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Abstract  The present study describes the develop-
ment of a novel nano gel of Carboxymethyl Cellulose 
Starch and Alumina (CMC-St/Al2O3) to purify the 
leach liquor of rare earth elements (REEs) minerals 
from Fe(III), which is considered the most contami-
nating metal in the REE liquor. CMC-St/Al2O3 nano 
gel was recognized by different analytical techniques 
such as FT-IR, SEM, TEM, X-ray diffraction, parti-
cle size, and thermal analysis. In a batch study, the 
best conditions for purifying REE from Fe(III) con-
taminants using CMC-St/Al2O3 nano gel were deter-
mined. For an initial concentration of 100  mg L−1, 
97.6% of Fe(III) was efficiently adsorbed onto CMC-
St/Al2O3 after 15.0  min, pH = 2, and 25 °C. Due to 
the competition effect, the sorption efficiencies of 
the binary systems decreased to 68.4%, 72.97%, and 
84.71% for the systems Fe(III)/La(III), Fe(III)/Sr(II), 
and Fe(III)/Cs(I), respectively. 99.9% of Fe(III) is 

eluted by 0.50 mol L−1 H2SO4. The sorption process 
was fitted with pseudo-second-order and the Lang-
muir model based on the error functions: Coefficient 
of determination (R2), Reduced Chi-square (χ2), The 
sum of square errors (SSE), and Corrected Akaike 
Information Criterion (AICc) as well as Residual error 
plots. The sorption process was spontaneous and exo-
thermic. Finally, a CMC-St/Al2O3 nano gel was used 
to separate Fe(III) from the monazite liquor minerals 
and Sela leachate, mineralized from the Rosetta area 
and Gabal El Sela at Halaib environs, Egypt,  with 
efficiencies of 89.03 and 92.7%, respectively.

Keywords  Rare earth minerals · Extraction · Nano 
hydrogel · Fe(III) · Sorption

Introduction

The increasing demand for rare earth elements on the 
world market has led to the necessity of paying more 
attention to primary and secondary resources contain-
ing these elements (Buechler et al. 2019). Iron (III) is 
associated with the rare earth elements in several ores, 
especially those of the two much more common rare 
earth minerals, i.e., monazite and bastnaesite. Also, 
it is associated with spent nuclear fuels, which coex-
ist with other metal ions, like heavy metal ions. This 
may be considered a restriction on the recovery and 
reuse of rare earth elements and heavy metals. The 
efficient separation of Fe(III) from rare earth elements 
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represents a significant step change in the commercial 
production of these elements. As a result, the removal 
of Fe(III) from rare earth element solutions is critical 
(Abu Elgoud et al. 2022). Several techniques, such as 
ion exchange (Zhang et al. 2010), chemical oxidation, 
co-precipitation, electrochemical treatment, extrac-
tion (Abu Elgoud et  al. 2020), membrane filtration 
(Soylak et al. 2010; Agboola et al. 2016; Noel Jacob 
et  al. 2014), reverse osmosis, and adsorption, have 
been studied to remove heavy and precious metals 
from wastewater (Abu Elgoud et al. 2022; Shahr El-
Din et al. 2021). Adsorption guarantees further devel-
opment of its use in removing Fe(III) contaminants 
from liquors in the hydrometallurgical treatment 
of rare earth elements (Ang et  al. 2018). Different 
adsorbents have been used for the removal of Fe(III). 
For example, Shahr El-Din et  al. (2021) employed 
a calcium/alginate-graphene oxide (Ca/Alg–GO) 
nanocomposite for the removal of Fe(III), U(VI), 
and Th(IV) from rare earth chloride liquor. Their 
studies reported that the maximum sorption capaci-
ties of the Ca/Alg–GO nanocomposite for Fe(III), 
U(VI), and Th(IV) were approximately 139.0 mg g−1, 
129.0  mg  g−1, and 418.0  mg  g−1, respectively. The 
selective removal of Mn(II), Fe(III), and Ni(II) from 
Lanthanide solution by graphene oxide modified with 
sodium citrate (GO-C) has been investigated by Abu 
Elgoud et al. (2022). It was found that the GO-C com-
posite shows high adsorption affinity towards Mn(II), 
Fe(III), and Ni(II) ions in the presence of lanthanides. 
Furthermore, the sorption isotherm data fit the Lang-
muir isotherm model with excellent adsorption capac-
ities of 535.0, 223.22, and 174.65 mg g−1 for Fe(III), 
Mn(II), and Ni(II), respectively. The sorption of iron 
ions by graphene sheets has been studied by Change 
et al. (2013). They reported that the maximum sorp-
tion capacity of Fe(III) is 299.3 mg  g−1. Yuan et al. 
(2013) evaluated the behavior of poly(amidoamine) 
modified graphene oxide for the sorption of Cu(II), 
Zn(II), Fe(III), Pb(II), and Cr(III). Their work 
showed that the prepared poly (amidoamine) modi-
fied graphene oxide possessed maximum sorption 
capacities of 0.5312, 0.0798, 0.2024, 0.0513, and 
0.1368  mmol  g−1 for Fe(III), Cr(III), Zn(II), Pb(II), 
and Cu(II) ions, respectively. Additionally, the sorp-
tion of Fe(III), Zn(II), Pb(II), and Cd(II) has been 
studied using foam-infused GO by Lei et al. (2014).

