR and the 
portable MicroNIR devices, respectively. The spec-
trum collected in the range from 1000 to 2500  nm 
presented 6 absorption bands located in different sec-
tions of the NIR region, with the first two also iden-
tified in the spectra taken with the MicroNIR (from 
908 to 1676  nm). The first band between 1170 and 
1280  nm (B1 at 1220  nm) was found to be of rela-
tively low intensity and could be related to the sec-
ond overtone of the C − H stretching in the − CH and 
−  CH2 structures (Burns and Ciurczak 2007; Simon 
et  al. 2022). The second band was quite broad and 
covered the approximate range of 1420–1600 (B2 
at 1490  nm), being one of the main bands found in 

cellulose and hemicellulose due to the manifestation 
of the first overtone of the − OH stretching (Burns 
and Ciurczak 2007). In the structures found in lignin, 
this same overtone also appears in this band for the 
hydroxide groups in phenols (Krongtaew et al. 2010). 
It is worth noting that in this region the wavelength 
at which the overtone appears will depend on the 
strength of the hydrogen bonds with the − OH groups. 
The third of the bands was of low intensity involving 
the range from 1750 to 1850 nm (B3 at 1800 nm) and 
can be related to the first overtone of C − H stretching 
including vibrations in  CH3 groups in hemicelluloses 
(Schwanninger et al. 2011). From these wavelengths 
onwards vibrational combinations also become evi-
dent, with combinations between C − H and O − H 
stretching dominating in this range (Krongtaew et al. 
2010). The next band included the range from 1900 to 
2000 nm (B4 at 1940 nm) related to the second over-
tone of the O − H bending in water molecules (Burns 
and Ciurczak 2007; Simon et al. 2022). The fifth band 
appeared in the range between 2050 and 2180 nm (B5 
at 2120 cm). From a wavelength of 2000 nm onwards, 
a wide variety of vibrational combinations appeared, 
with many possibilities for binary couplings, which 
made their identification difficult (Schwanninger et al. 
2011). In this band, some authors pointed out the 
presence of combinations between O − H and C − O 
stretching or O − H stretching and C − O deforma-
tion (Burns and Ciurczak 2007; Simon et  al. 2022) 
or even O − H stretching and O − H deformation 
(Schwanninger et  al. 2011). The last band involved 
the range from 2300 to 2380  nm (B6 at 2340  nm) 

Fig. 1  Evolution of the CC 
at different NaClO additions 
for the four selected pulps
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where combinations between stretching vibrations 
and C − H deformations occur as well as the second 
bending overtone in  CH2 (Burns and Ciurczak 2007).

Figure 2C, D show the NIR and MicroNIR spec-
tra, respectively, after the SNV treatment for the 
non-oxidized eucalyptus control sample (Ec) and 
the E12 sample, where the highest CC is found 
(1.097 mmol/g). It was found that the change in com-
position of both samples influenced the intensity and 
shape of the main bands. Regarding NIR spectra, the 
oxidation of the -OH groups resulted in a decrease in 
the intensity of the B2 band, related to the vibrations 
of this functional group, an increase in the intensity 
of the B4 band, related to greater moisture adsorp-
tion, and a decrease of the intensity of bands B5 and 
B6, related to vibration combinations. Regarding the 
MicroNIR spectra, the intensity of bands B1 and B2 
decreased less extent than in NIR spectra, probably 
due to the lower optical resolution of the portable 
equipment. Even so, and as it will be discussed in the 
following calibration results using PLS, these differ-
ences in the MicroNIR spectra in the two bands, B1 
and mainly B2, proved to be sufficient to correlate the 
spectra of the samples with the CC values.

