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Abstract  This review summarizes the use of cel-
lulose and polylactide for medical applications with 
particular emphasis on modern dressings. Although 
classic cotton and viscose dressings are still available 
and popular, the usefulness of new forms of cellulose 
(Cel) and its derivatives opens new wound treatment 
options. Therefore, trends in functionalizing tradi-
tional cellulose dressings, including products made 
of bacterial cellulose, and dressings from cellulose 
derivatives, are discussed. Polylactide (PLA), in turn, 
is a biodegradable and biocompatible polyester that 
fulfills plenty of tasks in many medical fields, from 
surgery to modern diagnostic methods. However, 
polylactide dressings can still be advantageous to the 
market. Thus, the next part of the article contains a 
recent update of available knowledge about PLA and 
its applications in regenerative medicine and drug-
delivery systems. The last part is devoted to the possi-
bilities of combining both materials in dressings and 
related problems and benefits. Methods for compati-
bilization with the surface of both polymers and new 

techniques for producing Cel/PLA composite materi-
als are also described.

Keywords  Smart dressings · Regenerative 
medicine · Polylactide · Cellulose
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EC	� Ethylcellulose
Gal-PEG-PLA	� Galactosamine-mod-

ified poly(ethylene 
glycol)-poly(lactide)

HEC	� Hydroxyethylcellulose
HEMC	� Hydroxyethylmethylcel-

lulose
HFBMA	� 2,2,3,4,4,4-Hexafluorobu-

tyl methacrylate
HPC	� Hydroxypropyl cellulose
HPC	� Hydroxypropylcellulose
HPMC	� Hydroxypropyl 

methylcellulose
HPMC	� Hydroxypropylmethylcel-

lulose
HPMCAS	� Hydroxypropyl methylcel-

lulose acetate succinate
HPMCP	� Hydroxypropylmethylcel-

lulose phthalate
MA-g-PLA	� Maleic anhydride grafted 

PLA
MC	� Methylcellulose
MC	� Methylcellulose
MCC	� Microcrystalline cellulose
MFC	� Microfibrillated cellulose
mPEG-b-PLA 	� Methoxypoly(ethylene 

glycol)-block-poly(dl-
lactic acid)

NaCMC	� Sodium 
carboxymethylcellulose

OC	� Oxidized cellulose
OLA	� Oligo(lactic acid)
pAC 	� Plasticized cellulose 

acetate
PAE	� Polyacrylic ester
PAMAM G4.5	� Polyamidoamine dendrim-

ers, generation 4.5
PCL	� Poly(ε-caprolactone)
PDLA	� Poly-d-lactic acid
PDLAG	� Poly (d-lactic acid-co-

glucose) copolymer
PDLLA	� Poly-d,l-lactic acid
PEG 	� Poly(ethylene glycol)
PEG–PLA	� Poly(ethylene 

glycol)–polylactide
PHA	� Poly(3-hydroxyalkanoate)
PHEMA	� Poly(2-hydroxyethylmeth-

acrylate)
PLA	� Polylactide

PLA-b-PEG	� Poly(lactic acid)-block-
poly(ethylene glycol)

PLA-g-CNFs	� Poly(lactic acid) grafted 
cellulose nanofibers

PLA-HPG	� Poly(lactic acid)-hyper-
branched polyglycerol

PLA-PEG-ACUPA/TPP	� Polylactide-poly(ethylene) 
glycol-2-(3-((S)-5-
amino-1-carboxypentyl)-
ureido) pentanedioate/
triphenylphosphonium

PLGA	� Poly(d,l-lactide-co-gly-
colide)

PLL	� ε-Poly-l-lysine
PLLA 	� Poly-l-lactic acid
PLLA-g-CNCs	� Poly(lactic acid) grafted 

cellulose nanocrystals
PMAA	� Poly(methacrylic acid)
PTFE	� Polyfluortetraethylene
PTMC	� Polytrimethylene 

carbonate
PVA	� Poly(vinyl alcohol)
Quat 188	� 3-Chloro-2-hydroxypropyl 

trimethyl ammonium 
chloride

RNA	� Ribonucleic acid
SA	� Sodium alginate
Span 60	� Sorbitan monostearate
TCP/PLLA	� β-Tricalcium phosphate/

poly(l-lactic acid)
TEMPO	� (2,2,6,6-Tetramethylpi-

peridin-1-yl)oxyl
TMC	� Trimethylene carbonate
TPGS	� E-tocopheryl 

poly(ethylene glycol) 
succinate

TPU	� Thermoplastic 
polyurethane

Introduction

Cellulose dressings as a form of wound treatment are 
present in medical practice since antiquity. Ancient 
literature presents dressings as one of the stages of 
wound care (Nicoli Aldini et al. 2008). Textiles made 
of natural vegetable fibers, such as linen bandages, 
often soaked with therapeutic and antibacterial sub-
stances, were already used in ancient Egypt (Sipos 
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et al. 2004; Thomas and Uzun 2019; Wilkins 1964). 
In the twentieth century, the development of plastics 
industry resulted in the introduction of synthetic fib-
ers, in parallel with an increase of the wound-treat-
ing materials available, from classic woven, knitted 
and nonwoven dressings up to modern foams (Fogh 
and Nielsen 2015; Salisbury et  al. 2022), hydrogels 
(Francesko et  al. 2018; Shu et  al. 2021; Wu et  al. 
2023; Zhang et al. 2019), hydrocolloids (Stoica et al. 
2020b; Thomas 2008) and thin membranes (Graça 
et  al. 2021). Composite dressings combine multi-
ple functions in one product and their form varies 
depending on the raw materials used and the expected 
functionality (Gupta and Edwards 2019).

This work focuses on analyzing materials for 
modern products supporting regenerative medicine 
composed of cellulose and polylactide. It contains 
present-day state of knowledge about these two poly-
mers and their combination for medical applications, 
however, with strong emphasis on wound dressings. 
It may also help with establishing whether polylac-
tide/cellulose (PLA/Cel) systems have some unique 
advantages over these polymers acting alone. To 
understand their mutual interactions, many points are 
discussed, including structural, functional, and engi-
neering issues. One of the biggest problems related to 
combining PLA and cellulose is their different affin-
ity to water. Polylactide is hydrophobic and cellulose 
is hydrophilic, so the goal is to modify them in such 
way that will enhance interphase PLA/Cel interac-
tions and improve mechanical properties of their 
composites.

Cellulose is the most classic and well-known natu-
ral polymer. From the earliest beginnings of wound 
healing, it has been present as a part of medical 
equipment and until this day it has not lost its great 
significance in the scientific world. As one can see, 
the versatility of cellulose applications has strongly 
increased with the material and chemical engineer-
ing development, although classical cotton fabrics are 
not forgotten in medicine and hospital environment 
(Graça et al. 2021). The aim of developing new solu-
tions leads from the activation of medical products, 
which were previously passive like cotton gauzes and 
bandages (Graça et al. 2021; Lumbreras-Aguayo et al. 
2019b), constructing cotton-reinforced modern forms 
of dressings (Lumbreras-Aguayo et  al. 2019b), to 
pure nanoscale cellulose and its derivatives as healing 
materials (Alavi and Nokhodchi 2020; Cidreira et al. 

2021; Liu et al. 2020). In addition, bacterial cellulose 
has also been considered as a smart material with 
some advantages over plant-based cellulose (Portela 
et al. 2019; Rathinamoorthy 2022).

In the face of a long history of cellulosic dressings, 
polylactide occurs as a quite new product, however, it 
has been known for years. Polylactide (PLA) is a bio-
degradable and biocompatible polymer (Basu et  al. 
2016; Gupta and Kumar 2007; Michalski et al. 2019) 
and is recognized as safe by the U.S. Food and Drug 
Administration. Therefore, PLA has attracted consid-
erable attention as a candidate capable of replacing 
petroleum-based polymers due to its good processing 
and mechanical properties (Raquez et al. 2013). PLA 
is proposed for various applications in industrial, 
pharmaceutical, and environmental fields. Among 
these multiple fields of PLA utilization, biomedi-
cal usage is one of the most frequently proposed for 
PLA-based materials (Sinha Ray 2012).

It seems that both cellulose and polylactide as 
materials for medical applications can now have 
similar functionalities. However, traditional cellulose 
dressings still have a strong market position, also for 
economic reasons. Enriching them with a polylactide 
in active form, for example as a medium for drugs, 
could be a relatively cheap and effective way to mod-
ernize them and at the same time to meet the specific 
needs of patients. This can be the simplest way to 
launch PLA on the market, as the use of dressings in 
everyday life does not require medical consultation 
but they need to be affordable and easy to apply. The 
combination of both polymers in one material (for 
example via grafting or polymerization) may provide 
a possibility for new modifications, considering their 
different physical and chemical properties, the capa-
bility to perform different chemical reactions with 
other compounds, as well as the ability to degrade 
with all the consequences. Finally, it is worth exam-
ining whether the characteristics of the PLA/Cel sys-
tems are a simple sum of the features of their compo-
nents or, on the contrary, the ingredients complement 
each other, presenting an improved quality, not avail-
able when they perform separately.

The structure and properties of cellulose

The main building block of a cotton fiber is cellu-
lose, whose quality and structure determine its most 



104	 Cellulose (2024) 31:101–145

1 3
Vol:. (1234567890)

important properties. Cotton has the highest con-
tent of cellulose from all-natural sources, reaching 
up to 96% dry matter (Segal and Wakelyn 1985), 
followed by sisal and pineapple leaf fibers (Gas-
san et  al. 2001). Cellulose, a polysaccharide with a 
summary formula (C6H10O5)n, is a large molecular 
structure polymer resulting from a natural polycon-
densation. The cellulose macromolecule chain is 
made of β-d-glucopyranosyl units connected with 
1,4-β-glycosidic bonds. The repeated unit is the glu-
cose residue (French 2017).The non-reducing end of 
a cellulose chain is composed of a hydroxyl group, 
whereas the reducing end is a hemiacetal. The pres-
ence of hydroxyl groups in the molecule determines 
the reactivity of cellulose, although these groups, 
due to the location in the spatial structure, are not 
just as reactive. The most reactive group is the one 
located at C2, then with C6 carbon. Hydroxyl groups, 
as they are characterized by polarity, form hydrogen 
bonds between macromolecules, which in turn causes 
stiffening of the chain and the formation of strongly 
ordered spatial structures—the so-called crystalline 
phase in fiber.

To describe the properties of the cellulose poly-
mer, specify such features as:

•	 average polymerization degree;
•	 average degree of crystallinity;
•	 construction of the elementary cell in the crystal-

line phase.

High dispersity of molar mass is a typical feature of 
cellulose isolated from natural sources. Native cel-
lulose consists of macromolecules with different 
polymerization degrees, while the average polym-
erization degree is different for cellulose materials 
of different origins (e.g., for cotton cellulose and cel-
lulose from wood). Similar diversity can be observed 
in the degree of crystallinity. Various sources give the 
following value: according to Urbańczyk (1985), the 
degree of crystallinity in cellulose derived from plant 
fibers reaches 60–80%; according to "Handbook of 
Polymers", it is 75% for cotton (which is the cleanest 
source of cellulose I), while according to "Compre-
hensive Cellulose Chemistry" it is about 60%, with 
this applying to cotton fibers undergoing initial phys-
icochemical treatment (Klemm et  al. 1998). How-
ever, as in the case of all cellulosic materials, crys-
tallinity values have considerable dependence on the 

exact methods, even just considering X-ray diffraction 
(French 2020).

A crystal’s unit cell is the smallest unit of the 
crystal that can be used figuratively to construct the 
structure of the crystal by simple repetition of the unit 
cell along the X, Y, and Z axes of the crystal. The 
six basic parameters are in the XYZ axis system of 
the lattice, (a, b, c)—the distances at which the cell 
elements are repeated, and the angles between the 
axles (α, β, γ). However, the Miller indicators (h, k, l) 
define crystallographic planes that result in the vari-
ous peaks of photon intensity on a diffraction pattern. 
These characteristics are different for every poly-
morph (French 2014). Chemical and physicochemical 
treatment has a significant impact on the form of an 
elementary cell, a crystallographic variety, as well as 
the content of crystalline material in fiber. An exam-
ple would be the mercerization process, where under 
specific conditions native cellulose I is converted 
to cellulose II, whose parameters of the structure 
of the elementary cell of crystalline differ from the 
output material (Takahashi and Takenaka 1987). A 
different shape of the elementary cell carries, there-
fore, a change in physical and chemical parameters, 
such as changing the density of the material, differ-
ences in mechanical properties, as well as the ability 
to bind dyes. Other polymorphic forms of cellulose 
are cellulose III, which can be obtained as a result 
of ammonia swelling cellulose I or II, and cellulose 
IV, an effect of force and heat to other cellulose vari-
eties (Klemm et  al. 1998). The degree of cellulose 
crystallinity changes with the origin of the material 
and the processing it was subjected to, moreover, the 
properties of converted polymorphs depend on their 
parental structures (Wada et  al. 2004). A different 
question is whether these conversions are reversible. 
Hindi (2016) lists seven interconvertible polymorphs 
of cellulose, namely, Iα, Iβ II, IIII, IIIII, IVI, and IVII 
and states that celluloses IIII and IIIII revert to their 
previous forms in a high temperature and humid envi-
ronment. The reversion is possible also in the case of 
cellulose IV.

Bacterial cellulose

Although cellulose II is typically the result of mercer-
ization with NaOH or dissolution and regeneration as 
in the viscose or NMMO processes for making rayon 
or lyocell, its natural sources are known. This material 
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occurs in the sea algae from Halicystis species, under 
certain rare conditions. Mutant bacteria have also 
produced cellulose II. The bacterial cellulose in the 
form of cellulose II is most often produced by the 
strain of Gluconacetobacter xylinus (Dufresne 2017). 
However, the typical bacterial and algal cellulose is 
cellulose I, and more precisely Iα (Picheth et al. 2017; 
Rusdi et al. 2022; Wada et al. 2001), whereas, as the 
research on Acetobacter xylinum ATCC23769 indi-
cated, the crystallographic structure of cellulose (I or 
II) can be modified the culture conditions (Hirai et al. 
1997). Other bacteria strains used for cellulose pro-
duction are Agrobacterium, and Sarcina. The quality 
of bacterial cellulose can be diversified by controlling 
nutrient sources (meaning carbon sources) and cul-
ture conditions of bacteria strains (Abeer et al. 2014; 
Gullo et al. 2017). The influence of pH, temperature, 
and access to UV light was studied by Lazarini et al. 
(2018) on the Gluconacetobacter hansenii. The G. 
hansenii variants grown under different pH and UV 
conditions showed lower capacity to BC production 
when compared to original G. hansenii ATCC 23769 
(Lazarini et al. 2018). In the review of bacterial cel-
lulose for wound healing applications (Ahmed et  al. 
2020), BC in general is characterized by greater 
purity, the ability to absorb water, and porosity 
(Table 1). The authors discuss also mechanical prop-
erties of BC, and its Young’s modulus and tensile 
strength which are comparable to aramid fibers, and 
indicate it as a reinforcement in composites. Moreo-
ver, BC is a promising medical material that does not 
require initial, time-consuming and expensive puri-
fication. Naomi et  al. (2020) describes bacterial and 

plant cellulose in detail. According to that work, the 
main BC differences compared to vegetable cellulose 
are:

1.	 Purity of the material (without the presence of 
hemicellulose, lignin, waxes, and other impuri-
ties).

2.	 Mechanical properties (Young’s modulus, tensile 
strength) beneficial for tissue scaffolding struc-
ture, e.g. bone tissue (Torgbo and Sukyai 2018)

3.	 The higher degree of crystallinity (over 80%) 
(Revin et al. 2021).

4.	 High water absorption, but relatively low Water 
Vapor Transmission Rate.

5.	 No immune response, no inflammatory reaction 
after contact with live tissue.

6.	 Ease of shaping due to the high flexibility mod-
ule.

7.	 Much higher porosity, as well as a larger size of 
pores.

8.	 Higher hydrophilicity.

However, these differences, especially mechanical 
properties and water absorption, depend on produc-
tion medium composition, for example the concentra-
tion of sugar. As reported, BC from sago liquid waste 
showed a tensile strength of 44.2–87.3 MPa, Young’s 
Modulus of 0.86–1.64 GPa and water holding capac-
ity of 85.9–98.6  g  g−1. It could also be observed 
that the increased mechanical strength is linked to 
lower water holding capacity (Yanti et  al. 2021). It 
is also worth mentioning that mechanical modifica-
tions influence BC properties as well as cultivation 

Table 1   Parameters of bacterial cellulose, plant cellulose and PLA nanofibers. Details on PLA enantiomers have been already 
shown (Brzeziński and Biela 2014)

Bacterial cellulose Plant Cellulose PLA (nanofibers)

Tensile strength (MPa) 20–300 25–200 50–192
Young’s modulus (MPa) 130,000 2.5–0.170 1000–3900
Water holding capacity (%)  > 95 25–35 -
Size of fibers (nm) 20–100 micrometer scale 50–943
Crystallinity (%) 74–96 40–85 5–35
Degree of polymerization 14,000–16000 300–10000 1300–230000
Porosity (%)  > 85  < 75  < 92 (depends on electrospinning process)
Total surface area (m2/g)  > 150  < 10 Corresponds to fiber diameter; e.g. 4,7 for 282 nm
References Wang et al. (2019a, b) Hrib et al. (2015), Inai et al. (2005), Maleki et al. 