The authors implied that the foam-infused GO 
possesses maximum adsorption capacities of 252.5, 

381.3, 587.6, and 326  mg  g−1 for Cd(II), Pb(II), 
Fe(III), and Zn(II), respectively. Abd-Elhamid 
and Aly (2018) employed thiosalcylic Acid for the 
removal of Fe(III) at pH 2.5. Their results demon-
strated the maximum sorption capacity of Fe (III) 
was 275.78 mg g−1. The removal of iron onto hazel-
nut hull from aqueous solutions has been examined 
by Sheibani et  al. (2012). Their findings reported 
that the saturation sorption capacity of Fe(III) was 
13.59 mg g−1. Labib et al. (2020) prepared nano stron-
tium cobaltite (SrCoOx) as an effective adsorbent for 
the purification of rare earth elements from monazite 
concentrate. The experimental result explored that 
the sorption efficiencies for Th(IV) and Fe(III) reach 
more than 99.0% without any noticeable sorption of 
rare earth elements. The sorption of iron and some 
lanthanides using aluminum silicotitanate have been 
investigated by Attallah et al. (2016). It was found that 
the sorption percentages of iron and some lanthanides 
were found to 79.0 and 99.0%, respectively. So it is 
confirmed that the prepared material is more effective 
for the recovery of lanthanide elements than Fe (III). 
Hamed et al. (2019) evaluated the sorption behavior 
of a novel polyaniline functionalized Tafa nanocom-
posite for U(VI), Th(IV), Ce(III), La(III), and Fe(III) 
from an aqueous solution. The results revealed that 
the prepared nanocomposite is extremely selective for 
Fe(III) ions higher than La(III), Ce(III), U(VI), and 
Th(IV) ions. The selective sorption of cerium and 
iron onto manganese-substituted cobalt ferrite nano-
particles has been examined by Hassan et al. (2022). 
Their results indicated that the maximum sorption 
capacities were found to be 130.0 and 161.0 mg g−1 
for Ce(III) and Fe(III), respectively.

Superabsorbent hydrogels are unique materi-
als that can absorb large amounts of water, typically 
more than 100 or even 1000 times their dry weight, 
resulting in significantly higher water content than 
regular hydrogels (Fekete et  al. 2017). Carboxym-
ethyl cellulose (CMC), a chemical derivative of cel-
lulose, contains carboxylate and hydroxyl groups 
responsible for the strong interaction between CMC 
and Fe particles (Cao et  al. 2011). Starch added to 
CMC systems improves their properties. Depending 
on the application, CMC/starch hydrogels may be a 
less expensive and more effective alternative to pure 
cellulose derivative-based gels (Fekete et  al. 2017). 
The incorporation of inorganic nanomaterials in 
hydrogels could result in extra thermal stability and 
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an increase in surface area (Wahid et al. 2017). To the 
best of our knowledge, there is still no related report 
for CMC-starch nanomaterial hydrogel for adsorption 
applications.

The authors decided to use Al2O3 nanoparticles 
dispersed in super-adsorbent hydrogels of carboxy-
methyl cellulose and starch to separate Fe(III) from 
rare earth elements in ore leachate during this study. 
In addition, we investigated the selectivity of the pre-
pared nano gel towards the sorption of iron ions under 
the best conditions in a binary system with Cs(I), 
Sr(II), and La(III). In the study’s final section, the 
prepared adsorbent was used for iron recovery from 
the acidic liquor of monazite and Sela leachate.

Methodology

Reagents

Aluminum tri sec butylates, C12H27AlO3 (purity ≥ 99%), 
and isopropyl alcohol, C3H8OH (purity ≥ 99.7%) were 
purchased from Merck, Germany, and used as pre-
cursors for Al2O3. Ammonium hydroxide NH4OH 
(purity > 33%) from Adwic El-Nasr, Egypt. Sigma-
Aldrich, USA, supplied starch. Sodium carboxymethyl 
cellulose (CMC) is from FoodChem Co., USA. The 
stock solution of 1000 mg/L Fe(III) was prepared using 
FeCl3. 4H2O (purity ≥ 99.0%) obtained from Sigma-
Aldrich was dissolved in minimum concentrated hydro-
chloric acid, evaporated to almost dryness, and then 
diluted to the desired concentration with double-dis-
tilled water. Ammonium thiocyanate (Alpha Chemika, 
India) Hydrochloric acid was obtained from Merck, 
NaOH (ADWIC), and Egypt. Monazite Liquor and Sela 
leachate were supplied by the nuclear materials author-
ity; they were mineralized from the Rosetta area and 
Gabal El Sela at Halaib environs, Egypt, respectively.