The spectra in Fig.  2A, B were treated with dif-
ferent preprocessing methods and analyzed via PLS 
for the purpose of modeling the CC variable. Aim-
ing at determining the most appropriate preprocess-
ing method, the RMSECV value of the PLS model 
obtained from different preprocessing methods was 
compared. Tables  S2 and S3 in the supplementary 
material present these results for the NIR and Micro-
NIR spectra, respectively. Among the best preproc-
essing methods, similar methods were adopted for 
both types of spectra in order to better compare the 
results with each other. In this way, the SNV method 
was used followed by the first SG derivative with 9 
points for the NIR spectrum and 5 points for the 
MicroNIR spectrum followed by data mean center-
ing. These strategies adequately minimized physical 
effects on both spectra from the benchtop NIR and 
the MicroNIR. It is worth noting that the data from 
the benchtop NIR device encompassed greater noise, 
especially in regions with shorter wavelengths, thus 
requiring the application of a data smoothing filter. 
Specifically, a Moving Average filter with 21 points 
was used (Brereton 2003). Table  2 summarizes the 
performance of the PLS models for the NIR and 

Fig. 2  Spectra of Eucalyptus fiber samples: raw NIR spectra (A), raw MicroNIR spectra (B), SNV-pretreated NIR spectra of Ec and 
E12 samples (C), and SNV-pretreated MicroNIR spectra of Ec and E12 samples (D)
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MicroNIR spectra based on the aforementioned pre-
processing methods. Note that the results of the PLS 
models when employing the full range of the instru-
ment (1000–2500  nm for NIR and 908–1676 for 
MicroNIR) yielded high calibration and validation 
 R2 determination coefficients (> 0.97), indicating 
good sensitivity of the spectra to the carboxyl groups 
of the samples. Specifically, values of determina-
tion coefficient of 0.9713 and 0.9816 were obtained 
for the NIR and MicroNIR spectra, respectively. The 
slight decrease in the value obtained for the NIR 
device can be justified by the fact that the spectral 
range collected in this case is much wider, increasing 
the number of bands where changes occur between 
samples. The greater complexity in the changes in 
the NIR spectra can be observed by the increase in 
the number of LVs necessary to describe the varia-
tion in the data. In this sense, an optimal number of 
LVs (minimum RMSECV value) of 5 for NIR spectra 
and 3 for MicroNIR spectra was obtained. In order to 
better compare both instruments, PLS models were 
also applied using the same wavelength range, from 
1150 to 1676  nm) for both instruments (entries 2 
and 4 of Table 2), a range that includes the first two 
meaningful bands (B1 and B2). It is observed that the 
decrease in the variation of the spectral data in this 
new range for the NIR spectra also decreased the 
optimal LVs of the PLS model. Note that when apply-
ing the same spectral range and similar preprocess-
ing, the  RCV

2 values are very similar for both instru-
ments (0.9737 and 0.9779) as well as the average 
error in cross-validation (RMSECV, 5.70 and 5.31%). 
These models presented similar predictive ability 
according to an F-test for the RMSECV values, at 
95% of confidence. It should be clear that Eq. 2 used 
to compute RMSECV can also be applied for calcu-
lating the RMSEC, but using the calibration dataset 
instead of the cross-validation one. Relative values of 
RMSEC and RMSECV are exhibited in Table 2 (%), 

which means that these errors are relative to the aver-
age value of the property (carboxy content) in a given 
dataset.

Figure 3 shows the loadings of the PLS model for 
the first latent variable that corresponds to 94% of 
the data variation. The modulus of this coefficient 
represents the weight of the absorption bands for the 
model, indicating the most relevant wavelengths for 
modeling. According to the observed peaks, special 
attention may be given to the following wavelengths: 
1357, 1391, 1422, 1509 and 1614 nm, the last three 
belonging to band B2. In this sense, it can be con-
cluded that no significant differences were observed 
in the results obtained from both instruments, bring-
ing to the light the suitability of both instruments to 
determine CC in oxidized eucalyptus fiber samples 
using PLS calibration models.