(2022), Shen et al. (2018)
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methods (Betlej et  al. 2021). As one can see, many 
factors affecting the final form of BC determine 
its versatility for various applications. Usefulness 
for therapeutic purposes and biocompatibility with 
human tissues, however, seems to be at a similar level 
as plant cellulose—the effectiveness of improving 
processes of regeneration, cell adhesion and hemo-
static effects depend mainly on the modifications and 
the presence of additional medicinal compounds. 
Some authors, nevertheless, emphasize that its natural 
structure also closely mimics many biological tissue 
properties (e.g. collagen fibers of bone and skin tis-
sue), it has an ability to regulate cell adhesion, and its 
antigen immobilization capability for biosensor appli-
cations (Abazari et al. 2021).

Currently, bacterial cellulose is used in various 
aspects of regenerative medicine, from wound treat-
ment, through the use of drug delivery systems, to 
tissue reconstruction (Table  2). BC occurs in vari-
ous forms, both on a micro and nanoscale—as mem-
branes, fibers (and materials made of them, usually 
nonwoven), hydrogels and composites. A commercial 
example is Dermafill® (previously known as Bio-
fill®) membrane dressing that acts as a temporary 
skin substitute (Castro et al. 1988), but there are more 
products on the market and even more solutions under 
research, proving usefulness of this material (Zhong 
2020).

Natural cellulose materials and traditional dressings

Fibrous dressings, regardless of the type of fibers 
found in them (both natural and artificial/synthetic) 
are manufactured in the woven and non-woven form. 
Structures such as cotton wool were made use of rela-
tively late (compared to the world history of wound 
dressings)—around 200 years ago. Cotton wool con-
sisted of washed, loose and combed cotton fibers. 
Therefore, it was supposed to replace the traditional 
linen ripped strips or unraveled threads made of old 
clothing (Elliott 1957).

Although the last few dozen years have allowed for 
the development of advanced technologies of dress-
ings supporting wound treatment, still the most typi-
cal and widely available cellulose dressing is gauze, 
bleached fabric, loosely woven with canvas weave. 
Initially, it was produced only from natural cot-
ton fibers, but currently on the market there are also 
gauzes made of artificial cellulose fibers or cotton/

viscose mix. Gauze dressings only fulfill basic tasks, 
like protecting the wound against the external envi-
ronment and absorbing exudate. Their properties 
are determined by the number of warp threads- the 
greater the number, the more the dressing absorbs. 
A sufficiently strong twist of yarn and other param-
eters of spinning are also important to prevent the 
dressing from being undesirably distributed when 
removing it from the wound. Gauze as a compress 
absorbs blood and bodily fluids. While in the form 
of a bandage, it is also used as a secondary dressing, 
holding and covering the primary (or, in other words, 
active) dressing, which has therapeutic properties and 
needs to be secured from moving and/or from exter-
nal environment. An example of primary dressing 
that is combined with topical cover is non-adherent 
HELIX3-CM® Collagen Matrix, suitable for burns, 
sores, blisters, ulcers, and wounds. Simplicity and the 
relatively low cost of the production of the standard 
gauze, as well as the ease of adapting to the patient’s 
specific needs, mean that its high popularity will 
probably last long.

An interesting attempt to enrich the functional-
ity of gauze to a wide extent was presented by Said 
(2021). The designed gauze was first pre-modified by 
chitosan cationization or anionic carboxymethylation. 
Then, by successively applying hydroxyapatite, silver 
nanoparticles and ginger oil, it gained anti-inflamma-
tory, antimicrobial and anti-UV properties. Another 
strategy was to modify the surface of the gauze by 
grafting the poly(Methacrylic Acid) (PMAA), which 
was followed by testing the implementation of ZnO 
nanoparticles to obtain the antibacterial and antimi-
crobial functions and by investigation of the drug 
releasing profile after loading it with nalidixic acid. 
Compared to an unmodified gauze, the antibacterial 
effect was the result of PMAA grafting itself. The 
results were due to bactericidal properties of acrylic 
acid polymers. The explanation is that acidic envi-
ronment disturbs cytoplasmic homeostasis pH, while 
acid groups reduce bacterial adhesion. However, 
100% inhibition effect for S. epidermidis bacteria was 
achieved only by adding ZnO (Lumbreras-Aguayo 
et al. 2019a). The process of hemostasis is to be sup-
ported by gauze with grafted carboxymethyl chitosan 
and covered with gelatin and alginate using the Layer-
By-Layer method, a technique of fabrication of thin 
films made by depositing respectively oppositely-
charged materials (Zheng et  al. 2021). A relatively 
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Table 2   Areas of BC application in regenerative medicine

Application of BC in 
regenerative medicine

Action Characteristics Final use References

Drug delivery Anti-inflammatory BC with diclofenac 
sodium

Hydrogel Adepu and Khandelwal 
(2020)

BC with ibuprofen Membrane (transdermal 
delivery)

Ossowicz-rupniewska 
et al. (2021)

Anticancer BC with Cisplatin Drug carrier Lee et al. (2012)
Antiseptic BC with octenidine Nonwoven wound dress-

ing
Moritz et al. (2014)

BC chemisorbed with 
antiseptic molecules: 
octenidine, pol-
yhexanide, povidone-
iodine, chlorhexidine, 
ethacridine lactate, and 
hypochlorous solutions,

Wound dressing for 
chronic wounds

Dydak et al. (2021)

Antioxidant BC with entrapped 
fireweed (Epilobium 
angustifolium (L.) 
extract

Membrane (transdermal 
delivery)

Nowak et al. (2021)

Antimicrobial Papain immobilized on 
pure BC and BC cross-
linked with glutaralde-
hyde (BG)

Composite membrane 
dressing

Asanarong et al. (2021)

BC with lignin derived 
dehydrogenative poly-
mer of coniferyl alcohol 
(DHP))

Composite hydrogel Zmejkoski et al. (2018)

In situ synthesis of silver 
nanoparticles simul-
taneously with the 
production of BC

Nanocomposite hydrogel Fadakar Sarkandi et al. 
(2021)

4,6-diamino-2-pyrimidi-
nethiol (DAPT)-modi-
fied gold nanoparticles 
(Au-DAPT NPs)

Membrane dressing Ying Li et al. (2017)

Tissue regeneration Supporting moist envi-
ronment

BC with glycerin as plas-
ticizer with improved 
moisturising properties

Membrane Almeida et al. (2014)

BC crosslinked with 
citric acid along with 
catalysts, such as 
disodium phosphate, 
sodium bicar-bonate, 
ammonium bicarbonate

Super-absorbent wound 
dressing

Ciecholewska-Juśko et al. 
(2021)

Improved biocompat-
ibility

BC with vaccarin pro-
moting the endothelial 
tissue proliferation

Membrane Qiu et al. (2016)
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simple way to improve functionality is to use cotton 
gauze, present on the market (classic and covered 
with anti-adhesive wax) to apply 2-deoxy-D-ribose 
(2dDR) which would support angiogenesis (Andleeb 
et al. 2020). In the case of a hydrophobic wax dress-
ing, it was necessary to construct a carrier using par-
affin, ethanol, and poly(ethylene glycol) (PEG) in 
various configurations or implement 2dDR in a partly 
diluted wax cover. Another way of modifying con-
ventional cotton fabric was grafting L-cysteine (Cys) 
on the surface and then implementing copper nano-
particles in the presence of citric acid. Such mate-
rial exhibited satisfactory activity against bacteria 
S. aureus and E. coli and excellent washing fastness 
(Qingbo Xu et al. 2018a, b).

In recent years, the greige cotton, which is 
unbleached cotton as a dressing material condu-
cive to hemostatic processes in open wounds, has 
become the object of wider interest. In the work of 
Edwards et al. (2022), it occurred that highly cleaned 
and sterile unbleached cotton, due to its constituents, 
may produce hydrogen peroxide at a certain level. 
Moreover, it can be modulated with ascorbic acid by 
impregnation with classical pad-dry method, result-
ing in antimicrobial properties. It is beneficial from 

the ecological and economic point of view to omit the 
cotton bleaching stage and avoid the use of chemicals 
necessary for this process (such as wetting agents, 
and whitening agents based on hydrogen peroxide or 
chlorine compounds). It is worth emphasizing that 
naturally occurring substances remain on the fibers—
pectins, proteins, waxes, hemicellulose, fats, as well 
as vestigial amounts of inorganic compounds called 
ash. Leaving them on the fiber affects the hydropho-
bicity and polarity of the surface and creates an envi-
ronment conducive to blood clotting. On the other 
hand, dressings consisting only of greige cotton may 
not absorb exudate sufficiently for exactly the same 
reasons (Vincent Edwards et al. 2020).

Apart from cotton, attempts are made to adapt 
other natural cellulose fibers to the needs of wound 
treatment. As in the case of greige cotton, cellulose 
material with a natural addition of specific sub-
stances supporting treatment is linen (Linum L.). 
Recent research shows that linen dressings have 
healing effects on wounds not only because of cellu-
lose material and polymers naturally occurring with 
it (hemicellulose, lignin, pectin), but also because 
of the presence of potentially bioactive substances, 
such as vanillin, 4-hydroxybenzoic acid, ferulic acid, 

Table 2   (continued)

Application of BC in 
regenerative medicine

Action Characteristics Final use References

Promoting cell pro-
liferation and tissue 
regeneration

Collagen reinforcement Composite scaffolds Noh et al. (2019)

BC with b-glucan, 
hydroxyapatite nano-
particles and graphene 
oxide

Scaffolds with antibacte-
rial activity

Umar Aslam Khan et al. 
(2021)

BC oxidized into dialde-
hyde bacterial cellulose 
(DBC) by regioselec-
tive oxidation, and then 
composited with col-
lagen peptide (Col-p)

Composite membrane Wen et al. (2015)

Surface micropatterning 
of BC with low-energy 
CO2 laser lithography, 
and targeted immobili-
zation of a tetrapeptide 
consisting of Arginine-
Glycine-Aspartic acid-
Serine (H-Arg-Gly-
Asp-Ser-OH, RGDS)

Scar-free wound healing 
hydrogel

Hu et al. (2019)



109Cellulose (2024) 31:101–145	

1 3
Vol.: (0123456789)

coumaric acid, syringaldehyde, olyhydroxybutyrate/
hydroxybutyrate, and polyamines. By examination 
on cellular line of mouse BALB/3T3 fibroblasts and 
normal human dermal fibroblast (NHDF), and normal 
human epidermal keratinocytes (NHEK) line, human 
dermal microvascular endothelial (HMVEC) cell line, 
epidermal carcinoma cancer A431, and monocyte 
THP-1 cell line, it has been shown that genetically 
modified linen fibers, differing from unmodified fib-
ers with increased content of the above-mentioned 
compounds, accelerated the proliferative activity of 
damaged tissues (Gębarowski et al. 2020).

Cellulose derivatives for dressings

The presence of hydroxyl groups in cellulose mac-
romolecules results in high reactivity of the polymer 
and great possibilities for modification for medi-
cal purposes. Typical reactions with OH groups are 
etherification, esterification, acetalization, and oxi-
dation. Some of the obtained derivatives (especially 
esters and ethers) are well known and have been pro-
duced commercially for a long time (Klemm et  al. 
1999).

In an overview of cellulose and its derivatives for 
wound healing, Tudoroiu mentions: cellulose esters, 
cellulose acetate (CA), cellulose acetate butyrate 
(CAB), cellulose acetate phthalate (CAP), cellulose 
acetate trimelitate (CAT), hydroxypropylmethylcellu-
lose phthalate (HPMCP), and hydroxypropyl methyl-
cellulose acetate succinate (HPMCAS). Among 
ethers, there are sodium carboxymethylcellulose 
(NaCMC), hydroxypropylmethylcellulose (HPMC), 
methylcellulose (MC), hydroxyethylcellulose (HEC), 
ethylcellulose (EC), hydroxypropylcellulose (HPC), 
hydroxyethylmethylcellulose (HEMC), and benzyl-
cellulose. They appear also in combinations of two 
or more and usually contain active pharmaceuti-
cal ingredients (Tudoroiu et al. 2021). Usually, most 
reports also mention bacterial cellulose, although its 
production is significantly different.

Cellulose derivatives due to their specific proper-
ties influencing the easy forming of various forms 
of dressing and healing process (alone or with other 
components) are versatile and flexible materials. 
The main advantage over pure cellulose is improved 
solubility in water with some exception of, for exam-
ple, ethylcellulose or cellulose acetate. Moreover, 
the properties of cellulose-based nanoparticles can 

prolong circulation of drug carriers in organism 
by increasing drug solubility and stability and thus 
enhance their bioavailability, or perform as biosen-
sors and as a tool of targeted therapy thanks to easy 
customization for specific tasks (Hosny et  al. 2022). 
Biosensors based on oxidized or carboxylated cellu-
lose nanomaterials promote amide linkage between 
amide groups of proteins and nucleic acids, and car-
boxyl groups grafted onto cellulose molecules which 
increases their resistance to external environment 
(Teodoro et  al. 2021). As biosensors, they might be 
useful for detection of such bio-molecules as urea, 
lactate, glucose, genes, amino acids, cholesterol, and 
proteins (Kamel and Khattab 2020). Cellulose deriva-
tives, in particular carboxymethyl cellulose (CMC), 
cellulose acetate and bacterial cellulose were also 
discussed from a clinical point of view. Some advan-
tages are as follows:

1.	 cellulose acetate—excellent scaffolding biomate-
rial for implementation of drugs and other com-
pounds with anti-microbial, antioxidant, anti-
inflammatory, and antiviral activity

2.	 carboxymethyl cellulose—the ability to construct 
hydrogels in the presence of metallic ions,

3.	 bacterial cellulose – highly effective surface area, 
and a hydrophilic nature that gives it a high liquid 
loading capacity, ability to drug carrying, good 
mechanical properties and breathability (Abazari 
et al. 2021)

In recent years, (CMC)-based wound dressing 
materials have been strongly discussed due to their 
biocompatibility, biodegradability, low cost, and 
other properties such as tissue resembling and non-
toxicity (Kanikireddy et al. 2020). Various forms and 
practical use of dressings are possible (Fig. 1).