Techniques of characterization

Using a Bomen Miclson FT-IR spectrophotometer, 
model MB157, Canada, the active functional groups 
of the nano gel were well identified.

Rigaku Goniometer MiniFlex 300/600 diffrac-
tometer, with 600 W X-ray tube D/teX Ultra2 silicon 
strip detector, air senestive ShapeFlex sample holder. 
CuKα1 radiation (λ = 1.54060 Å) in 2θ ranging from 
10° to 80° and step 0.01 was used to recognize the 

X-ray diffraction (XRD) pattern of Al2O3-NPs, CMC-
St/Al2O3, and loaded CMC-St/Al2O3 powders with 
Fe(III). The scan rate was 2°/min, the operation volt-
age was 40 kV, and the current was 30 mA.

The thermal stability of the nano gel was evalu-
ated using a thermal gravimetric analysis system of 
type DTA-TGA-50, Japan, at a constant rate of 5 °C/
min from room temperature to 650  °C. The surface 
morphology of the prepared nano gel was investi-
gated using a JEOL JSM-5400 scanning electron 
microscope from Japan with an accelerating voltage 
of 10.0 kV (SEM, FEI Quanta FEG-250, EDX). The 
samples were dried at 50 °C and coated with a layer 
of gold for conductivity purposes before imaging by 
the SEM apparatus. The high-resolution images of the 
samples investigated by transmission electron micro-
graph (TEM) images for particle size were recorded 
on a TEM, JEM2100, Jeol.s.b. Japan, with the highest 
accelerating voltage of 200 kV. The sample powders 
were milled very well and then dispersed for 10 min 
ultrasonically (Ultrasonic Cole-Parmer Instrument 
Company, Version Hills, Illinois 60,061, USA) in an 
ethanol solution. A drop from the suspension was 
then deposited on a Cu grid coated with a carbon 
film. The particle size of the prepared samples was 
determined using Zetasizer Nano-Zs, MALVERN, 
UK. The concentration of Fe(III) was measured by 
using the thiocyanate method (Marczenko 1986).

Preparation of CMC‑St/Al2O3 nano gel

The steps for preparing nano-crystalline aluminum 
oxide using the sol–gel technique to hydrolyze alu-
minum tri sec butylate are summarised in Fig. 1. The 
prepared nano-aluminum oxide was used as filler in 
the CMC-St/Al2O3 nano gel. First, 2.0  g of Al2O3 
nanoparticle (NP) was ultrasonically dispersed in 
18.0  mL of distilled water acidified with 2.0  mL of 
0.1 mol L−1 HCl for 30.0 min.

The previous solution was then mixed with 
30.0  mL of distilled water in a ratio of 1:1 starch: 
sodium carboxymethyl cellulose. A gel was success-
fully synthesized from low-concentration solutions 
at low pH (Fekete et al. 2017). Al3+ acts as a cross-
linking agent, promoting gel formation by forming 

(1)Al2O3 + 6HCl → 2 AlCl3 + 3 H2O
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a chemical bond with the negatively charged car-
boxymethyl groups of CMC (Zhang et al. 2022). The 
whole mixture was magnetically stirred for 4.0 h with 
a stirring rate of 100 rpm., and then the solution was 
aged in the mother solution for 24 h to achieve better 
homogeneity. The gelled mixture was dried for 48 h 
to constant weight before being grounded in an agate 
mortar to obtain a fine powder with a mesh size of 
less than 300 µm.

Sorption studies

The sorption attitudes of Fe(III) were investigated 
to optimize the separation conditions onto CMC-St/
Al2O3 nano gel. 0.05 g of the nano gel was added to 
25.0 mL glass bottles containing 5.0 mL of 100 mg 
L.−1 Fe(III) aqueous solutions, and the resulting mix-
tures were shaken mechanically. pH, contact time, 
metal ion concentration, competing ions, and temper-
ature were all studied according to this Table 1

The amount of Fe(III) sorption was calculated 
using Eqs. (2–4) (El-Shazly et al. 2022) as follows:

where qe and qt (mg g−1) are the metal ion quanti-
ties sorbed on the sorbent at equilibrium and sorption 
time t (min), respectively. The initial metal ion con-
centration is Co (mg L−1), and the equilibrium metal 
ion concentration is Ce (mg L−1). Furthermore, Ct 
represents the concentration of metal ions in the solu-
tion at time t, V denotes the volume (L) of the solu-
tion, and m denotes the weight of the adsorbent (g).