Quantitative PLS models: fibers from different 
sources

In this section, the application of MicroNIR for 
determining CC was expanded to different types 
of oxidized plant fibers. Thus, PLS calibration and 
cross-validation models were applied to pine, sisal 
and hemp samples, and the results were compared 
with those obtained for eucalyptus. Initially, 4 dif-
ferent models were built to correlate the CC with the 
MicroNIR spectra of each type of fiber, and, in a sec-
ond stage, an attempt was made to generate an overall 
calibration model encompassing the MicroNIR data 
for all samples, that is, a single model for all fibers. 
The MicroNIR spectral data were preprocessed using 
the SNV method followed by first derivative SG with 
9 points and mean centering of variables, already 
optimized for eucalyptus fibers. This preprocessing 
proved to be excellent in relation to obtaining mini-
mum RMSECV values for all types of fibers. For all 

Table 2  Latent Variables (LV), spectral range and statistical parameters  (RC
2,  RCV

2, RMSEC, RMSECV) for PLS calibration and 
cross-validation models from NIR and MicroNIR spectra of Eucalyptus fibers

Equipment Spectral Range (nm) LV RC
2 RCV

2 RMSEC(%) RMSECV(%)

NIR 1000–2500 5 0.9901 0.9694 3.40 6.14
NIR 1150–1676 3 0.9900 0.9737 3.44 5.70
MicroNIR 908–1676 3 0.9895 0.9816 3.53 4.86
MicroNIR 1150–1676 3 0.9846 0.9779 4.28 5.31
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samples, the full MicroNIR spectral range was used 
(908–1676 nm).

In general, the quality of the models is character-
ized with the parameters RMSEC, RMSECV,  RC

2, 
 RCV

2 and RPD (Schwanninger et al. 2011; Hashimoto 
et al. 2018; Baqueta et al. 2020; Lopez et al. 2023). 
Table  3 summarizes the results of these parameters, 
as well as the LV for the individual PLS models 
(entry 1–4) and the overall model (entry 5). In this 
work, the RMSEC and RMSECV values are pre-
sented in relation to the average of the reference CC 
values. These parameters are a measure of the mod-
el’s accuracy relative to the proximity between the 
reference values and the value estimated by the model 
and also include spectral measurement errors. How-
ever, when determining the RMSEC and RMSECV 
values, it is assumed that the error in the reference 
measurement is negligible. For those cases where the 
reference measurement is imprecise and the error is 
not negligible, the RMSEC and RMSECV values will 

be overestimated and will not solely reflect the quality 
of the model (Lopez et al. 2023).

As it can be seen in Table 3, and for the individual 
models, the lowest RMSECV accounted for 4.86% for 
the model determined for eucalyptus fibers, while the 
highest value was 16.21%, determined for hemp sam-
ples. The quality of the model can also be evaluated 
in terms of the determination coefficient, indicating 
that the assumption of a linear model is appropri-
ate for values close to 1. The linear behavior of the 
individual models can be confirmed in Fig. 4 which 
presents the predicted and reference values for the 
calibration and validation data. Note that the  RC

2 val-
ues for the eucalyptus, pine and sisal models were 
greater than 0.97, meaning that the estimates of the 
calibration models were good. Moreover, as pointed 
out in the literature, in multivariate analysis it is quite 
common to obtain determination coefficients lower 
to 0.95 (Hashimoto et al. 2018; Baqueta et al. 2020). 
The lowest value of this parameter was obtained for 

Fig. 3  Comparison of 
loadings as a function of 
wavelength for the first LV 
for the NIR and MicroNIR 
spectra, both in the range 
from 1150 to 1676 nm. 
Loadings for NIR spectra 
have been multiplied by a 
factor of 5 to facilitate their 
comparison

Table 3  Latent Variables 
(LV) and statistical 
parameters for PLS 
calibration and cross-
validation models from 
MicroNIR spectra 
(908–1676 nm)