Some CMC dressings are already present on the 
market, such as Aquacel®, which was proven to 
encapsulate potentially pathogenic bacteria in its gel 
structure when it covers the wound (Walker et  al. 
2003). The basic Aquacel® is composed only of 
sodium carboxymethylcellulose spun into fibers and 
then shaped into dressing form. Put into the wound, 
it absorbs exudation inside of the fibers, keeping it 
away from the tissue. At the same time, it changes 
the structure to the gel and maintains the moist 
wound environment for optimal healing (Williams 
1999). Attempts were made to use cotton cellulose 
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from waste remaining after production processes to 
produce CMC and create hydrogel wound dressing. 
Recovered cotton fibers were cut and pretreated with 
20% sodium hydroxide solution to remove impuri-
ties, and then bleached in 6% solution of sodium 
hypochlorite. In the next step, CMC was synthesized 
by the etherification with various amounts of sodium 
monochloroacetate (SMCA). Hydrogel was obtained 
through the cross-linking reaction in the presence 
of epichlorohydrin (ECH). Different combinations 
of cellulose and CMC were used to achieve desired 
results- suitable exudate absorption, wound dehydra-
tion, and tissue regeneration environment (Jirawitch-
alert et al. 2022).

Hydroxypropyl cellulose (HPC) was a matrix for 
nanocomposite films enriched with graphene oxide 
(GO) grafted silver-coated zinc oxide nanoparticles 
(Ag/ZnO) (Fig.  2). These so-called AGO nanofill-
ers positively influenced mechanical strength, UV 
resistance, and antibacterial performance (Wang et al. 
2019a, b). Another solution for antibacterial proper-
ties was Polyhexamethylene guanidine hydrochloride 
(PHMG) grafted to cellulose diacetate (CDA) wound 
dressing surface through an amide reaction. The 
dressing had a nanofibrous structure made by elec-
trospinning, which additionally enhanced hydrophi-
licity. Such prepared materials were tested for water 
absorption, and absorbing capacity (or, in differ-
ent words, water holding capacity). In the first case, 
the weight of samples soaked with saline solution 
for 10  s was compared to the weight of lyophilized 
ones. Secondly, the weight of samples previously 
immersed in saline overnight was measured to deter-
mine water retention over a certain period of time. 
Results showed that increasing amount of PHMG has 

significantly influenced all those parameters (Xiao 
et al. 2022). Cellulose diacetate wound dressing also 
supports hemostasis and counteracts excessive blood 
loss (Liang et al. 2021).

Hydroxypropyl methylcellulose (HPMC) com-
bined with collagen enriched with povidone-iodine 
and formed into scaffolds effectively facilitated the 
proliferation of fibroblast cells with no toxic effects 
(Kesavan et  al. 2022). A combination of ethylcel-
lulose/hydroxypropyl methylcellulose nanofib-
ers was loaded with aloe vera extract and formed 
into a wound healing dressing mat, which exhibited 
enhanced cell proliferation, adhesion, and antibacte-
rial activity (Mohebian et al. 2022).

Polylactide

In this part of the review, the focus will be on the 
application of PLA-based materials for regenerative 
medicine and drug delivery systems. Since there are 
numerous reviews about PLA-based materials in drug 
delivery, describing PLA safety (Pawar et  al. 2014; 
Ramot et al. 2016) and biomedical applications of its 
copolymers (Bawa and Oh 2017; Jain et al. 2016; Oh 
2011), stereocomplexes (Bertin 2012; Brzeziński and 
Biela 2015; Tsuji 2016), hydrogels (Basu et al. 2016), 
and nanoparticles (NPs) (Casalini et al. 2019; Kumari 
et al. 2010; Tyler et al. 2016). Moreover, the clinical 
applications of PLA were also summarized (DeSte-
fano et  al. 2020). There are also some examples of 
PLA-based NPs under clinical trials (Niza et al. 2021; 
Prabhu et  al. 2015), for instance, Genexol-PM or 
BIND-014®. Therefore, this part presents only recent 
achievements in this field which were published last 

Fig. 1   CMC-based dress-
ings. Reprinted from (Kani-
kireddy et al. 2020) with 
permission from Elsevier
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or this year. However, there is also intention to outline 
wider use of polylactide in form of fibers, its modifi-
cations and perspectives.

Polylactide (PLA) is a biocompatible polyester 
that can be obtained by polycondensation of lactic 
acid or the ring-opening polymerization (ROP) of 
lactide. (Slomkowski et al. 2014). The building block 
of PLA can be composed both from optically active 
l- and d-enantiomers. Therefore, pure poly-l-lactic 
acid (PLLA) or poly-d-lactic acid (PDLA) can be 
produced from l-lactic and d-lactic acid, respectively 
(Zibiao Li et al. 2016). Moreover, the polymerization 
of a racemic mixture of both enantiomers leads to 
the preparation of poly-d,l-lactic acid (PDLLA). The 
structure of the PLA chain determines the properties 
of the resulting macromolecule and, as consequence, 
PLLA/PDLA are semi-crystalline polymers whereas 
the PDLLA is an amorphous polymer. In addition, 
the equimolar mixture of PLLA and PDLA forms a 
supramolecular complex which is called stereocom-
plex (Tsuji 2005). The formation of this complex 
improves the mechanical and thermal resistance for 
degradation of PLA-based materials (Zibiao Li et al. 
2016).

The PLAs are typically obtained via polyconden-
sation or polymerization (Slomkowski et  al. 2014). 
The first method uses the reaction between hydroxyl 

and carboxyl groups of lactic acid to form ester bonds 
and obtain the desired polymer (Cheng et  al. 2009). 
The ring-opening polymerization (ROP) of lac-
tide (cyclic dimer of lactic acid) is the most popular 
method for PLA synthesis because it allows for the 
preparation of high molecular weight polymers with 
the absence of the side products typically observed 
during polycondesation. Moreover, the stannous octo-
ate (Sn(Oct)2) as catalyst and alcohol as initiator are 
used for the PLA synthesis (Kowalski et  al. 2000). 
However, various new catalysts both for coordination, 
cationic, and organocatalyzed polymerization were 
recently proposed (Kamber et  al. 2007; Mezzasalma 
et  al. 2017; Sebai et  al. 2018). In addition, the star-
shaped, hyper-branched, and dendritic PLAs can be 
prepared from the appropriate initiators of LA polym-
erization (Bednarek 2016; Michalski et al. 2019).

Polylactide in regenerative medicine

Research on the use of polylactide in medicine, 
including regenerative medicine, has been con-
ducted with high intensity for several decades (Li 
et al. 2020). At the end of the twentieth century, Ben-
dix (1998) presented an application for PLA and its 
copolymers (such as glycolide, trimethylene carbon-
ate, and caprolactone) mainly in the form of screws, 

Fig. 2   Synthetic Route for AGO/hydroxypropyl cellulose nanocomposite films. Reprinted with permission from (Wang et al. 2019a, 
b), source.  Copyright 2019 American Chemical Society
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pins (which means surgical accessories intended 
for bone fixation), plates in surgery and orthopedics 
(homopolymers, PDLLA, L- and d,l-lactide copoly-
mers), chopped drug release systems, surgical thread 
components and other medical textile materials 
(PLA and its copolymers with glycolide and TMC). 
Currently, the scope of polylactide applications has 
expanded significantly. As reported in 2016, Tyler 
(2016) mentions such fields of medicine as:

•	 Orthopedics (bone regeneration, resorbable 
screws),

•	 Neurology (peripheral nerves, spinal cord),
•	 Cardiology (stents),
•	 Dentistry (tissue regeneration, fillers),
•	 General and plastic surgery (hernial nets, surgical 

threads, lifting threads, fillers),
•	 Gynecology (stabilizing nets),
•	 Radiology (theranostic imaging),
•	 Oncology (drug delivery systems, vaccines).

Until recently, polyesters (both aromatic and ali-
phatic) were not the main component of broadly 
understood dressings but were used as a strengthen-
ing add-on. An example is the Silflex® dressing made 
of a polyester mesh, whose functionality is based on 
the outer, coating silicone layer. There are already 
dressings on the market with polylactide. Suprathel® 
is a flexible and permeable to gases and liquid mem-
brane, with such components as polylactide, trimeth-
ylene carbonate, and ε-caprolactone. Suprathel® is 
intended for treating burns, and thanks to the abil-
ity to biodegradate, it avoids painful changes of the 
dressing because it degrades directly in the wound. 
The conducted research among patients suffering 
from chronic wounds associated with diabetes (for 
example diabetic foot) also indicated its effective-
ness in reducing the size of treated chronic wounds, at 
the same level as in the case of non-diabetic wounds 
(Nischwitz et  al. 2021). The positive effect of poly-
lactide on wounds is also confirmed by other studies 
in which nanofibrous polylactide nonwovens were 
subjected to tests on the porcine model (Menclová 
et  al. 2021a, b). It has also been shown in vivo that 
PLA product strengthened the proliferative phase in 
the treatment of wounds compared to chitosan fab-
rics of similar structure (Menclová et  al. 2021a, b). 
This shows that in the case of dressing materials, 
polylactide is still a relatively new material and the 

possibilities of the use of polylactide dressing materi-
als are still to be learned and require further research.

Attempts are being made to modify its properties 
without the participation of additional substances, 
for example by plasma. In the 2015 examination, 
two types of non-woven fabrics, spun-bonded and 
needle-punched, both made of D-lactide, were put 
under the low-temperature plasma. The action of 
plasma was tested in two variants, in the presence 
of atmospheric air and C6F14 (perfluorohexane). The 
operation of the plasma from the air has increased 
the sorption properties of polylactide fibers, which 
according to the authors of the study predestines 
the received material for the category of supera-
bsorbents. In turn, as a result of plasma treatment, 
perfluorohexane increased its hydrophobicity. The 
disadvantage of modification may be its imperma-
nence, because the changes in the surface activity 
of the fibers disappeared after a few months (Urban-
iak-Domagala et al. 2016).

The subject of interest is polylactide and its copol-
ymers, most often in the form of nanofibers produced 
by the electrospinning method (Kanmaz et al. 2018). 
Nanofibers, due to the specific dimensions and sig-
nificant advantage of the surface above the volume, 
are materials with increased surface activity affect-
ing interactions in the treated area and can imitate 
the properties of external cell matrix (Extracellular 
Matrix, ECM), in particular, peptide and hyaluronic 
acid nanofibers (Mohiti-Asli and Loboa 2016).

Polylactide nonwovens can be modified for spe-
cial applications already at the production stage, 
through production parameters, or by changing the 
parameters of the spinning solution, including the 
addition of active substances and drugs. Several fac-
tors influence the final form and functionality (Sharifi 
et al. 2020; Antoniya Toncheva et al. 2014). Produc-
tion parameters determine the physical, thermal, and 
mechanical properties of fibers, while the additives 
primarily give medicinal, antiseptic, and antibacte-
rial properties, although above a certain concentra-
tion production also requires adaptation of spinning 
conditions due to the impact on the properties of a 
spinning solution (by changing viscosity, the pres-
ence of dispersion agents). The form of fibers, poros-
ity, and transverse dimensions are also affected by 
the presence of copolymers. It is also known that 
copolymers affect the effectiveness of dressings. It 
has been shown in in vitro and in vivo research that 
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the membrane from the polylactide/poly(vinyl alco-
hol)/sodium alginate (PLA/PVA/SA) mix improves 
fibroblast proliferation and reduces the inflammatory 
response at an early stage of healing compared to 
membranes of pure PLA, while the effect of collagen 
deposition is clearer in the case of the latter (Bi et al. 
2020). However, the effectiveness of releasing drugs 
is influenced by the crystallinity of the polymer due 
to the difficult access of water molecules to the crys-
talline phase. The use of nanofibers with active medi-
cal compounds for the treatment of wounds is already 
the subject of several studies (Ambekar and Kandasu-
bramanian 2019; Arida et al. 2021; Liu et al. 2017). 
Typical active additives for the spinning solution used 
in various combinations are natural extracts, metal 
nanoparticles, peptides, antibiotics, growth factors, 
both in molecular form and encapsulated, or mixture 
of copolymers and it is summarized in Table 3. 

Surface modification of PLA fibers

The polylactide products, such as nanofibers, foams, 
and films, regardless of whether they have been 
enriched in the production process, undergo fur-
ther modifications. In tissue engineering, the change 
in surface properties is often aimed at increasing an 
affinity to the human tissues. Cells’ adhesion is influ-
enced by the polymer surface wettability, free surface 
energy, surface charge (an electric charge present on 
the surface of the material), as well as the chemical 
structure of the outer layer and its morphology. Gen-
erally, highly adhesive tissue material is hydrophilic 
with a surface charge with the opposite charge to 
the surface of the cells. Specific needs determine the 
values of the above parameters (Wang et  al. 2005). 