Kinetic and adsorption isotherm modeling

By evaluating the reaction’s applicability for kinetic 
and isothermal adsorption modeling, the mechanism 

(2)Sorption efficiency (%) =

(

C0 − Ce

C0

)

100

(3)qt = (CO − Ct)
V

m

(4)qe = (CO − Ce)
V

m

Fig. 1   Preparation steps for CMC-St/Al2O3 nano gel
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and potency of the sorption of Fe(III) onto CMC-St/
Al2O3 nano gel could be largely decided. Adsorption 
isotherm modeling describes the interaction between 
the adsorbate particles and the surface of the adsor-
bent, whereas kinetic modeling describes the rate of 
the sorption reaction of the solute onto the adsorb-
ate (Musah et  al. 2022). Additionally, this modeling 
could be employed to clarify whether the sorption 
reaction is physisorption or chemisorption. To achieve 
these goals, the transient sorption data were subjected 
to four different types of kinetic modeling, includ-
ing pseudo-1st order, pseudo- 2nd order, Elvoich, and 
intra-particle diffusion. As well as the Langmuir, Fre-
undlich, Temkin, and Dubinin-Radushkevitch (D-R) 

models of adsorption isotherms. Tables 2 and 3 lists 
the non-linear form equations for the applied kinetic 
and adsorption isotherm modeling, respectively.

Error functions

The good fit is used to predict the best model by mini-
mizing the error distribution between the experimen-
tal data and the predicted isotherm that best describes 
the interaction between the CMC-St/Al2O3 nano 
gel and Fe (III). Some of the error functions used to 
study model fit include Residual error plots (Chia-
chung 2014), Coefficient of correlation (R2) (Ayawei 
et  al. 2017), non-linear Chi-square test (Kumar and 

Table 1   Experimental condition for sorption of Fe(III) onto CMC-St/Al2O3 nano gel

Effect of different param-
eters

pH Contact time, min [Fe(III)], mg/L Adsorbent 
dosage, g

Temperature, K

Effect of solution pH 1,2,3,4, and 5 60.0 100.0 0.05 298
Effect of sorption time 2.0 1,3,5,15,30,60, and 120 100.0 0.05 298
Effect of iron concentra-

tion
2.0 15.0 100,200,400,600,800, 

and 1000
0.05 298

Effect of solution Tem-
perature

2.0 15.0 100.0 0.05 298,308,318,328, and 338

Effect of adsorbent dosage 2.0 15.0 100.0 0.05,0.075, 
0.1, 
0.125, 
and 0.15

298

Table 2   Non-linear form equation for the applied kinetic modeling

qe and qt are the sorbed amounts of Fe(III) (mg g−1) at equilibrium time and at any time t, respectively; k1 (min−1) is the pseudo 1st 
rate constant, k2 (g mg−1 min−1) is the pseudo 2nd order rate constant, α, β are the Elovich constants. α is the Elovich initial adsorp-
tion rate (mg g−1 min), β (g mg−1) desorption constant

Model Non-linear form Description

Pseudo first order Dakroury et al. (2022a, b) qt=qe(cal.)
(

1 − e−k1 t
)

  (5) Assume that adsorption is not influenced by 
adsorption in active sites. Instead, it might be a 
representation of external/internal diffusion. Wang 
and Guo (2020)

Pseudo-second order Dakroury et al. (2022a, b)
qt =

k2q
2

e(cal.)
t

1+k2qet  (6)
Assume that the adsorption occurs mainly on active 

sites Wang and Guo (2020)
Elvoich Khalil et al. (2022) qt =

1

β
ln(1 + αβt) (7) It is widely used to describe adsorption processes 

with second-order kinetics. With the premise that 
the adsorbent’s surface is energetically heteroge-
neous, they demonstrate evidence of chemisorp-
tion reactions. Ebelegi et al. (2020)

Intraparticle diffusion Dakroury et al. (2021) qt = kit
0.5 + C (8) It describes the pure free diffusion of a solute in the 

pores or surface of a sorbent sphere. It does not 
facilitate by providing for the effect of adsorption 
Simonin and Bouté (2016)



974	 Cellulose (2024) 31:969–992

1 3
Vol:. (1234567890)

Porkodi 2007), Corrected Akaike information Crite-
rion (AICc) (Moussa et al. 2023), and sum-of-squared 
errors (SSE) (Hamzah et  al. 2018). The quantitative 
error function most commonly used during research 
is summarised in Table 4. Based on the definition of 
the error function, the best-fit adsorption isotherm 
will be minimized by either minimizing or maximiz-
ing the error functions. R2 is the most commonly 
used error function for minimizing the error distri-
bution between experimental equilibrium data and 
isotherms.