Fiber N° Samples LV RC
2 RCV

2 RMSEC (%) RMSECV (%) RPD

Eucalyptus 10 3 0.9895 0.9816 3.53 4.86 5.74
Pine 9 3 0.9883 0.9796 5.28 7.28 6.65
Sisal 9 3 0.9731 0.9494 8.12 11.67 4.34
Hemp 8 3 0.9466 0.9096 11.99 16.21 3.10
All 36 5 0.9292 0.9069 12.71 14.71 1.00
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the hemp samples. Despite that, the calibration model 
can be considered appropriate. The best  RCV

2 values 
were obtained for eucalyptus and pine, accounting for 
0.9816 and 0.9796, respectively, followed by those 
obtained for sisal and hemp, being 0.9494 and 0.9096. 
Although these hemp results seem less accurate, the 
RPD values obtained for each individual model was 
greater than 2.4, which is an indication of the qual-
ity and predictability of these PLS calibration models 
(Zhao et al. 2015; Baqueta et al. 2020), including the 
hemp model. Also, the optimized LV value was 3 for 
all models, which is relatively low.

Considering that the evaluation of the quality 
parameters revealed that the individual models for 
each fiber are capable of correlating CC with the 
MicroNIR spectra, an overall model using all fiber 
samples oxidized was proposed. Table  3 (entry 5) 
and Fig. 5 present the statistical quality parameters of 
this model as well as the CC values predicted by the 
calibration and cross-validation model vs the refer-
ence CC values. Note that the correlation coefficient 

values showed lower  RC
2 and  RCV

2 values than the 
individual models and also the RPD value was close 
to 1.0, indicating low predictability of this overall 
model. Therefore, from the dataset used in this work, 
a single model for all fibers is not capable of correctly 
representing the variation in data and replacing the 
individual models that consider the specific compo-
sitional characteristics of each type of fiber. Consid-
ering that the performance of multivariate calibration 
models depends heavily on the quality of the dataset 
used for calibration (Lopez et al. 2023), it is expected 
that specific models for each type of fiber will be 
more accurate than those obtained from a general and 
unspecified model. The use of specific models for 
each fiber can be highly efficient in view of its bet-
ter prediction of CC values, especially if the spectral 
data could also be employed to classify/identify the 
fiber type, before choosing the individual prediction 
model.

Fig. 4  Estimated and reference data obtained by PLS calibration (full) and cross-validation (empty) models using MicroNIR spectra 
(908–1676 nm) for oxidized fiber samples of eucalyptus (A), pine (B), sisal (C), and hemp (D)
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PCA-LDA classification models

The PLS models showed that the spectral data in the 
MicroNIR region are dependent on the type of fiber 
used. In this sense, the spectra may be sensitive to 
compositional changes other than variations in CC 
relative to the degree of oxidation of each sample. 
Each fiber type can then create specific spectra whose 
pattern can be identified using multivariate analysis 
methods and classification algorithms. Some differ-
ences between the spectra of the different fibers used 
in this study can be observed by comparing the pre-
treated spectra presented in Figs.  S1 and S2 of the 
Supplementary Material. Note that spectral differ-
ences can be observed in the intensity of the peaks 
and shape of the main bands as well as in the shoul-
ders between bands. Additionally, the first treatment 
of the spectra intensified the difference between the 
fiber spectra. Finally, the eucalyptus fiber sample was 
the one that showed the greatest spectral differences 
in relation to the other fibers.

The application of PCA to the MicroNIR spec-
tral dataset of different fibers generated a new set of 
uncorrelated variables, of smaller dimension and 
identified as principal components. Such components 
represent the pattern of the spectra and provide infor-
mation about the structure of the data. The group of 
samples that presents the same pattern can be iden-
tified from the graph of the scores of the first PCs. 