However, it is worth mentioning that some results 
show that the cells are able to adhere and prolifer-
ate either on hydrophilic and hydrophobic surfaces, 
although the number of cells on hydrophobic surface 
initially decreases to finally increase after time (Ishi-
zaki et al. 2010). Another research on superhydropho-
bic materials and their interactions with proteins and 
cells highlights the importance of surface topology in 
protein and cell adhesion (Lourenço et  al. 2012). In 
this study, protein adsorption was higher on smooth 
surfaces than textured. The relationship between cell 
adhesion and surface roughness was also relevant, 
as cell adhesion and proliferation were inhibited on 
rough surfaces; however, cells remained viable and 
active. This means that good tissue affinity is a com-
plex phenomenon and cannot be easily determined 
(Ferrari et al. 2019). Increasing the hydrophilicity of 
polylactide products is the subject of great interest. It 
is usually achieved with physical and chemical meth-
ods, through γ-ray irradiation (Qi et al. 2019), surface 
hydrolysis (Lee and Yeo 2016; Liu et al. 2019; Tham 
et al. 2014), plasma or laser treatment (Kudryavtseva 
et al. 2017; Mohsenimehr et al. 2020; Rytlewski et al. 
2012; Stoleru et  al. 2016; Wan et  al. 2004), and the 
choice of the method also affects other surface prop-
erties such as roughness (surface morphology) or cell 
affinity. Plasma is the most versatile method and its 
impact causes various interactions with the material: 
cleaning, etching, activation by creating functional 
groups, grafting, and polymerization (Cools et  al. 
2014). At the stage of spinning the fibers, admixtures 
of hydrophilic copolymers, including poly(ethylene 
glycol), are used in the spinning solution (Hendrick 
and Frey 2014; Suzuki et  al. 2018). In the wetting 
tests (by contact angle measurement), it has been 

Table 3   Recent examples of fibrous PLA materials for wound dressings and tissue regeneration

Function Structure

Antimicrobial and anti-inflam-
matory

 Poly(ɛ-caprolactone[PCL])/ Poly(lactic acid [PLA]) with Nigella Sativa extract (Sharifi et al. 2020)
Quaternization of PMTA in PLA/PMTA fibers (Echeverría et al. 2019)
Fibers Loaded with Birch Bark Triterpene Extract (Fan and Daniels 2021)
 Fibers with propolis extract and silver nanoparticles (Adomavičiūtė et al. 2017)
PDLLA nanofibers encapsulating amoxicillin (Ho et al. 2021)
Porous PLA membranes with sulfated chitosan, polydopamine and gentamicin (Yu et al. 2023)

Supporting regeneration 
process

Core–shell nanofibers based on PLA and γ-PGA (Fang et al. 2019)
 PVP/PLA-PEO fibers containing encapsulated collagen and cefazolin (Hajikhani et al. 2021b, a)

Antioxidant  Nanofibers of PLA with other copolymers loaded with lycopene (Hajikhani et al. 2021b, a)
Polylactide/poly[(R,S)-3-hydroxybutyrate] (PDLLA/a-PHB) blend mats with proanthocyanidins 

(Zięba et al. 2021)
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shown that the value of the wetting angle decreases 
proportionally as the PEG percentage in the mixture 
increases (Athanasoulia et  al. 2019; Athanasoulia 
and Tarantili 2017). Another solution is to impreg-
nate polylactide material with poly(ethylene glycol) 
copolymers. PDLLA membranes saturated with an 
amphiphilic monomethoxyl poly(ethylene glycol)-
b-poly(d,l-lactide) (PEG-PDLLA) showed changes in 
the wetting angle from 74.5° to 50°, depending on the 
solution concentration (Yang et  al. 2018). The PEG 
connection method to PLA (mixing or grafting to the 
surface) is important from the point of view of the 
mechanical properties and parameters of the spinning 
solution, because the PEG add-on causes a reduc-
tion of the strength of the mixture and increases the 
viscosity of the spinning solution (Kruse et al. 2018; 
Toncheva et al. 2016). Zhu modified films from high 
molecular weight poly-l-lactide by immersing them 
with poly-d-lactide with low molecular weight and 
poly (d-lactic acid-co-glucose) copolymer (PDLAG) 
dissolved in chloroform (Zhu et  al. 2021). The sub-
mersion in a solution for more than 3 min resulted in 
swelling of the foil, and in a further step its destabi-
lization. As a result, stereocomplexed crystals are 
formed on the surface of the foil, and homogeneous 
crystals inside the foil, and hydrophilicity improved 
because of the presence of glucose. The next method 
of connecting the PEG hydrophilic groups is to cre-
ate a three-element structure (scaffolding), in which 
the PLA-b-PEG block copolymer is a kind of "glue" 
bonding with a hydrophobic PLA and hydrophilic 
PEG. The dissolved mixture was slowly poured into 
the powdered NaCl which then, after the polymer’s 
solving and thermal recrystallization, was washed out 
and thus obtained a porous scaffolding structure (Zhu 
et al. 2015).

PLA as matrix for drug delivery systems, a recent 
update

PLA‑based NPs with anticancer properties

The PLA-based NPs are widely used as a carrier of 
anti-cancer drugs to enhance their stability and effi-
ciency. The recent trends are focused on the design 
of the stimuli-responsive polymers that can recognize 
the difference between the tumor and healthy tis-
sues since there is a distinct difference between pH 

around the tumor site. Moreover, the co-delivery of 
two or more active agents is proposed to enhance the 
effectiveness of nanotherapies. Therefore, this sec-
tion is describing recent strategies of improvement 
in the delivery of chemotherapeutics by PLA-based 
nanosystems. It is divided by the applied drug or their 
combination, however with one exception for photo-
dynamic therapy since it was excluded from this clas-
sification and described separately.

Doxorubicin

Doxorubicin (DOX) is a drug from a group of anthra-
cycline antibiotics and its mode of action is related 
to the blocking of the topoisomerase II. Since PLA 
does not possess any functionalities in the backbone 
that allows for its sensitivity to the external stimuli, 
therefore one possible strategy could be its copolym-
erization with appropriate monomers. For instance, 
the stimuli-responsive PLA copolymers with allyl-
glycidyl ether (AGE) (Kost et  al. 2021), l-proline 
derivative (Brzeziński et al. 2021) were proposed for 
the preparation of PLA-based NPs loaded with DOX. 
Both nanoformulations exhibit pH-depended DOX 
release, however the cross-linking by supramolecu-
lar interactions between enantiomeric PLA chains 
decrease the release from obtained NPs. Their effi-
ciency has been proven in vitro against AGS (human 
gastric adenocarcinoma) and HeLa (human epithe-
lioid cervix carcinoma) cell lines. In addition, the 
copolymers of poly(2-hydroxyethylmethacrylate)-
g-poly(lactide)-b-poly(ethyleneglycol)-b-poly(2-
hydroxyethylmethacrylate)-g-poly(lactide) (PHEMA-
g-PLA)-b-PEG-b-(PHEMA-g-PLA) were obtained 
via combination of reversible addition fragmenta-
tion chain (RAFT) and ring-opening polymerization 
(ROP) methods (Ghamkhari et  al. 2021). Subse-
quently, these copolymers were used for the covering 
of graphene oxide surface and, as a result, the DOX-
loaded nanocomposites were obtained. The pH-trig-
gered drug release from nanocomposites was shown 
and their efficiency has been proved against mouse 
breast cancer (4T1) cell line.

Docetaxel

Docetaxel (DTX) is classified as a plant alkaloid and 
it could bind to the Bcl-2 protein that is responsible 
for the stopping of apoptosis in cancer cells or inhibit 
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the microtubular depolymerization. To efficiently 
encapsulate DTX, two different macromolecules were 
utilized for the preparation of nanoparticles: disulfide-
crosslinked star-PLGA nanoparticles (HA-sPLGA 
XNPs) and hyaluronic acid combined with PDLLA 
(Wang et al. 2021). For this purpose, the nanoprecipi-
tation was used to prepare DTX-loaded NPs that were 
cross-linked and compared with those un-crosslinked 
ones. Moreover, the release of DTX could be acceler-
ated by the addition of glutathione. The NPs can be 
also effectively uptaken by the human lung carcinoma 
(A459) cells. However, the in vivo tests against A549 
tumor-bearing mice models revealed prolonged half-
life elimination of cross-linked NPs and indicated that 
the decrease of tumor growth can be achieved after 
their administration.

Paclitaxel and cis‑platin

Paclitaxel (PTX) origins from the Pacific yew tree 
and its mode of action is related to inhibition of spin-
dle bodies formation during mitosis. The microfluidic 
technique was employed for the preparation of NPs 
composed of PLLA macromolecules (Zhang et  al. 
2021a, b). This method relies on the mixing of NPs 
solutions in a solvent with non-solvent in the micro-
fluidic channels that leads to the nanoprecipitation 
of the polymeric matrix (Brzeziński et al. 2019). The 
PTX-loaded particles were prepared by applying a 
commercially available microfluidic chips and dichlo-
romethane was used as solvent of PLLA dissolution. 
However, SDS was added to the formulation to sta-
bilize the obtained NPs. The benefits of microfluidic 
preparation of nanocarriers could be mainly related 
to their sustained drug release characteristic in com-
parison to those prepared by traditional nanoprecipi-
tation. It was also shown that the slower release can 
be achieved by embedding the PTX-loaded NPs in 
microparticles. Moreover, magneto-sensitive PLA-
based NPs were prepared by film rehydration and 
further modified with maghemite to introduce sensi-
tivity to a magnetic field (Pigareva et al. 2021). The 
obtained particles were stable in different pH values; 
however NPs can be slowly decomposed by enzy-
matic hydrolysis after 7 days due to the stabilization 
effect of PEG-corona. Finally, the efficiency of NPs 
was proved against human breast adenocarcinoma 
cells (MCF7).

Curcumin

Curcumin (Cur) is a hydrophobic natural compound 
that has been investigated for cancer treatment since 
it inhibits cancer growth by downregulating cyclin B1 
or activating the caspase-9/3 cascade. For its encap-
sulation, the copolymers composed of galactosa-
mine-modified poly(ethylene glycol)-poly(lactide) 
(Gal-PEG-PLA) and D-α-tocopherol poly(ethylene 
glycol) 1000 succinate (TPGS) and micelles were 
synthesized by thin-film dispersion method (Sun et al. 
2021a, b, c). The size of micelles was ranging from 
80 to 120 nm, and their biocompatibility was proven 
by MMT assay in Caco-2 (human colon adenocar-
cinoma) cells. Most importantly, the micelles were 
distributed mainly in the jejunum and ileum and 
the maximum concentration in plasma (Cmax) was 
enhanced by encapsulation of Cur in nanocarriers. 
Moreover, due to the presence of galactosamine moi-
ety, the micelles possess the liver-targeting ability.

Camptothecin

Camptothecin (CPT) is a well-known topoisomerase 
inhibitor used for cancer treatment with CPT-loaded 
NPs. In this regard, poly(lactic acid)-hyperbranched 
polyglycerol (PLA-HPG) was prepared and used as a 
matrix for CPT encapsulation (Hu et  al. 2021). The 
main aim was to prolong intratumoral drug reten-
tion and enhance nonsurgical treatment of skin can-
cer. Moreover, two types of NPs were prepared since 
PLA-HPG NPs were also treated with sodium perio-
date and non-adhesive NPs were transformed into 
bioadhesive particles due to the formation of alde-
hydes in the polymeric backbone. The NPs release 
their payloads within 100  h, however the bioadhe-
sive NPs can efficiently enter the interior of the cell 
by clathrin-mediated endocytosis. The intradermal 
transplantation of mice carcinoma squamous cells 
(PDVC57 SCC) into syngeneic C57BL/6 strain of 
laboratory mice allows to show the enhanced biodis-
tribution of bioadhesive NPs within the tumor paren-
chyma by confocal microscopy. In addition, co-deliv-
ery of bioadhesive NPs with immunostimulating CpG 
oligodeoxynucleotides induce the reduction of tumor 
growth.

Poly(lactic acid)-block-poly(ethylene glycol) 
(PLA-b-PEG) NPs were produced by flash nanopre-
cipitation hand-made confined impinging jet mixer 
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(Wilson et  al. 2021). To enhance the properties of 
CPT, it was conjugated with an acid derivative of 
α-tocopherol (vitamin E), yielding the novel prodrug 
molecule. The NPs with the size around 100 nm were 
further encapsulated in PEG microgel microparticles 
to achieve the prolonged release of the prodrug.

Imiquimod (R837)

Imiquimod (R837) is a compound responsible for the 
activation of immune system response against can-
cer. This molecule was grafted on the mPEG-b-PLA 
backbone by an acid-sensitive bond (Li et al. 2021a, 
b, c). This approach allows for the release of R837 
in the acidic environment of the tumor. The in vitro 
activation of macrophages by P-R837 was tested in 
human umbilical vein endothelial cells (HUVECs) 
and the results clearly showed their pH-triggered 
activation.

Ursolic acid

Ursolic acid (UA) is a naturally derivate triterpene 
that could inhibit cancer proliferation. This com-
pound was encapsulated in the interior of the PLA-
based NPs covered by chitosan with a size between 
300 and 350 nm (Antonio et al. 2021). The release of 
UA occurs in a sustainable way for 144 h. Moreover, 
due to the presence of chitosan on the surface of NPs, 
the mucoadhesive properties of the carriers were 
improved. The obtained NPs exhibit good hemocom-
patibility, low cytotoxicity, and bioavailability after 
oral delivery to model rats.

Mithramycin

Mithramycin (MTM) is another example of an anti-
biotic natural product used against testicular can-
cer, glioblastoma, or Ewing sarcoma. It is proposed 
that MTM could bind to GC-rich sequences in DNA 
which results in the disfunction of transcription fac-
tors. To enhance its stability, MTM was encapsulated 
in the hydrogel, PLA, and liposomal NPs and tested 
against sarcomas (Estupiñán et al. 2021). These three 
materials release MTM with different velocities, 
nonetheless the most sustained release was observed 
from liposomes. The myxoid liposarcoma models 
MSC-5 H-FC and T-5 H-FC#1 were utilized and sim-
ilar effect was observed for all proposed formulations 

of the drug. In addition, all prepared drug-delivery 
systems were able to reduce the growth of CSC-
enriched 3D clonal sphere cultures (tumorspheres) 
of T-5 H-FC#1 cells. Finally, their high efficiency 
has been also proven (liposomal nanocarriers) by the 
in vivo assay mice carrying T-5 H-FC#1 cells without 
the presence of side effects.

Co‑delivery of two anticancer drugs

The co-delivery of two different active compounds in 
one nanocarrier is done to increase their therapeutic 
effect. It was implemented to modulate different sign-
aling pathways, reduce the dose of anticancer drugs, 
and overcome intrinsic drug resistance of cancer. 
However, to fully utilize this potential, those drugs 
should be encapsulated in the polymeric nanocarriers, 
since this approach enhances their bioavailability and 
stability. Moreover, the embedding in the polymeric 
matrix allows for control over the drug release kinet-
ics. In this section, the different strategies of the co-
delivery are briefly summarized:

	(a) 	 A combination of sorafenib (inhibitor of multi-
kinase) and paclitaxel was encapsulated in the 
poly(lactide) and hyaluronic acid co-modified 
half-generation of PAMAM G4.5 dendrimers 
(sPA) matrix (Ma et al. 2021). The pH-depend-
ent release of the drug and enhanced efficiency 
in killing of human hepatocyte carcinoma 
(HepG2) cells by the co-delivery of two differ-
ent drugs (in vitro) was observed.

	(b) 	 Sophisticated copolymers composed of lactide 
and modified lactides were used for conjuga-
tion of sulfobetaine, paclitaxel, and gemcit-
abine (inhibition of DNA synthesis) (Sun et al. 
2021a, b, c). These copolymers self-assemble 
in water to form the desired NPs. The cytotox-
icity assay at Paca-2 (human pancreatic ductal 
adenocarcinoma) cells in  vitro and in  vivo on 
mouse model revealed their superior properties 
in comparison to a combination of pure drugs.

	(c) 	 PLGA matrix was used for the delivery of gem-
citabine and erlotinib (epidermal growth factor 
receptor (EGFR) inhibitor) due to its positive 
effect during clinical trials (Cai et  al. 2021a, 
b). Their ability to decrease the cancer cells 
viability was proven against human pancreatic 
cancer (PANC-1) cells line. Most importantly, 
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the tumor growth can be efficiently inhibited, 
as well as, the percent of mice survival signifi-
cantly increased after treatment of drug com-
bination delivered by NPs, as shown in Fig. 3. 
The authors concluded that this was a proof-of-
concept for the potential clinical applications of 
their drug delivery system.

	(d) 	 Commercially available PLA–PEG function-
alized with biotin (targeting moiety) was used 
for the preparation of micelles co-loaded with 
epothilone B (apoptosis inducer, cytotoxic for 
cells overexpressing P-glycoprotein) and rapa-
mycin (mTOR inhibitor) (Zajdel et  al. 2021). 
Their co-encapsulation in polymeric matrix 
decreases the survival of human breast can-
cer (MCF-7 and MDA-MB-231) cells exposed 

to the NPs with both drugs in their interior in 
comparison to single-loaded NPs.