Thermodynamic parameters

Adsorption thermodynamics has an important role 
in estimating the nature of the sorption reaction. 
(Spontaneous or non-spontaneous). Three estimated 

thermodynamic parameters; the change in free energy 
(∆Go), the change in enthalpy (∆Ho), and the change 
in entropy (∆So); could be calculated by applying 
Eqs. (17–20) (Dakroury et al. 2022b; Abu Elgoud et al. 
2023).

(17)ΔGO = ΔH − TΔS

(18)ΔGO = −RTlnKd

(19)lnKd =
−ΔH

R
+

ΔS

R
.
1

T

(20)Kd =
qe

Ce

Table 3   Non-linear form equation for the applied isotherm modeling

Ce is the concentration of Fe (III) at equilibrium. qm is the monolayer sorption capacity (mg g−1); KL is constantly related to the free 
energy of adsorption (L mg−1). Kf denotes for Freundlich constants and n denotes for sorption capacity and intensity. qmDR is mon-
olayer capacity For the D-R model, βDR is a constant related to apparent adsorption energy, ε is Polanyi potential, R is the universal 
gas constant (8.314 JK−1 mol−1), and T is the absolute temperature (K)

Model Non-linear form Description

Langmuir Dakroury et al. (2022a, b) qe =
qmKLCe

1+KLCe

 (9)  It implies that the adsorption occurs at specific homogeneous 
sites within an adsorbent with monolayer layer adsorption 
Musah et al. (2022)

Freundich Dakroury et al. (2022a, b) qe = KFC
1∕n
e  (10)  It describes the adsorption process on surface adsorption sites 

that are energetically heterogeneous with multilayer adsorp-
tion Musah et al. (2022)

Temkin Nebaghe et al. (2016) qe =
RT

bTlnATCe

 (11) Temkin isotherm model regarded the effects of indirect adsorb-
ate/adsorbent interactions on the adsorption process; it is also 
assumed that the heat of adsorption (∆Hads) of all molecules 
in the layer decreases linearly as surface coverage increases 
Ayawei et al. (2017)

D-R Nebaghe et al. (2016) qmDR = e−βDRε
2 (12) D-R assumed the adsorption process was related to the micro-

pore volume filling of heterogeneous adsorbent Hu, and 
Zhang (2019)

Table 4   Applied error function equations

qexp (mg g−1) is the sorbed amount of Fe (III), qcalc. (mg g−1) is the predicted sorbed amount; qmean (mg g−1) is the mean of qexp val-
ues of Fe (III), n is the experimental data points number, and p is the number of modelling parameters

Error function Expression

Coefficient of determination (R2) Kumar and Porkodi (2007) R2 = 1 −
∑n

i=1
(qcalc. − qexp.)

2∕
∑n

i=1
(qcalc. − qmean)

2  (13)
Reduced Chi-square (χ2) Kumar and Porkodi (2007) ∑ (qcalc.−qexp..)

2

qcalc.  (14)
The sum of square Errors (SSE) Hamzah et al. (2018) ∑n

i=1
(qcalc. − qexp.)

2 (15)
Corrected Akaike information Criterion (AICc) Moussa et al. 

(2023)
AICc = (nln(SER∕n)) + (2(p + 1)) + (2(p + 1)(p + 2)∕n − p − 2) (16)
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∆Ho and ∆So were determined from the slope and 
intercept obtained by plotting ln Kd against 1/T.

Desorption studies

Several eluting agents were used to investigate Fe(III) 
elution from loaded CMC-St/Al2O3 nano gel. After 
an hour, the mixture was filtered to separate the 
CMC-St/Al2O3 nano gel from the liquid phase, and 
the concentration of Fe(III) ions was determined. 
Equation  (21) was used to compute desorption effi-
ciency % (El-Shazly et al. 2022).

Caq represents the concentration of Fe(III) in the 
aqueous phase, whereas Cs represents the concentra-
tion of Fe(III) within the CMC-St/Al2O3 nano gel.

Results and discussion

Sorbent characterization

FT‑IR analysis

Figure  2a, b depicts the characteristic peaks of the 
nano gel. The carboxymethyl cellulose characteristic 
peaks were observed at 3423  cm−1 (broad absorp-
tion band due to stretching of –OH groups and inter-
molecular and intramolecular hydrogen bonds), 
2926 cm−1 (C–H stretching), 1419 cm−1 (–CH2 scis-
soring), 1320  cm−1 (–OH bending), and 1060  cm−1 
(CHO–CH2 stretching) (Bhandari et  al. 2012). The 
peak at 1616 cm−1 confirmed cellulose carboxymeth-
ylation. At 1150–1100  cm−1, the absorption band is 
represented by multiple peaks assigned to the C–O–C 
ether band. The main stretching vibration peaks of 
Al–O (Naayi et  al. 2019) are at 856, 708, 654, 574, 
528, 427, and 406  cm−1. The intensities of the char-
acteristic functional groups O–H broad band and 
ether bands from 1150 to 1023 cm−1 decreased after 
Fe (III) loading onto CMC-St/Al2O3 nano gel. This 
validates their contribution to the mechanism of the 
adsorption reaction.