PCA was applied to the dataset of non-preprocessed 
and preprocessed spectra involving all fibers. In total, 
111 points were processed, resulting from triplicates 
of 37 different samples. The first two components 
were sufficient to explain 99% of the data varia-
tion, 94% for PC-1 and 5% for PC-2. When applying 
preprocessing methods to the spectra, specifically 
SNV followed by first derivative (SG-5 points) and 
data mean centering, the number of required PCs to 
explain 96.5% of the data variance increased to 4. The 
variance explained by the first two PCs was 65% for 
PC-1, and 26% for PC-2. An explained variance of 
99% was achieved with 12 PCs. The increase in the 
number of PCs from the use of preprocessed spectra 
can be expected since the numerical derivation of 
the spectra increases the variation of the data (Brere-
ton 2003; Diniz et al. 2019). The optimal number of 
PCs can also be estimated from the minimization of 
RMSECV, as validation data can be selected for this 
purpose. The optimal number of calculated PCs was 
2 for the raw spectra and 4 for the preprocessed spec-
tra. Figure 6 presents the scores of the PC-1 and PC-2 
components of the PCA applied to the raw or non-pre-
processed spectra (A), and preprocessed spectra (B). 
When the raw spectrum was used, PCA was not able 
to identify distinct patterns for the four fibers, and the 
different data were mixed in the scores graph. Only 
the eucalyptus samples appeared to be distinguished 
from the rest of the samples. From the preprocessing 

Fig. 5  Estimated and refer-
ence data obtained by the 
PLS calibration (full) and 
cross-validation (empty) 
models using MicroNIR 
spectra (908–1676 nm) for 
all oxidized fiber samples
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data, a better separation into different classes depend-
ing on the type of fiber was observed, so the data from 
eucalyptus and sisal fibers are grouped and separated 
from the rest of the fibers. Apparently, using the pre-
processed data allowed the generation of some feed-
stock-based clusters, where the origin of the fiber had 
a direct influence on the relationship between PC-1 
and PC-2. However, pine and hemp fibers appeared 
in the same cluster, leading to a mixed region in the 
score graph. These differences could be attributed 
to the similarities between pine and hemp in terms 
of chemical composition. Indeed, it is hypothesized 
that the hemicellulose to cellulose ratio might have a 
direct influence on this classification. Considering the 
chemical composition of the selected fibers (Table 1), 
it is clear that the hemicellulose to cellulose ratio 
was different for all the samples, except for pine and 
hemp. Concretely, eucalyptus, pine, sisal, and hemp 
fibers exhibited a ratio of 0.31, 0.12, 0.23, and 0.12, 
respectively. In some previous studies, NIR has been 
reported to be able to provide quantitative data on the 
cellulose and hemicellulose content of different ligno-
cellulosic substrates, particularly if aided by chemo-
metrics (Li et  al. 2015; Jin et  al. 2017; Zhang et  al. 
2017; Wang et al. 2021).

Since the analysis of the first PCs did not present 
a complete differentiation between all fiber classes, 
the LDA classification algorithm was applied to the 
PCA results in order to maximize the differences 
between samples from different groups and mini-
mize those arising from the fiber spectra included 
in the same class. This is a supervised algorithm in 
which a set of parameters are estimated based on 

the information provided from the sample classifi-
cation. In other words, LDA uses information from 
spectra in the reduced dimension of PCs in addi-
tion to information about the class to which each 
spectrum belongs. PCA-LDA was applied to the set 
of raw spectra of the various fibers and to the pre-
processed spectra from the optimized methods. The 
number of PCs used for each spectral dataset must 
be optimized depending on the accuracy obtained 
in the classification algorithm. It is worth noting 
that classification algorithms are highly sensitive to 
PCs; depending on the dataset, omitting information 
included in minority PCs can cause a decrease in 
classification accuracy (Zheng and Rakovski 2021). 
Table 4 presents the PCA-LDA accuracy values as 
a function of PCs for the raw spectra and preproc-
essed spectra. For the raw spectra, the optimal num-
ber of PCs was 6, corresponding to a high accuracy 
of 98.2%. In this case, the model correctly classified 
100% of the Eucalyptus, pine and sisal samples, and 
only two hemp samples were incorrectly classified 