	(e) 	 Star-shaped PLAs with cholic acid core were 
mixed with E-tocopheryl poly(ethylene glycol) 
succinate (TPGS) and curcumin (Cur), yielding 
the polymeric micelles (Guan et al. 2021). The 
combined effect was related to downregulating 
P-gp expression of tumor cells due to the pres-
ence of TPGS moiety, with the simultaneous 
effect of Cur as an anticancer drug. Their effi-
ciency was tested against MCF-7/ADR (breast 
cancer) cells and it was concluded that the 
utilization of obtained nanocarriers allows for 
reversal of tumor immunosuppression mediated 
by CD47 and PD-L1.

	(f) 	 Poly(ethylene glycol)–polylactide (PEG–
PLA) copolymers were used for the delivery 

Fig. 3   In vivo antitumor effect of MPGNPs combined with 
erlotinib. A The PANC-1 pancreatic cancer tumor model was 
established. Drugs were intravenously injected every 3  days, 
and the tumor was collected after 3  weeks. B Representative 
photographs of mice w with the tumor circled in each group. 
C Tumor growth curve of the differentially treated mice. D 
Survival curves of the mice in the different groups calculated 

by the Kaplan − Meier estimate for 50  days. E Image and F 
weight of the tumor. G Representative images of H&E-stained 
liver, heart, lung, spleen, and kidney. Scale bar = 50 μm. Data 
are shown as the mean ± SD. *P < 0.05; **P < 0.01; NS, no 
significance (n = 5 for each group). Reprinted with permission 
from (Cai et al. 2021a, b).  Copyright 2021 American Chemi-
cal Society
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of tumor-associated antigen vaccine (anti-
gen agent) with chemotherapeutic DBPR114 
(quinazoline-based, multi-kinase inhibitor for 
the treatment of myeloid leukemia) (Huang 
et  al. 2021a, b, c). The experiments on the 
tumor-bearing mouse demonstrated the syner-
gistic effect of co-delivery of antitumor drug/
antigen agents slowing down the tumor growth.

	(g) 	 The copolymer with pendant functions such as 
polylactide-poly(ethylene) glycol-2-(3-((S)-5-
amino-1-carboxypentyl)-ureido) pentanedioate/
triphenylphosphonium (PLA-PEG-ACUPA/
TPP) can be used for encapsulation of ingenol-
3-angelate and DOX (Wang et  al. 2022). The 
dual-drug-loaded particles were obtained via 
nanoprecipitation to induce effective immuno-
genic cell death (ICD). As expected, the tumor 
growth was suppressed most efficiently by the 
administration of NPs loaded with the mixture 
of both active compounds. Interestingly, due to 
the treatment by NPs, the increase of CD8+ T 
cells and CD4+ T cells indicates the inhibition 
of the immune response of cancer.

	(h) 	 Ag-TiO2/poly(lactic acid) nanohybrid was pre-
pared by loading of norfloxacin (NOR) and 
tenoxicam (TENO) on the surface of Ag-TiO2 
which was finally covered by PLA layer by 
solution casting (Salahuddin et al. 2021). Such 
approach allows for the preparation of nanocar-
riers effective against different bacteria strains 
(Ag) and simultaneously against cancer cells 
(the co-delivery of the drugs). Interestingly, the 
release of both drugs was faster at the physi-
ological conditions than in the acidic medium 
typically observed near tumors. This was 
explained by the more effective shedding effect 
of PLA and the difference in the ionic interac-
tions in these two distinct pH environments, 
nevertheless, this feature may limit their appli-
cations. Subsequently, their antimicrobial activ-
ity was tested against several bacteria strains 
and it was proved their efficiency against gram-
positive and gram-negative bacteria. However, 
the nanohybrids were able to decrease the via-
bility of different cancer cells, their cytotoxicity 
was lower in comparison to DOX.

Photodynamic and photothermal therapy

Photodynamic (PDT) and photothermal (PTT) 
therapies are based on the utilization of molecules 
that can be activated by light to annihilate the can-
cer cells. The advantage of this type of therapy is 
its low invasiveness and selectivity against cancer 
cells. To address this challenge, indocyanine green 
(ICG) loaded PLA-based NPs were prepared via 
nanoprecipitation (Güney Akkurt and Gülsoy 2022). 
NPs with a size of 300 nm embedded approximately 
8.3 μM of ICG per 1 mg of nanocarriers and 70% of 
the drug was released after 96 h. The cell viability of 
PC-3 (human prostatic adenocarcinoma) cells was 
assessed in the dark and after light irradiation to show 
the light-triggered action of ICG, the results clearly 
indicated that a high decrease in the cell viability can 
be only achieved upon laser light irradiation. A simi-
lar approach was proposed by Santos-Oliveira et  al. 
however the combination of two active substances 
(dacarbazine and zinc phthalocyanine) encapsulated 
in the PLA and poly(vinyl alcohol) matrix (do Reis 
et  al. 2021). The NPs were prepared by emulsion-
based method and their morphology was shown by 
atomic force microscopy (AFM), interestingly their 
adhesion properties increase significantly after drug 
encapsulation. The MTT assay performed on human 
amelanotic melanoma (MV3) cells line indicated that 
the combination of chemotherapeutic drug dacar-
bazine with photosensitive zinc phthalocyanine gives 
the best results and inhibits the cancer cells recovery. 
Jin and Lo et  al. followed the approach of a combi-
nation of a drug and photoactive compounds in one 
nanocarrier (Guo et  al. 2021a, b, c). However, the 
main difference was that they conjugate both DOX 
and zinc phthalocyanine to one macromolecule. Sub-
sequently, the NPs were fabricated by nanoprecipita-
tion, however the addition of PEG5000-PDLLA5000 
was necessary for the stability of the obtained 
ZnPc–Dox@micelles. As expected, the ZnPc–Dox@
micelles more efficiently kill cancer cells in compari-
son to DOX-loaded NPs after laser irradiation. Most 
importantly, the obtained nanocarriers were localized 
at the tumor site in the mice model and were able to 
decrease the tumor growth after light irradiation.

In addition, the micelles composed of the chi-
tosan-g-polylactide loaded with photoporphyrin IX 
were also proposed for photodynamic therapy (Siba-
rani et  al. 2021). However, apart from their size, 
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morphology, and cytotoxicity, there was no example 
of the light-triggered enhancement of their efficiency. 
It might be assumed that this will be shown in the fol-
low-up work.

Antimicrobial nanomaterials

Polylactide NPs loaded with 1,2-benzisothiazolin-
3-one (BIT) were covered with chitosan to induce 
their antimicrobial activity and enhance the activ-
ity of the drug (Yao et al. 2021). The particles were 
fabricated by oil/water (o/w) solvent evaporation, 
dried, re-suspended in the acetic acid aqueous solu-
tion of chitosan to prepare the desired nanospheres. 
The release kinetics revealed that the coating by chi-
tosan decreased the drug release from nanospheres, 
in addition, the chitosan-modified nanospheres were 
the most effective against E. coli and S. aureus. Their 
improved efficiency was correlated with their efficient 
cellular uptake and disruption of a cellular struc-
ture due to membrane damage. Moreover, micelles 
obtained by self-assembly of PLA-b-PEG copoly-
mers were used to cover a coverslip glass surface 
(Caruso et  al. 2021). To introduce the antimicrobial 
properties, the photosensitizer (PS) was encapsulated 
in the interior of the micelles which was able to gen-
erate reactive oxygen species (ROS). The release of 
PS strongly depends on the degree of branching of 
block copolymers and the most stable micelles that 
can release PS in 48 h were subsequently utilized for 
the coating of the surface. As expected, the micelles 
were inactive in the dark, however the dose-depended 
killing of S. aureus after the irradiation was observed. 
Similarly, the strategy of using PLA- or PLGA-
based copolymers was proposed for the treatment 
of biofilm-relevant infections associated with acid-
ity (Guo et al. 2021a, b, c). To prepare pH-sensitive 
micelles poly(β-amino ester) block was introduced to 
the copolymer backbone, as shown in Fig. 4. Finally, 
triclosan (TCS) was loaded and their antimicrobial 
properties were tested. Due to the pH-sensitivity of 
obtained micelles, their interactions with the nega-
tively charged component of bacteria can be greatly 
enhanced. This feature affects the TCS release from 
the micelles and the enhanced release was observed 
in the acidic pH. Moreover, the micelles showed 
superior killing efficiency against bacteria in com-
parison to free TCS. This was explained by their good 
penetration and accumulation in bacteria biofilm due 

to the charge switch at pH 5. This was also proven by 
the in vivo test on the subcutaneously implanted cath-
eters covered with E. coli biofilms.

A different approach was proposed by   Kam-
mann et. al (2021) since both microparticles (MPs) 
and NPs loaded with cholesterol (Chol) were tested 
against S. pneumoniae induced lung damage. Three 
different formulations of MPs and NPs were pre-
pared from PLGA, E100–PLGA blends (methacrylic 
acid copolymer (Eudragit 100) and poly(d,l-lactide-
co-glycolide), 40:60 w/w), and PLA–Chol, however, 
they also varied after encapsulation of cholesterol. 
Among all tested cholesterol carriers, the NPs com-
posed of cationic Eudragit and PLGA exhibited the 
most efficient uptake by cells with results in the high 
intracellular level of cholesterol. This allows for the 
cellular defense action which results in neutralizing 
the pneumolysin (PLY) level to protect the cells from 
damage caused by toxins. It was concluded that poly-
meric cholesterol carriers can be used as a supply to 
enhance the cell defense mechanism against bacterial 
infections.

NPs for brain treatment

An interesting approach was proposed by Higazy 
et  al. (2021), in which polylactide-co-caprolactone-
based nanoparticles were loaded with lamotrigine 
(LTG), which is used for the treatment of epilepsy. 
The prepared formulation was stabilized by the 
addition of different amounts of PVA to the aque-
ous phase. After centrifugation and drying, the size 
and stability of re-dispersed NPs were tested. It was 
shown that the size decreased with the increasing 
amount of PVA. In addition, the presence of PVA on 
the NPs surface also decreased their zeta potential. 
The release of LTG varied between different formu-
lations, nonetheless in all cases the burst release was 
observed, after which the sustained release of the 
drug occurred. Most importantly, the comparison of 
the effectiveness of LTG-loaded NPs with Lamictal® 
(lamotrigine, an anti-epileptic medication) tablets 
indicated that NPs more efficiently target the brain, 
and as result the drug targeting efficiency or direct 
transport percentage values were significantly higher 
for NPs.
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NPs for DNA and RNA delivery

PLA-based NPs can be used as vehicles for the deliv-
ery of DNA, RNA, and genes (Mendes et al. 2022). 
Since these materials can be very easily degraded in 
the human body or cannot cross the cell membrane, 
therefore the encapsulation of genetic materials in 
NPs is a perfect solution. To understand the interac-
tions between PLA and DNA, Maiti et.al performed 
multiple experiments of their binding interactions, 
as well as, the DNA release from the nanocarriers 
(Senapati et al. 2021). The addition of DNA to PLA 
increases the size of obtained NPs. Moreover, it also 
alters the surface charge of NPs due to the presence 

of free phosphate groups. For instance, UV–vis anal-
ysis revealed a blue shift of DNA after the formation 
of the complex with PLA which indicates their strong 
dipolar interactions. The release of DNA from NPs 
followed the Korsmeyer − Peppas model and the non-
Fickian diffusion mechanism. The MTT assay showed 
good biocompatibility of such carriers. Finally, the 
simulation of their interactions indicated that PLA 
can more effectively interact with the AT-rich region 
of DNA in comparison to the GC-rich region.

Moreover, the PLGA NPs were used as carri-
ers of interfering RNAs (siRNAs) or short hairpin 
RNAs (shRNAs) for the treatment of inflammatory 
bowel disease (IBD) (Bao et al. 2021). The NPs were 

Fig. 4   Elaboration on the architecture of pH-sensitive copoly-
mers with proper pHt (A). The mechanism for targeting deliv-
ery of encapsulated drug into bacteria deep into biofilms using 

SCAMs for treatment of implant-related biofilm infections (B). 
Reprinted from (Guo et al. 2021a, b, c) CC BY 4.0
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prepared by the emulsion-based method and their 
size ranged from 265 to 285 nm. The NPs prepared 
by this method exhibit high load of SNX10-shRNA 
plasmids (SRP). To assess their efficiency in  vivo, 
the chronic IBD mice were treated with SRP-loaded 
NPs and a control. The IL-1β, TNF-α, and IL-23 lev-
els were decreased, therefore, it prevents reduction in 
the mice body weight. The authors proposed that the 
anti-inflammatory effect of NPs induced by signaling 
pathways in epithelial cells.

NPs for peptide delivery

Peptides are an important class of bioactive com-
pounds that required encapsulation for the preser-
vation of their biological activity. For this purpose, 
core–shell NPs composed of poly(ethylene oxide)-
poly(lactide) were used for encapsulation of gluta-
myl-cysteinyl-glycine (GSH), and their properties 
were compared with particles made from cholesterol 
and sorbitan monostearate (Span 60) (Ghorbani-
zamani et  al. 2021). The particles were prepared by 
dispersion of copolymers or lipid with surfactant dis-
solved in the proper solvent, in phosphate-buffered 
saline (PBS). The size of GSH-loaded particles was 
148 and 90 nm for copolymeric and cholesterol/Span 
60, respectively. The high encapsulation efficiency 
was achieved, however the release of GSH was rela-
tively low, both in the physiological and acidic con-
ditions. As a result of NPs action in HeLa (cervical 
cancer) and U87 (human glioblastoma astrocytoma) 
cells, a significant decrease of glycation end products 
and beta-sheet formation was observed, nevertheless 
more efficient were those built from cholesterol/Span 
60.

In addition, the copolymers of zwitterionic poly(d-
glucose carbonate) and semicrystalline polylactide 
were used for encapsulation of insulin and insulin 
glargine (Elsabahy et al. 2021). The authors proposed 
an interesting approach in which the control over the 
morphology of nanoassemblies was achieved by vary-
ing the block length in copolymers. As a result, three 
distinct morphologies could be obtained: spherical, 
cylindrical, and platelet-like. The binding of insulin 
to the nanoparticles was confirmed by gel retardation 
assays and the highest value was obtained for platelet-
like NPs. The obtained NPs were biocompatible, and 
their uptake depended on their size and shape, not-
withstanding the cell type also should be considered. 

The in  vivo test in diabetic rats indicated that insu-
lin-loaded NPs exhibit better hypoglycemic activity 
than free insulin. However, the cylindrical NPs were 
the most effective ones. Therefore, the control over 
the morphology of NPs could be a good tool for the 
improvement of the pharmacological availability of 
insulin.