(21)Desorption% =
Caq

Cs

%

Particle size and surface morphology

Figure  2c clarified the decrease in particle size for 
CMC-St/Al2O3 compared to Al2O3 NPs which was 
attributed to the reduction of the agglomeration of 
Al2O3 NPs by the dispersion in the hydrogel matrix 
(Gao et al. 2019). The average particle sizes of Al2O3 
NP and CMC-St/Al2O3 were 79  nm and 51  nm, 
respectively. Furthermore, the decrease in the par-
ticle size of CMC-St/Al2O3 leads to a higher satura-
tion surface concentration due to the increase in the 
number of active site densities (Wang and Shadman 
2012). A rod-shaped, agglomerated, and uniform size 
for Al2O3 NP is illustrated by TEM with scale bar 
50  nm in Fig.  2d, the nano-character of Al2O3 was 
investigated. The agglomerated spherical nanoparti-
cles were due to the sol–gel preparation method.

Furthermore, Figs.  2e, f, and g with scale bars 
are 10 µm, 50 µm, and 10 µm respectively, represent 
SEM of the samples. SEM in Fig.  2e depicts Al2O3 
particles rod-shaped, with particle sizes ranging from 
13 to 30  nm and an average particle size of 22  nm. 
Figure  2f had a three-dimensional porous network 
structure due to Al3+ cross-linking the internal reac-
tive groups with each other, causing macroscopically 
significant changes in the internal network structure 
of the CMC-St/Al2O3 nano gel. After Fe (III) load-
ing in Fig. 2g, it was clarified that Fe (III) ions were 
trapped by the hydrophilic active sites in the empty 
spaces between gel folds (Hameed et al. 2020).

X‑ray diffraction

The XRD patterns of Fe loaded onto CMC-St/
Al2O3, CMC-St/Al2O3 nano gel, and Al2O3 nanopar-
ticles were recorded at room temperature, as shown 
in Fig. 3a. The crystallographic planes highlight the 
crystalline structure of Al2O3-NPs. The XRD patterns 
indicate clearer and sharper peaks associated with 
alumina crystalline phases (Fig. 3b); α- Al2O3 ICDD 
ref. 00–005-0712, γ- Al2O3 ICDD ref. 00–010-0425, 
and θ- Al2O3 ICDD ref. 01-077-0396 (Lamouri et al. 
2017; Sun et al. 2006; Feret et al. 2000; Karunakaran 
et  al. 2011; Chauruka et  al. 2015; Gheorghieș et  al. 
2009; Kim et  al. 2012; Ansari and Husain 2011). 
Despite that, the line widths of peaks were broad in 
the case of CMC-St/Al2O3 and loaded CMC-St/Al2O3 
with Fe (III) Fig. 3c, d, which revealed a smaller crys-
talline domain size. Also, the intensities for each peak 
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were decreased in loaded CMC-St/Al2O3 with Fe(III) 
compared to CMC-St/Al2O3. It was further shown 
that the characteristic peaks of CMC-St/Al2O3 were 
shifted left when compared to Al2O3-NPs, whereas 
the peaks of loaded CMC-St/Al2O3 with Fe(III) were 
shifted back to the right of the original position. This 
demonstrates that the changes in the structure param-
eters occur on the surface of Al2O3-NPs as a result of 
the composition and the nature of the synthetic mate-
rials interphase. The particle size (D) of the crystal-
linity sample Al2O3-NPs was found to be 76  nm, 
which was determined using the formula of Scherrer 
Eq. (22).

where λ is the X-ray wavelength = 1.54060 Å, θ and 
β are the diffraction angle and the full width at half-
maximum of the Al2O3 (222) line, respectively. (k) 
is the Scherrer constant of 0.9. However, the relative 
crystallinity of Al2O3, CMC-St/Al2O3, and loaded 
CMC-St/Al2O3 with Fe(III) was determined accord-
ing to the relation (23)

where Ac was the crystalline area and Aa was the 
amorphous area on  the XRD spectra. The relative 
crystallinities of CMC-St/Al2O3 and loaded CMC-
St/Al2O3 with Fe(III) are 45.1 and 37.5, respectively. 
This implies that sorption of Fe(III) notably degraded 
the crystalline region of Al2O3 NPs.

The particle size analyzed from the 222 line width 
of XRD peaks of the Al2O3 (Fig. 3a) was found to be 
76 nm, in agreement with the previous measurement 
of Zetasizer in particle size and surface measurements 
in Sect. "Particle size and surface morphology". The 
X-ray pattern of CMC-St/Al2O3 nano gel significantly 
and substantially decreased the crystallinity.