Fig. 6  PCA scores in the MicroNIR range (908–1676 nm) for raw spectra (A) and preprocessed spectra (B)

Table 4  PCA-LDA accuracy compared to PCs from Micro-
NIR spectra (908–1676 nm)

Raw spectra Preprocessed spectra

PCs ACC (%) PCs ACC (%)

2 63.96 4 97.3
4 89.19 6 99.1
5 94.59 8 99.1
6 98.20 10 99.1
7 92.79
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as Pine. Nevertheless, for this number of PCs, the 
variance explained in the data by PCA is 99.98%, 
therefore requiring variance values very close to 
100% to achieve high values of classification accu-
racy. In addition, for PCs values above 6, the accu-
racy decreased, probably due to overfitting issues. 
When using the preprocessed spectra again, the 
optimal PCs value was 6, which corresponded to an 
accuracy of 99.1%, even higher than that achieved 
from the raw spectra. In this case, the 100% of the 
eucalyptus, pine and sisal samples were correctly 
classified again, and only one hemp sample was 
misclassified as pine.

For PCs equal to 6 in the preprocessed spectra, 
the PCA model yielded an explained variation of 
97.5%. For preprocessed spectra, increasing infor-
mation by the inclusion of further PCs beyond 6 
does not result in greater accuracy in sample clas-
sification. Figure 7 presents the results of the PCA-
LDA algorithm for the preprocessed spectra and 
PC = 6 where the discriminant values of the dif-
ferent classes referring to the Eucalyptus and Pine 
classes are shown. Note that this figure, when com-
pared to the graph of scores for the PCA (Fig. 6B), 
shows that the LDA algorithm promoted a better 
separation between data from different classes of 
fibers. Therefore, it is believed that the PCA-LDA 
model applied to both raw and pretreated spec-
tra can be used as a classification algorithm for 

different fibers. Note that this algorithm can be used 
prior to PLS calibration models to predict the fiber 
type of a given sample and thus choose the specific 
calibration model for that particular fiber.

Conclusions

This work provided a feasible strategy to estimate 
CC of TEMPO-oxidized cellulosic pulps from easy, 
quick, non-destructive measurements, that could be 
performed with a portable device. Remarkably, no 
significant differences were observed in the results 
obtained from this device (MicroNIR) and a benchtop 
instrument.

The optimal spectral preprocessing method was 
chosen on the basis of the mean squared error of the 
results predicted by cross-validation. It implied SNV 
plus first derivative Savitzky–Golay smoothing with 9 
points and mean centering of variables. PLS regres-
sion models considering the full MicroNIR spectral 
range (908–1676  nm) attained satisfactory predict-
ability, with RPD > 2.4 in all cases. That said, NIR 
spectra were sensitive to compositional differences 
other than those due to oxidation, including the hemi-
cellulose/cellulose ratio. Therefore, an overall regres-
sion model did not succeed at predicting CC from 
NIR data without regard of the feedstock.

Fig. 7  LDA discrimina-
tion in the MicroNIR range 
(908–1676 nm) for classes 
eucalyptus (x-axis) and pine 
(y-axis) for preprocessed 
spectra and PC = 6
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Applying PCA-LDA to both non-preprocessed 
and preprocessed spectra resulted in a primary clas-
sification algorithm for different cellulosic pulps. 
For 6 PCs, the model differentiated four clusters 
corresponding to eucalyptus, sisal, pine, and hemp, 
although there was significant overlapping between 
the latter two, when just PCA analysis was applied. 
The LDA algorithm enabled us to maximize the sepa-
ration between data from different classes. Overall, 
the strategy involves this PCA-LDA classification to 
assign a certain fiber type to a given sample, giving 
way to the selection of the corresponding PLS model.
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