PLA for bone regeneration

PLA is often chosen as a matrix for bone repair 
purposes (Naseem et  al. 2021). In this regard, 
β-tricalcium phosphate/poly(l-lactic acid) (TCP/
PLLA) scaffolds with incorporated zinc ions were 
proposed for bone healing (Huang et  al. 2021a, b, 
c). The in vitro and in vivo assays confirmed that the 
presence of Zn2+ from the scaffolds was able to pro-
mote differentiation of periosteum-derived progenitor 
cells (PDPCs) and transition from M1 to M2 mac-
rophages. As a result, the implanted scaffolds (5% 
Zn group) participate in bone regeneration in  vivo. 
Moreover, the scaffolds were biocompatible and no 
side effects in organs were observed. In addition, the 
PLA composite fracture fixator with the addition of 
vancomycin cationic liposome was tested for its abil-
ity to suppress the bacterial growth and for reduc-
tion of antibiotics toxicity (Cai et al. 2021a, b). The 
in vitro drug release test showed sustained vancomy-
cin release that could decrease the damage to fibro-
blasts. The inhibition zone of composite against E. 
coli and S. aureus showed their beneficial antimicro-
bial properties. The cell adhesion studies on MC3T3-
E1 (mouse bone) cells revealed superior properties 
of the composite in comparison to pure PLA, and as 
a result, increased proliferation was observed. Addi-
tionally, the composite exhibits a better osteogenic 
effect due to lowering of the inflammatory effect after 
implantation of the scaffold. The multi-component 
composite system consisting of chitosan (CS)-coated 
polytrimethylene carbonate (PTMC)/polylactic acid 
(PLLA)/oleic acid-modified hydroxyapatite (OA-
HA)/vancomycin hydrochloride (VH) was proposed 
by Zhang et  al. (He et  al. 2021). In this contribu-
tion, the VH-loaded microspheres were prepared by 
emulsion technique, and their properties were com-
pared with PTMC/PLLA, PTMC/OA-HA composite 
microspheres. The sustained release of the drug was 
obtained and almost all of the drug was released from 
the interior of the microspheres after 30  days. The 
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incubation of microspheres with osteoblast cells indi-
cated their favorable biocompatibility. The alkaline 
phosphatase (ALP) activity of MC3T3-E1 preosteo-
blast cells cultured on the obtained scaffolds showed 
the increased activity. Therefore, it could be postu-
lated that the proposed microspheres can promote 
bone regeneration. Although, the in  vivo tests were 
not performed.

The copolymers of PLA with ε-caprolactone (Rad-
wan et  al. 2021) with poly(ethylene glycol) (Tang 
et  al. 2021) were also used as materials for enhanc-
ing bone regeneration. In the first contribution, drug-
loaded poly (L-lactide-co-ε-caprolactone)/calcium 
phosphate (CaP) composite was prepared via in  situ 
formation of composites powder, in addition, the 
composite without polymer and blank composite 
powder was also prepared. As a drug, the antibiotic 
moxifloxacin hydrochloride (MOX) was added as it is 
used for the treatment of chronic osteomyelitis (OM). 
The obtained material exhibits suitable porosity and 
sustained release of the drug. The prepared scaf-
folds exhibited all typically required properties for 
the materials for bone regeneration, such as improved 
proliferation and differentiation of osteoblast cells, 
antimicrobial effect, and induction of new bone-
cell formation. Therefore, the authors recommended 
their clinical experiments on humans (Radwan et al. 
2021). A different approach was proposed by Zhu 
et al (2021) in which platelet lysate (PL) used for car-
tilage tissue engineering was embedded in PDLLA-
PEG-PDLLA hydrogel. To enhance its delivery, PL 
was encapsulated in NPs composed of heparin (Hep) 
and ε-poly-l-lysine (PLL) and added to the hydrogel. 
This allows for the release of drug-loaded NPs, fol-
lowed by the PL diffusion from the hydrogel matrix. 
The test against IL-1β induced human chondrocytes 
showed that the obtained biomaterials exhibit anti-
inflammatory properties. Finally, ACLT-Induced 
osteoarthritic rats were treated with PL-loaded hydro-
gel and it was shown that the presence of the hydrogel 
allows repairing of the cartilage defect in rats since 
it was filled with soft and friable tissue (Tang et  al. 
2021).

Micro‑sized systems

Microparticles of PLLA were prepared by the emul-
sion-based method for diabetes treatment in animals, 
such as equids, dogs, cats, and rabbits (Bouriche et al. 

2021). Metformin hydrochloride was chosen as an 
active ingredient for diabetes treatment. Due to the 
fact that microparticles were prepared by emulsifica-
tion, the obtained particles exhibit a high dispersity 
index, and their size was ranging from 1 to 55  μm. 
The size distribution can highly influence the drug 
release, thus an alternative methods of particles prep-
aration should be considered in the future. Finally, the 
concentration of the drug in plasma after single-dose 
administration in rabbits was determined after intra-
venous, oral, and oral microparticles solution admin-
istration. The results indicated that PLA micropar-
ticles showed optimal, sustained release of the drug 
and its increased half-life.

Moreover, the microrods of poly(lactide-co-gly-
colide) copolymers were used as DOX carriers (Xu 
et  al. 2021). To obtain such morphology of PLGA 
particles, the one-step electrospray method was used. 
In addition, the DOX-loaded microspheres were also 
prepared to compare the effect on particles morphol-
ogy. Nevertheless, the alteration in processing param-
eters allows for the preparation of different particles 
with varying lengths and diameters; DOX was only 
added to microrods with 16 μm in length and 1 μm 
in diameter and microspheres with a diameter of 
2.95 μm. The cell viability examination indicated the 
superior efficiency of microrods against micropar-
ticles, yet the free drug exhibit higher killing abil-
ity than microcarriers. The difference in efficiency 
between two distinct particles morphology was 
explained by the faster drug release and larger spe-
cific surface area of microrods.

Micro‑film

Poly(l-lactide)-co-poly(ε-caprolactone) copolymers 
were used for the preparation of the micro-film that 
is flexible enough to fit the sclera (Wu et  al. 2021). 
Those films were loaded with triamcinolone ace-
tonide (TA) which is used for adjunctive intraocu-
lar or peri-ocular steroid for the treatment of poste-
riod globe trauma. The blank and drug-loaded films 
were made by spraying on the polyfluortetraethylene 
(PTFE) plate and the obtained materials were dried 
before peeling off the template. The encapsulation of 
the drug in the film allows for its sustained release 
over 200  days. Histology images revealed that there 
was no inflammatory cell infiltration around the film. 



123Cellulose (2024) 31:101–145	

1 3
Vol.: (0123456789)

Subsequently, the in  vivo tests indicated that TA-
loaded film can be implanted during the first phase 
of globe trauma repair and induce the healing of the 
eye with simultaneous degradation of the polymeric 
matrix.

Hydrogels as a drug and DNA/RNA depots

Hydrogels are soft materials that due to their porous 
structure can preserve a large portion of water or 
aqueous solution (Li et  al. 2021a, b, c). Among all 
studied hydrogels, those composed of polyesters are 
widely used since the ester bond can be hydrolyzed 
in an aqueous solution. Typically, the amphiphilic 
block copolymers of hydrophobic lactide or glycolic 
acid with hydrophilic ethylene glycol are proposed 
for their preparation (Basu et al. 2016). In this regard, 
such hydrogels were recently proposed for photody-
namic nitric oxide (NO) (Sun et  al. 2021a, b, c) or 
gene carriers (Kim et al. 2021) for cancer therapy and 
colitis treatment (Guo et al. 2021a, b, c). In the first 
contribution, the poly(lactic-glycolic acid) (PLGA) 
NPs loaded with NO donor l-arginine (l-Arg) pho-
tosensitizer indocyanine green (ICG) were added 
to the poly(ε-caprolactone)-poly(ethylene glycol)-
poly(ε-caprolactone) (PCL–PEG–PCL) hydrogel to 
obtain thermosensitive hydrogels (Sun et  al. 2021a, 
b, c). The rheological test showed that hydrogels 
possess shear-thinning properties that allow for their 
facile injection with syringe. Moreover, encapsula-
tion of NPs in the hydrogel matrix could prolong the 
ICG release which results in increased drug reten-
tion in vivo. Most importantly, after NIR irradiation 
the formation of reactive oxygen species (ROS) is 
induced which subsequently lets to oxidization of the 
l-Arg to produce NO gas. Nevertheless, the hydro-
gels exhibit low cytotoxicity against 4T1 cells; it 
was dramatically changed after NIR irradiation, cell 
apoptosis and necrosis were observed. These supe-
rior properties were further confirmed by in  vivo 
antitumor study which showcased the inhibition 
of tumor growth. Likewise, due to the formation of 
ONNO− at the tumor site, the degradation of col-
lagen was observed which is responsible for tumor 
progression. In the second contribution, the sophis-
ticated spermine-grafted copolymer was synthesized 
(MPEG-b-[polycaprolactone-ran-poly(spermine-l-
lactide)]) to prepare hydrogels as gene depots (Kim 
et al. 2021). This pendant cationic group can form a 

complex with tat3-small hairpin RNA (St3-shRNA) 
which may induce the downregulation of the signal 
transducer and activator of transcription 3. This com-
plex was further used for the in  situ forming hydro-
gel gene depot since the obtain copolymers exhibit 
sol–gel transition at 37  °C. Due to the macromol-
ecules amphiphilic structure, the formed complex 
was stable even after incubation with serum, DNase 
or heparin for a long time. Moreover, the cytotoxicity 
of the obtained copolymer with St3-shRNA was sig-
nificantly lower in comparison with St3-shRNA/poly-
ethylene amine (PEI) which is typically used to form 
a complex with RNA or DNA. The antitumor activity 
was tested after intratumoral injection into mice and 
the volume of the tumor rapidly decreased, especially 
after multiple injections at 3, 6, 9, 12, and 15 days.

Thermosensitive hydrogels composed of poly(d,l-
lactic acid)–poly(ethylene glycol)–poly(d,l-lactic 
acid) (PDLLA–PEG–PDLLA) block copolymers 
were suggested for colitis treatment (Guo et  al. 
2021a, b, c). At the concentration exceeding 11% 
these copolymers form a gel at a body temperature 
and can be used as a depot for mesalazine (5-ami-
nosalicylic acid) which is used for the treatment of 
ulcerative colitis (UC). This strategy allows to avoid 
the burst release of the drug and more than 70% of 
the drug was released after 40 h, independently from 
the hydrogel structure. The cytotoxicity test revealed 
good biocompatibility of the obtained materials. 
Additionally, hydrogel can preserve its structure even 
after 25 days after injection. This reflects in its long-
term shielding function for the used drug and efficient 
treatment of UC. As a result, the treatment of UC 
mouse model with the PDLLA-PEG-PDLLA hydro-
gels loaded with mesalazine induces weight gain and 
symptom relief which confirms that it is a good strat-
egy for the improvement of the UC treatment in the 
future.

In summary, there is an enormous need for the 
design and implementation of PLA-based materials 
in biomedical applications. Notwithstanding the fact 
that these materials have been investigated for a dec-
ade, there is a still place for improvement and novel 
ideas. As it was reported in this review, the main 
effort is put into the applications of PLA-based NPs 
in cancer therapy. The increasing number of in vivo 
investigations paved the way for PLA-based NPs 
for pre-clinical and clinical applications. Neverthe-
less, their utilization for drugs delivery to the brain 
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or applications as gene carriers should be constantly 
developed. Due to their biocompatibility, the PLA 
and its copolymers are also frequently used as mate-
rials for bone regeneration. Moreover, antimicrobial 
agents are also encapsulated by PLA biodegradable 
matrix. However, this usually required the modifi-
cation of the PLA backbone to overcome the draw-
backs of PLA such as brittleness or low sensitivity 
to external stimuli. Although great progress has been 
achieved, there is still a lot of goals that need to be 
achieved for the implementation of this technology in 
the real life, therefore combined efforts from scientist 
from different fields are needed to truly achieve the 
development of PLA-based materials applications.

PLA/Cel systems

Surface modification of cellulose materials

The reactivity of cellulose is associated with the pres-
ence of hydroxyl groups in a macromolecule and their 
availability to reaction which depends on the degree 
of polymer crystallinity. A densely packed structure 
prevents access to the entire volume of reagents, so 
often the basic task before the main modification of 
cellulose is to convert it into swollen form and then, 
possibly, into a dissolved state. The basic and most 
versatile compound that allows to modify the shape 
of macromolecules in cellulose is sodium hydroxide, 
due to which with the right selection of modification 
time, solution concentration and temperature, the pro-
cess of relaxing and rebuilding cellulose structure can 
be controlled. A wide review regarding cellulose sol-
vents based on aqueous sodium hydroxide solutions 
was published by Budtova and Navard (2016). One 
of the effects of NaOH processing is a change of the 
form of crystalline cellulose into the crystalline form 
of cellulose II, which is also called regenerated cel-
lulose. The process of treating textiles with aqueous 
solutions of sodium hydroxide is called mercerization 
and can be conducted with or without tension, which 
involves different physicochemical properties, such as 
mechanical strength, gloss, crystalline degree, inter-
nal fiber orientation, dyeing ability, and susceptibility 
to enzymatic hydrolysis (Roy Choudhury 2017). For 
these reasons, clothing made of mercerized cotton fib-
ers is characterized by greater durability and comfort 
of use. During the mercerization, due to the effect of 

relaxation (swelling) of the fiber, there is also a possi-
bility to implement active substances inside the fibers 
and thus obtain functional textiles. With this method, 
chitosan was entrapped (Grgac et  al. 2020). In this 
paper a standard cotton woven fabric and cotton/poly-
ester blended fabric were utilized. In the first stage, a 
bath in an aqueous solution of 20% sodium hydrox-
ide was used with a surfactant at 25  °C. In the sec-
ond stage, the bath consisted of chitosan powder with 
the addition of citric acid, sodium hypophite mono-
hydrate, and detergent was prepared. Subsequently, 
the fabrics were rinsed and neutralized to neutral pH. 
The last stage was drying and conditioning (curing). 
Fabrics prepared in this way and washed 5 times con-
tinued to show antimicrobial effects. Interestingly, 
the efficiency in fighting Candida was observed only 
in the case of blended fabric, which suggests that 
not only chitosan and accompanying agents have an 
impact on the activity of created material, but also 
its base structure, the presence of both polyester and 
hydrolysis products of polyester fibers, which prob-
ably appeared as a result of NaOH processing.

The mercerization process can be developed with 
cationization, the method widely described in the 
literature (Correia et  al. 2020). It is a chemical pro-
cess using quaternary ammonium compounds (called 
QACs or quats), which causes a change in the surface 
load from negative to positive, which is mainly used 
to increase the efficiency of dyeing textiles with ani-
onic dyes and allows for reduction of the amount of 
salt (sodium chloride, NaCl) during the process. It 
applies to both native and regenerated cellulose fibers 
(Periyasamy 2016; Dong et  al. 2020). Cationization 
during mercerization means affecting textile mate-
rial with ammonium salt without prior flushing from 
a mercerizing solution and then put off for aging in 
plastic bags for 24 h (Tarbuk et al. 2014a). As a result 
of combined mercerization and cationization pro-
cesses, etherification of cellulose II and significantly 
increased water adsorption occur, and surface-active 
agents and dyes indicate that the number of available 
hydroxyl groups exceeds the results of mercerization 
alone (Tarbuk et al. 2014b).

In the above examples, the authors focus on 
ammonium compounds mainly as auxiliary agents in 
the dyeing industry, whereas quats play a significant 
role in medicine as disinfectants, antibacterial, anti-
fungal, and antivirus (Rutala and Weber 2015). For 
this reason, attempts are made to use their properties 
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to modify textiles and assess their functionality, 
although the use of quats in wound dressing can be 
disputable due to a strong, negative impact on the 
environment and living organisms (Nałecz-Jawecki 
et  al. 2003; Zhang et al. 2015). H. Han developed a 
cotton fabric cover with Dimethyl Dodecyl [3-(Tri-
methoxysilyl) propyl] Ammonium Chloride (CDDA) 
and showed that the antibacterial activity of cotton 
increases with CDDA concentration. At the same 
time, it was stated that the comfort of use is reduced, 
including increased hydrophobicity of the surface, 
stiffness, and roughness of the fabric. What is more, 
the antibacterial effect systematically decreases after 
washing in anionic detergents. To avoid undesirable 
effects, modified L-Arginine with Carbon–Carbon 
double bond (M-Arg) was added. Both compounds, 
CDDA and M-Arg were grafted on the surface of cot-
ton as a result of polycondensation and free radical 
polymerization respectively, thus covers resistant to 
multiple laundries were obtained (Han et al. 2020).