Although pure CMC polymer is amorphous (Yao 
et  al. 2020), the substitution of the hydroxyl group 
of CMC (Saadiah et  al. 2019; Moussa et  al. 2019) 

(22)D =
k�

�cos�

(23)Relative crystallinity =
Ac

Ac + Aa

and the addition of 2  g nano Al2O3 could change 
the amorphous nature of CMC (Farrag et  al. 2014). 
This confirms the formation of CMC-St/Al2O3 
nano gel. For CMC-St/Al2O3 nano gel, at 16.9° and 
20.22° are assigned for starch, while the amorphous 
maximum for loaded CMC-St/Al2O3 with Fe (III) 
appear at 24.55° and 19.47°. The aforementioned 
amorphous maximum indicate the presence of an 
A-typearrangement.

Thermal analysis

Figure  4a indicates the thermal stability of nano 
Al2O3 with a total weight loss of 18.75% up to 
600 °C. An endothermic peak was found at 71.98 °C 
with accompanying weight loss of 7.6% due to the 
evaporation of physically adsorbed and structured 
water. An exothermic peak at 220 °C and a broad one 
at 539 °C with a total weight loss of 11.15% due to 
organic by-product combustion and phase transforma-
tion (Zuo et al. 2016). The first endothermic peak of 
the CMC-St/Al2O3 nano gel shifted to 150  °C with 
a weight loss of 8.93%, indicating that the CMC-St/
Al2O3 possesses relatively higher thermal stability, 
as shown in Fig.  4b, with two exothermic peaks at 
311 °C and 505 °C and a total weight loss of 54.6% 
due to organic material degradation.

Sorption studies

Effect of pH

The choice of pH for the sorption reaction is the most 
important study in the optimization of the sorption 
parameters. As the pH controls the surface charge of 
the sorbent, the solubility of the adsorbate, and the 
[H+] concentration on the sorbent functional groups. 
Figure  5a depicts the effect of pH on the sorbed 
amount of Fe3+ onto CMC-St/Al2O3 nano gel within 
the pH range (0.5 to 2.5). The Fe(III) sorbed amount 
increased from 4.24  mg  g−1 to 9.99  mg  g−1 as the 
pH was raised from 0.5 to 2.5 due to the decrease 
in [H+] concentration around the composite surface 
and the less competition between Fe(III) and H+ 
ions for the occupancy of available active sites. Fur-
thermore, Fig. 5b shows Fe(III) speciation along pH 
1–14, which was studied by Hydra/Medusa chemical 
equilibrium software (Puigdomenech 2013). Fe(III) 
was the dominant species till pH 2. As the pH was 

Fig. 2   a FTIR of Al2O3 NPs, b FTIR of CMC-St/Al2O3 nano 
gel and Fe- loaded CMC-St/Al2O3 nano gel c- Particle size dis-
tribution of AL2O3 and CMC-St/Al2O3 and d  TEM of Al2O3 
NPs e SEM of Al2O3 NPs, f SEM of CMC-St/Al2O3 nano gel, 
g Fe (III) loaded onto CMC-St/Al2O3 nano gel

◂



978	 Cellulose (2024) 31:969–992

1 3
Vol:. (1234567890)

raised above 2, the solubility of Fe(III) decreased, and 
Fe(III) hydroxy complexes (Fe (OH)2+, (Fe (OH)2

+, 
and Fe2 (OH)2

4+) started to appear till pH 4. At 
pH > 4, Fe (OH) 3 was the dominant species (Sheibani 
et al. 2012). The chemical stability of CMC-St/Al2O3 
nano gel was studied (Fig. 5c) and showed that CMC-
St/Al2O3 nano gel is stable in an acidic medium, and 
stability reached 97.5% at pH = 2. The CMC-St/Al2O3 
nano gel found in suspension in a 0.5 mol L−1 NaCl 
solution exhibited a point of zero charges (pHpzc) at 
pH 1.755 (Fig.  5d). At pH values greater than the 
pHpzc value, the surface of the hybrid nano-compos-
ites became negative, which facilitated the adsorption 
of Fe(III) ions (Râpă et al. 2021).The working pH was 
chosen to be 2.0 to avoid precipitation and hydroxyl 
complexes. Examining the sorption efficiency of 

CMC-St/Al2O3 nano gel towards rare earth ions tak-
ing La(III) as an example, it was depicted that the 
nano gel has no affinity towards La(III) as a result of 
the competing protons in this range, and REE adsorp-
tion via ion exchange processes onto the nano gel was 
not favorable at this pH range of 0.5–2.5 (Ramasamy 
et al. 2019).