Ammonium salts are used as agents for prepar-
ing material for further modification. Research from 
2017 on modified gauze cationically and anionically 
with the addition of silver nanoparticles and oxytet-
racyline hydrochloride showed the usefulness of pre-
treated gauze with a cationizing agent for wounds, 
while gauzes modified anionically worked on inflam-
mation of the skin (Rehan et al. 2017). This was due 
to the different behavior of the material in different 
pH environments. In addition, the profile of releas-
ing the drug from "cationic" gauze was characterized 
by the lack of initial rise as opposed to the "anionic" 
version. These results were used by Montaser to pre-
pare gauze modified with 3-chloro-2-hydroxypropyl 
trimethyl ammonium chloride (Quat 188), nanosil-
ver and oxytetracyline hydrochloride and then cov-
ering it with salicyl-imine-chitosan biopolymer by 
exhausting method (Montaser et  al. 2020). In  vivo 
studies in rats have shown that although a cationized 
gauze with the addition of silver and oxytetracycline 
has greater efficiency in the treatment of burns than 
classic gauze (area of damaged skin after 12 days of 
therapy decreased by respectively- 50.8% and 32%), 
but it is still less effective than ointment available on 
the market (Dermazin®). However, it was matched 
by a gauze covered with a biopolymer (change of 
burns- 91.2%).

The modification of the cotton surface of gauze 
cationically and anionically was an introduction to 

applying hydroxyapatite (Hap) and silver nanoparti-
cles (Ag NP) with ginger oil (Said et al. 2021). Cati-
onic modification is based on the ultrasonic bath of 
gauze samples with the addition of chitosan and then 
conditioning them at increased temperature. The ani-
onic modification method consists of partial carboxy-
methylation using monochloroacetic acid preceded by 
mercerization. These procedures improved HAp and 
Ag NP deposition on the cotton gauze. Notwithstand-
ing, increased color, UV protection, and antimicrobial 
features were obtained by deposition of silver nano-
particles contrary to hydroxyapatite, and the study 
showed that the pretreatments influenced uniform-
ity of silver active layer and number of implemented 
NPs.

Compatibilization of cellulose materials with a 
hydrophobic polymer

To introduce hydrophilic cellulose material compat-
ibility with a hydrophobic polymer, cellulose surface 
properties are modified, both in the form of macro 
and nanocellulose (Bledzki 1999; Ng et  al. 2017). 
The expected durability of the combination of both 
materials decides the choice of modifications. In the 
case that the composite is to be used under mechani-
cal load, compatibility based on chemical reactions 
and the production of durable covalent bonds between 
polymers will ensure more durability. In the case of 
materials with a short life cycle and used in a non-
destructive environment (not only mechanically, but 
also chemically), probably simple physical methods 
of joining polymers, such as impregnation, are suf-
ficient. The second issue to consider is the purity of 
the material for medical applications, which can be 
achieved by using only safe substances for the pro-
duction and depriving it of the remains of auxiliary 
agents, which with longer exposure can show an 
irritating or pathogenic effect. Therefore, not every 
solution used in the production of composites and 
combining cellulose with a hydrophobic polymer is 
suitable for regenerative medicine due to the lack of 
compatibility with the living organism.

Physical methods include stretching, calender-
ing, thermal energy interaction, electrical discharges 
(crown, low-temperature plasma), mercerization, 
adsorption using the layer-by-layer method or liquid 
or gels—impregnation from dispersion or polymer 
solution compatible with a hydrophobic surface.
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Chemical methods include:

•	 Anionic and cationic modifications to give specific 
electrostatic properties and improving the durabil-
ity of the then-applied functional layers (Kittinao-
varat et al. 2012; Sharma and Sayed 2016)

•	 Esterification with compounds containing acetyl 
groups.

•	 Applying coupling agents—substances forming 
network interfacial areas increasing wetting by 
changing the surface tension of substrates or creat-
ing covalent bonds simultaneously with cellulose 
fiber and hydrophobic polymer.

•	 Hydrophobization of cellulose material
•	 Grafted copolymerization.

The division of methods was based on classifica-
tions available in the literature, despite that it is worth 
noting that it is largely conventional, because often 
the same modification technique can be classified into 
more than one method (Table 4).

Compatibilizers and compatibilizing agents are 
layers with intermediate properties between poly-
mers. Through their presence, the properties of inter-
facial space in mixtures of materials of various char-
acteristics change. Such materials can be copolymers 
consisting of two polymers intended for connection 
in the composite. Coltelli presented a proposal for 
the comb-like synthesis of copolymers of cellulose 
acetate (AC) and oligo(lactic acid) with different 
OLA proportions using a binding agent with die-
poxide (EJ40). The study has shown that cellulose in 
compatibilizer has been partially deacetylated, and 
the proportion of OLA is not that significant for the 
copolymer properties, but more for the ease of obtain-
ing it. The activity of the compatibilizer in blends 
of PLA and AC fibers was confirmed in endurance 
tests. Change in strength was based on a significantly 
increased Young module, which suggests increased 
adhesion of composite components (Coltelli et  al. 
2021).

The coupling agents, similarly to compatibilizers, 
operate in the interface spaces of composites. In this 
case, the increase in matrix adhesion and strength-
ening are obtained due to the presence of functional 
groups and their ability to produce chemical bonds 
with substrates. In cellulose-polylactide composites, 
silanes are the most common for medical purposes 
(Ghalia and Dahman 2017).

Chitosan is a common, natural polymer used to 
modify the surface of cellulose materials. Due to the 
antibacterial, antimicrobial, antioxidant, and anti-
inflammatory properties, as well as the ease of modi-
fication due to the presence of hydroxyl and amine 
functional groups, it is a source of interest in the area 
of regenerative medicine, and is also considered as 
a drug carrier (Aranaz et  al. 2021). When playing a 
role of a surface modifier chitosan and its derivatives 
is most often implemented by impregnation or pad-
dry-cure method (Said et  al. 2021), as well as cel-
lulose esterification (QingBo Xu et  al. 2017, 2018a, 
b, 2019). The coating technique has been used in a 
chitosan hydrogel deposition as a functional layer 
on cotton fabric (Benltoufa et  al. 2020). The cotton 
substrate has been pretreated cationically and anioni-
cally. The cationic groups were created by dyeing the 
samples with a polyazo dye and then reducing with 
sodium dithionite in an alkaline environment. The 
anionization occurred through the acetylation of cel-
lulose with chloroacetic acid.

Role of the TEMPO

TEMPO, or (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, 
is radical for the production of nanocellulose by the 
"top-down" method by changing the load of electro-
static forces occurring between microfibrils (Wąchała 
et  al. 2011). As a result of cellulose oxidation, car-
boxylic groups are formed in the C6 position, which 
opens the way for further modifications. In the medi-
cal industry, oxidized cellulose (OC), both type I 
(natural) and II (regenerated) is produced by oxida-
tion with nitric oxide and is used, among others, to 
produce absorbable haemostatic gauze and absorb-
able surgical threads. The haemostatic effect appears 
because the acid carboxylic group combines with the 
Fe3+ ion in hemoglobin, and thus accelerates the for-
mation of a clot and clogging of bleeding (Lao and 
Deng 2021). TEMPO-oxidized cellulose, and above 
all TEMPO-oxidized bacterial cellulose can be a 
medium to implement antibacterial substances, such 
as silver nanoparticles (Ifuku et  al. 2009; Wu et  al. 
2018) or silver sulfadiazine (AgSD) (Khattak et  al. 
2020); for the silver cations can permanently connect 
ionically with the anionic surface of cellulose. Cheng 
et al. (2017) gives the method of producing TEMPO-
oxidated cellulose nanocrystals: the CN water disper-
sion is subjected to ultrasound bathing for 15  min. 
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Table 4   Recent development of compatibilization of cellulose with polylactide and other hydrophobic polymers for different 
approaches

Recent development of compatibilisation of cellulose with polylactide and other hydrophobic polymers for different approaches

References

Chemi-
cal

Cationisation and anionisation  QUACs acting as surfactant (Pal et al. 2019)
 Viscose fabrics oxidized with TEMPO or coated with TEMPO-oxidized cellulose 

nanofibrils (Korica et al. 2021)
 Bacterial cellulose modified anionically with poly(acrylic acid) using “grafting 

from” technique to crosslink with cationic chitosan (Khamrai et al. 2017)
Esterification  Cellulose nanocrystals esterified with maleic anhydride (CNCMA) which resulted 

in higher stability of the cellulose nanoparticles in aqueous suspensions, lower 
thermal stability and higher surface hydrophilicity of created Cel/PLA composite 
(Parize et al. 2017)

 Cellulose nanocrystals (CNCs) modified using immobilized lipase (Novozyme 
435) to catalyze the formation of laurate ester groups on the CNC surface (Yin 
et al. 2020)

 One-step modification of both Fischer esterification and acid hydrolysis of cel-
lulose (Spinella et al. 2015)

 Cellulose nanofibrils (CNFs) modified by catalyzed lactic acid esterification in an 
aqueous medium with SnCl2 as a catalyst (Lafia-Araga et al. 2021)

 Esterification using valeric acid (Shojaeiarani et al. 2019)
 A site-specific reaction between the primary surface hydroxyl groups (C6-OH) of 

cellulose and acyl imidazoles (Beaumont et al. 2021)
Compatibilizers  Cellulose triacetate/PLLA graft polymers synthesized in the presence of 1,8-diaz-

abicyclo(5.4.0)undec-7-ene (DBU) (Volokhova et al. 2019)
 Long-chain hyperbranched polymers (LCHBPs) (Huang et al. 2022)
 oleic acid as compatibilizer in a catalyst-free esterification of cellulose oxalate 

(COX) and microcrystalline cellulose (MCC) (Huang et al. 2021a, b, c)
 Cellulose Acetate-grafted-Poly(l-lactic Acid) (CA-g-PLA) (Choi et al. 2020)
 Comb-like copolymers of cellulose acetate (AC) and oligo(lactic acid) OLA 

prepared by chemical synthesis in solvent or reactive extrusion in the melt, using 
diepoxide as the coupling agent for compatibilizing poly(lactic acid)/plasticized 
cellulose acetate PLA/pAC blends (Coltelli et al. 2021)

 Methylenediphenyl diisocyanate (MDI) in microfibrillated cellulose (MFC)/PLA 
composite (Lee et al. 2019)

 Bamboo flour grafted lactide (Xin-yu Song et al. 2017)
Coupling agents  Bamboo nanowhiskers modified by silanes (Ma et al. 2019)

 Bacterial cellulose nanofibers modified by silanes in PEG/PLA matrix (Abu 
Ghalia and Dahman 2017)

 Microcrystalline cellulose coated with titanate coupling agent as a reinforcement 
of PLA filament for 3D printing (Murphy and Collins 2018)

 Maleic anhydride (MA) grafted PLA (MA-g-PLA) (Mohd Ghazali and Pickering 
2021)

 SiO2 /silanes coupling compounds for jute/PLA composites (Xueyang Song et al. 
2022)

Grafting  Oligoesters containing reactive end groups based on poly(dl-lactic acid) PDL-
LA, poly(ε-caprolactone) PCL and poly(3-hydroxyalkanoate)s PHA grafted on 
cellulose via estherification (Samain et al. 2011)

 Grafting of polylactide (PLA) onto the cellulose nanofiber (CNF) (CNF-g-PLA) 
prepared by in situ reactive extrusion using dicumyl peroxide (DCP) as a free 
radical initiator (Li et al. 2021a, b, c)

 CNC’s surface modified by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radi-
cal) oxidation method followed by surface grafting of TEMPO-oxidized CNC 
(TOCNC) performed with poly(ethylene glycol) (Pal et al. 2019)
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Then, the aqueous solution of the TEMPO and 
sodium bromide gradually drops into the liquid with 
cellulose, and subsequently, a 12% solution of NaClO 
sodium hypochlorite is added to start oxidation. The 
pH of the mixture (10.8) is controlled using NaOH. 
The reaction ends with the addition of 1 ml ethanol 
and hydrochloric acid reducing the pH value to 7. 
Finally, modified crystals are rinsed several times in 
distilled water and dried to the form of powder. Such 
modified material was used to produce composite 
dressings with sodium alginate to support hemostasis 
processes. The evaluation was carried out on a rabbit 
model of a liver wound and an ear wound by meas-
uring the volume of lost blood and coagulation time. 
Pure alginate dressing and classic gauze were used as 
reference points. Both in the case of dressings in the 

form of a film and dressings in the form of sponges, 
new composites have shown significantly better effec-
tiveness in stopping blood loss compared to gauze 
and pure sodium alginate, regardless of the percent-
age of modified nanocrystals in the dressing volume. 
The volume of bleeding was correlated, also time of 
bleeding was significantly shorter in the case of com-
posite dressings. On the other hand, the differences 
in effectiveness in relation to the dressing structure 
(sponge/film) turned out to be relatively small, so it 
can be assumed that the presence of TEMPO-oxycel-
lulose plays the greatest role in hemostatic processes.

Table 4   (continued)

Recent development of compatibilisation of cellulose with polylactide and other hydrophobic polymers for different approaches

References

Hydrophobisation  Alkyl ketene dimer (AKD) as bonding agent between cellulosic fiber and PLA 
matrix (Caylak et al. 2021)

 Octyl gallate (OG), dodecyl gallate (DG), and octadecyl gallate (OCG) grafted 
onto the jute fabric, which were mediated by horseradish peroxidase (Dong et al. 
2021)

 Alkylation of cellulose nanocrystals with alkyl bromide (Lee et al. 2020)
 Hydrophobisation of bamboo nanocellulose using rarasaponins for drug carrying 

(Wijaya et al. 2020)
 Modification of jute fabrics via horseradish peroxidase (HRP)-catalyzed covalent 

grafting of butyl acrylate (BA) and 2,2,3,4,4,4-Hexafluorobutyl methacrylate 
(HFBMA) (Huimin Wu et al. 2017)

 Microcrystalline cellulose (MCC) modified using toluene-2,4-diisocyanate (TDI) 
in tetrahydrofuran (THF) (Olonisakin et al. 2021)

Physical Mixing  Blends prepared by mixing polylactic acid (PLA) in Cellulose triacetate and 
foamed by supercritical CO2 (ScCO2) (Zhang et al. 2021a, b)

 PLA/cellulose nanofibrils composite nanofibers made from chloroform solution 
by electrospinning (Yang et al. 2019)

 Cellulose nanofibers CNF/PEG masterbatch as a compatibilizing medium for 
melt-mixing with PLA (Safdari et al. 2017)

 An aqueous CNF-based suspension in the presence of poly(ethylene glycol)for 
melt compounding with PLA (Cailloux et al. 2019)

Coating  Sisal fibres coated with bacterial cellulose nanofibres through dipping method 
(Lee et al. 2012)

 PLA coated on the Surface of alkaline or silane-treated flax fiber surfaces via a 
solution dipping process (Kodal et al. 2015)

 The surface modification of flax fibers by lignin and tannin solutions performed 
using a dip-coating method (Bayart et al. 2020)

 Bacterial cellulose coated with PLA and benzalkonium chloride for acute wound 
healing approaches (Foong et al. 2018)

Plasma treatment  Cellulose thin layers treated with oxygen plasma and immersed in a L-lactide 
solution for grafting under different conditions (Couturaud et al. 2015)

Additive manufacturing (3D printing)  PLA filament printed directly on washed and unwashed cotton fabric of various 
structures (Gorlachova and Mahltig 2021)
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Grafting and polymerization

An interesting idea is the combination of cellulose 
and polylactide in a simple way, by grafting of poly-
mer or monomer polymerization on surface of the 
other, thus obtaining a durable, hybrid material with 
resultant properties of both components. In the pre-
vious chapter, several examples of such materials are 
given as compatible with PLA/Cel composites, how-
ever they can be used as the main product subjected 
to subsequent functionalization, both structural and 
surface. Due to the ease of creating polylactide pol-
ymer, it is usually cellulose that is the basis for the 
polymerization of lactide and the grafting of poly-
lactide. The function of the polymerization initiator 
is most often performed by hydroxide groups of cel-
lulose molecules. On the other hand, a typical cata-
lyst for the polymerization of a lactide is the stannous 
octoate (SnOct2), although its use in medical applica-
tions can be a problem due to cytotoxicity and diffi-
culty with rinsing out of the resulting material (Tanzi 
et  al. 1994). Hence, new catalysts are proposed, 
such as zinc L-proline (Giram 2021), zinc guanidine 
(Hermann et al. 2020), or complexes of other metals 
(Bhattacharjee et al. 2021). Cellulose as a base occurs 
in various forms: nanoparticles (crystals and fibrils), 
fibers (for example cotton fibers), yarn, mat, foil, 
and woven or knitted textiles. The higher the degree 
of cellulose processing, the greater the challenge is 
to connect a polylactide to it without a byproduct in 
the form of a free polymer. An emphasis on cellulose 
modification for grafting was placed by Zhou in a 
short overview (Zhou et al. 2021).

In the last decade, there were few publications 
about modeling PLA/Cel material using grafting 
and/or polymerization. Y. Zhang conducted in  situ 
graft copolymerization of cellulose-g-PLA and 
then directly melt-spun fibers to investigate their 
mechanical properties. The reaction medium was 
1-allyl-3-methylimidazolium chloride ([AMIM]Cl) 
and tin(II) octoate worked as an initiator (Zhang 
et al. 2014). Cellulose in form of nanocrystals was 
surface modified by grafting L-lactide in toluene 
for better dispersion in hydrophobic polymer matri-
ces. The shape of nanocrystals remained unchanged 
after modification (Peltzer et  al. 2014). Another 
example is poly(lactic acid) grafted cellulose 
nanofibers (PLA-g-CNFs) achieved via ring open-
ing polymerization in toluene/acetone dispersion, 

also with tin(II) octoate as initiator. The main 
goal was an improvement of tensile and strength 
properties of such fibers blended with pure PLA 
matrix for the purpose of filaments for 3D printing 
(Dong et al. 2017). In a previous study, Braun et al. 
(2006) shows that better mechanical properties are 
obtained when at the stage of polymerization, lac-
tide is mixed with already-made polylactide. The 
experiment contained three variants: (1) cotton 
fiber mixed with a commercial PLA without addi-
tional polymerization of lactide, (2) fiber on which 
the lactide was polymerized, (3) fiber at the same 
time mixed with a high molecular weight PLA and 
polymerized with lactide. The catalyst was tin (II) 
octoate with co-catalysts titanium (IV) isopropoxide 
(TIP) and triphenylphospine, (PPh3). The polym-
erization process was preceded by 6-h pretreatment 
of cellulose fibers in the 8 WT solution of sodium 
hydroxide at 37  °C. The fibers were partially 
destroyed, but at the same time increased porosity 
and thus increased availability of hydroxyl groups 
on the surface was obtained.

At the nanoscale CNC-PLLA nanomaterials were 
synthesized via in  situ ring-opening polymeriza-
tion of l-lactide in the presence of CNC, resulting 
in a hydrophobic, homogeneous mixture of PLLA-
grafted-CNC and free PLLA homopolymer. Free 
PLLA acted as an agent against aggregation of 
PLLA-g-CNC and compatibilizer in mixtures with 
other polymers (Miao and Hamad 2016). In this 
case, the catalysts were SnOct2 or ZnO and the ini-
tiator was benzyl alcohol.

When discussing mixing cellulose derivatives 
and polylactide, Luan et al. (2013) proposes a”one-
pot” thermoplastic cellulose acetate-graft-poly(l-
lactide) copolymer using unmodified cellulose. In 
this process, firstly cellulose is acetylated with ace-
tic anhydride in an ionic liquid 1-allyl-3-methylimi-
dazolium chloride (AmimCl), secondly, in the same 
solution, ring-opening graft copolymerization of 
L-lactide is carried out from the residual hydroxyl 
groups of CA as initiators using 4-dimethylamino-
pridine (DMAP) as the catalyst. The same environ-
ment of all processing stages can simplify the modi-
fications, reduce costs, and improve control over 
reaction conditions.
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3D printing

Both cellulose and its derivatives and polylactide can 
be a medium to 3-dimensional printing (3DP), alone 
or with other components. Although dressings and 
formulations for topical skin management made with 
3DP technology have strong representation in scien-
tific literature, there is still a lack of solutions based 
on polylactide alone or PLA/Cel systems. Nonethe-
less, there are available filaments for Fused Deposi-
tion Modelling (FDM), which are in fact cellulose 
reinforced polylactide composites (Wang et al. 2018). 
De Oliveira in his review dedicated to 3DP dressings 
describes only the printing of nanocellulose and does 
not mention polylactide (de Oliveira et al. 2021). As 
mentioned in previous chapters, PLA at the moment 
seems not to be a first-choice dressing material, 
although it is worth emphasizing that it serves well in 
other fields of regenerative medicine. The effective-
ness of the use of 3D objects made of polylactide has 
already been summarized and evaluated clinically, 
although long-term assessments are still needed. The 
trials were mainly aimed at surgical purposes (Diment 
et  al. 2017). Despite all of the above, there are new 
solutions in 3DP for wound healing with PLA playing 
an important role. For example, in composition with 
flexible thermoplastic polyurethane (TPU), it was 
proposed as filament for the production of antibacte-
rial wound dressings using the Fused Filament Fab-
rication (FFF) with the addition of antibiotic (amika-
cin) (Szarlej et al. 2021). Mesh made of PLA filament 
pre-mixed with lignin, tetracycline, and the addition 
of curcumin was designed for wound dressing and 
showed the influence of structural dimensions on cur-
cumin permeation. These observations may allocate 
mesh for custom-made dressings (Domínguez-Robles 
et al. 2019). Another solution for tissue engineering is 
a composite scaffold, where different amounts of pol-
ylactic acids are printed on bacterial cellulose mem-
branes to precisely construct PLA layer structure. 
Controlling printing parameters would result in better 
cell adhesion and proliferation (Wu et al. 2022).

On the other hand cellulose and its derivatives 
such as methylcellulose, hydroxypropyl cellulose 
(HPC), ethylcellulose (EC), hydroxypropyl methyl-
cellulose acetate succinate (HPMCAS), and micro-
crystalline cellulose were reviewed as suitable poly-
mers for applications in 3DP drug delivery systems 
(Giri et  al. 2021). In the case of dressing or wound 

healing, nanocellulose, methylcellulose, and their 
blends with other components are bioinks/resins serv-
ing as a printable base for active additives in smart 
hydrogel bandages (Tsegay et al. 2022).

When discussing binding PLA with cellulose in 
one hybrid dressing material, where one serves as 
ink and the other as a substrate, the adhesion between 
these two polymers is still under consideration. Gorla-
chova and Mahltig (2021) tested the adhesive proper-
ties of 3D objects made of polyamide 6.6 (Nylon) and 
polylactide applied on 6 different cotton fabrics. The 
samples were characterized by determining rough-
ness by laser scanning microscopy and hydrophilicity 
by drop test. To determine adhesion, a perpendicular 
test was used, by measuring the force needed to sepa-
rate printed objects from a substrate. In the case of 
polylactide, the results show that the speed of print-
ing influences adhesion, which rises after a lower 
speed, whereas the temperature of the filaments is 
significantly opposite to the relatively low impact of 
the temperature of the printing table. Adhesion also 
changes depending on the preparation of the initial 
fabric (by washing or not), as well as the thickness 
and structure of the sample—thicker cotton shows 
greater binding to the polylactic filament, which is 
related to the distance of the substrate from the print-
ing head. Thicker samples are compressed during 
printing, which makes a liquid polymer mechani-
cally stick into the fabric structures. A similar corre-
lation occurs in the case of substrate weight per area 
parameter. The greater mass promotes the increase in 
adhesivity. To summarize, the authors indicate that in 
each case of Nylon, the adhesion of print was greater 
compared to PLA printing, due to the greater hydro-
phobicity of PLA, and thus less compatibility with 
hydrophilic cotton.

The direction of printing is also important in 
obtaining a better binding of printed polylactide 
with a cotton substrate. In tests of filling directions, 
the force needed to break the coating printed at an 
angle of 45° was 75% greater compared to the coating 
printed at an angle of 90° (Redondo et al. 2020).

PLA/Cel nanocomposites

The term nanotechnology has been known since the 
1970s and is used to consider materials and mate-
rial engineering methods that can be achieved with 
nanometric precision. From the beginning of the 90 s, 
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a part devoted to the treatment of people and main-
taining health separated and was called nanomedi-
cine (Freitas Jr 1999). In the case of the treatment of 
wounds, nanotechnology proposes NPs with proper-
ties supporting wound treatment to classic dressings, 
the production of controlled drug carriers, as well as 
completely new structures such as scaffolds, nanofib-
ers, foams, and thin films (Stoica et al. 2020a). Cel-
lulose nanocrystals and cellulose nanofibrils were 
discussed as hydrogels for medical applications such 
as drug delivery, tissue engineering, and wound heal-
ing (Du et al. 2019). Nanofibers and products made of 
them, such as non-woven, have special properties, a 
large external surface in relation to volume, therefore 
they are an active product and capable of absorbing 
relatively large amounts of liquid from the wound, 
as well as enabling air flow. In this way, the extracel-
lular matrix (ECM) can mimic. They are produced 
mainly by electrospinning, and the raw material can 
be both natural and synthetic polymers, the require-
ment is to obtain a solution/spinning fluid with appro-
priate parameters. In nanofibers dressings, substances 
from plants such as oils, extracts, or clean compounds 
are often implemented (Table 5) (Fatehi and Abbasi 
2020). This mainly improves antimicrobial and anti-
bacterial protection. Other active substances imple-
mented in the nanofibrous membranes are peptides 
and metals (gold, copper oxide, silver, zinc oxide), 
and their performance can reduce the consumption of 
antibiotics (Zhang et  al. 2022). However, antibiotics 
are still in use. PLA nanofibers containing hydroxy-
propyl methylcellulose (HPMC) and tetracycline 
hydrochloride (THC) were solution-blow spun to 
create material effective against bacteria E. Coli and 
Listeria monocytogenes. Interestingly, the addition 
of HPMC improved the antibacterial activity of the 

material compared to neat PLA nanofibers (Bilbao-
Sainz et al. 2014)).

An example of nanocomposite dressing is nanofi-
brous mats made of a mixture of polylactide and cel-
lulose acetate. In addition, the antimicrobial agent, 
thymoquinone (TQ) was implemented into the scaf-
folds for protection from infections and acceleration 
of healing properties (Gomaa et al. 2017). Nanocom-
posite coating of PLA matrix and 3 active materials 
(zinc oxide and copper nanoparticles and tranexamic 
acid) were developed on conventional sterile cot-
ton gauze and investigated for inhibiting the growth 
of bacteria S. aureus and E. coli (Molapour Rashedi 
et al. 2021). In another study, asymmetric multilayer 
polylactide nanofiber (AMPN) mats were prepared 
and a one-sided and prolonged release profile of 
hydrophilic dye or oxaliplatin was observed. Such a 
solution was aimed at post-surgical anti-cancer ther-
apy (Liu et al. 2015). Multilayers were designed and 
objected to delaying drug release and one external 
PLA film prevented the dressing from adhering to the 
tissue. This non-porous film also protects from unde-
sirable drug release and its unintended spread.

Conclusions

Present-day needs for wound treatment have 
increased with growing knowledge of the human 
body and developing technology. The importance 
is not only in protection from external factors, and 
just absorbing exudation with some antimicrobial 
additives, but in full replacement of lost tissue and 
an environment that would be friendly for recovery. 
Multiple solutions are offered for these purposes, 
including attempts to create custom-made prod-
ucts, answering individual issues, or semi-finished 

Table 5   Plants for implementation in wound dressings

Types of plants for implementation in wound dressing (according to Fatehi)
 Extracts Centella asiatica, sorghum, spirulina, green tea, Coptis chinen‑

sis, Hypericum perforatum, soursop, Melilotus officinalis, gum 
arabic and C. Officinali, gymnema, henna, Tridax procumbens, 
grape seed, Aloe vera, moringa, mangosteen, Zataria multiflora, 
Querqus infectoria, German chamomile, Juniperus chinensis, 
Beta vulgaris, β-Glucan, Biophytum sensitivum, Azadirachta 
indica, Nile, Memecylon edule, and Myristica andamanica

 Essential oils Lavender, cinnamon, Zataria multiflora, lemongrass, peppermint
 Compounds Curcumin, shikonin, alkannin, astragaloside, thymol
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products, which are enriched with medications just 
before use. To summarize, these are supposed to 
be strictly matched dressings with the highest con-
trol of treated areas of the human body. Therefore, 
efforts are made to make old known materials take 
a new form on a quite different scale, measuring in 
macroscale to nanometers, and easy for modifica-
tion. There are two different ways of development. 
One is to improve classical dressings like cotton 
gauze with specific covering layers, the second is 
to create nanomaterial and start building dressing 
from the smallest molecules, gaining unique prop-
erties, not available previously. Cellulose goes both 
ways, so it becomes more versatile than ever before, 
being an active part of drug-releasing systems, scaf-
folds, and wound healing. Moreover, its versatility 
is enhanced by the possibility of producing bacte-
rial cellulose, independent from cotton and other 
plants cultivation, which can burden natural envi-
ronment. Since polylactide is a synthetic polymer 
with a great advantage of being biodegradable and 
biocompatible, it can cover them mostly with the 
exception of conventional dressings. However, this 
may change because research is still being con-
ducted on dressings made mainly of a polylactide 
and its behavior in clinical conditions is assessed. 
As this review pointed out, today PLA plays a sig-
nificant role as drug carrier, especially in cancer 
therapy, as a scaffolds builder, and tissue enhancer, 
although it performs often with other polymers like 
poly(ethylene glycol), which improves its hydro-
philicity. Important results showed that it can give 
additional advantages when left in a wound, even 
for biodegradation.

The question is if there are reasons for joining 
polylactide and cellulose in one product for medi-
cal purposes. Firstly, both can supplement mutual 
deficiencies, which is often seen in composites. 
However, the difficulty appears when thinking about 
the permanent binding of these two polymers due 
to their different affinity to water and sometimes 
due to the need for auxiliaries used for coupling or 
polymerization. The main issue is medical purity 
and the non-toxicity of all components. Secondly, 
their combination can probably enhance mutual 
performance, as showed in described research with 
cotton/polyester fabrics. This may be an opportu-
nity for new dressings trends, where polylactide will 
partly replace also conventional cotton products, 

and enhance their properties to a more proactive 
side.
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