Effect of time

Figure 6a depicts the effect of conducting time on 
the sorption of Fe(III) onto CMC-St/Al2O3 nano 
gel at pH 2, V/m ratio 0.1, temperature 25 °C, and 
an initial concentration of Fe(III) of 100  mg L−1. 
The sorption reaction occurred, and the amount 
of Fe (III) sorbed increased rapidly until the 

Fig. 3   XRD of a- Al2O3 
NPs, CMC-St/Al2O3, 
and Fe(III) loaded onto 
CMC-St/Al2O3 nano gel 
Al2O3 NPs, b- Al2O3 NPs, 
c- CMC-St/Al2O3, d- Fe(III) 
loaded onto CMC-St/Al2O3 
nano gel was recorded at 
room temperature
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equilibrium time of 20.0 min. This was due to the 
availability of free active sites on the surface of the 
CMC-St/Al2O3 nano gel during the early stages of 
the sorption process and the gradual occupancy of 
these sites until equilibrium caused a decrease in 
the sorption rate (Khalil et  al. 2022). As the time 
increased from 1.0 to 15.0 min, the sorbed amount 
increased from 7.423 mg g−1 to 9.985 mg g−1.

Effect of metal ion concentration

As shown in Fig.  6b, the rate  of Fe (III) sorption 
onto CMC-St/Al2O3 nano gel at pH 2, V/m ratio 
0.1, temperature 25  °C, and equilibrium time 
15.0  min depends on the concentration of Fe(III) 
in the range (100–1000 mg L–1). The sorption rate 
decreased as the Fe(III) concentration increased 
due to a limited number of available free active 
sites (Alghamdi et  al. 2019) particularly in com-
parison to an increase in the number of Fe(III) at 
the CMC-St/Al2O3 nano gel surface (Igberase et al. 
2017). From an initial concentration of 100 mg L−1 
of Fe(III) to an initial concentration of 1000  mg 
L−1, the sorbed efficiency of Fe(III) onto CMC-St/
Al2O3 nano gel slipped from 96.48% to 29.08%.

Effect of V/m ratio

To determine the volume-mass ratio effect on the 
sorption process at pH 2, initial concentration of 
Fe(III) 100  mg L−1, temperature 25  °C, and equi-
librium time 15.0  min, 5.0  mL of Fe (III) is con-
tacted with different masses (0.15–0.1 g) of CMC-
St/Al2O3 nano gel (Fig. 6c). The sorbed amount of 
Fe (III) increased as the V/m ratio increased. This 
means that as sorbent mass increases, sorption effi-
ciency increases because the number of free active 
sites on the CMC-St/Al2O3 nano gel increases for 
the same Fe(III) concentration (Igberase and Osifo 
2015).

Effect of temperature

Figure 6d illustrates the effect of temperature on the 
sorption reaction at pH 2, V/m ratio 0.1, initial con-
centration of Fe(III) 100  mg L−1, and equilibrium 
time 15.0  min. The rate of sorption decreased from 
96.48% to 67.25% as the temperature increased from 
25.0 to 65.0 oC due to the decrease in surface activ-
ity. These findings explained the exothermic nature of 
Fe (III) sorption onto CMC-St/Al2O3 nano gel.
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Binary system and multi‑component system

Figure  7a depicts how the sorption efficiency of 
Fe(III) was affected by the presence of competing 
ions Cs(I), Sr(II), and La(III) in a binary system. It 
decreased from about 97.6% to 84.71% in the pres-
ence of 100 mg L−1 of Cs(I), while decreasing from 
97.6% to 72.97% in the presence of 100 mg L−1 Sr(II). 

However, La(III) had the highest competing effect, 
and sorption efficiency reached 68.12%. This behav-
ior could be explained in terms of radius ions and 
electronegativity. The ions with a smaller ionic radius 
and high electronegativity would have a high sorption 
capacity (Goel et  al. 2004). Thus, the sorption effi-
ciency decreased in the order La(III) > Sr(II) > Cs(I). 
Although CMC-St/Al2O3 nano gel had no sorption 
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affinity towards La(III) in a single system, the pres-
ence of La(III) hinders the sorption process of Fe(III). 
This could be explained in terms of the hydration 
sphere as the smaller size of metal ions have higher 
hydration tendencies in addition to fewer tendencies 
to lose water in the hydration sphere (Cristiani et al. 
2021). This hinders Fe (III) from joining the active 
sites.

For the multi-component system of Fe(III), La(III), 
Cd(II), and Cs(I), 2.5 mL of 100 mg L−1 for each was 
mixed and conducted with 0.2  g of CMC-St/Al2O3 

nano gel at pH 2 for 15.0  min at 25  °C. The sorp-
tion efficiency of Fe (III) decreased more than that 
in the single system due to competing effects, from 
97.6% to 90.1%. Furthermore, the sorption efficiency 
of La (III) increased in the multi-component system 
compared to that in the single system, attributed to 
the synergetic effects between sorbates and CMC-
St/Al2O3 nano gel did not reach equilibrium (Barros 
et al. 2019). Figure 7b shows the sorption efficiency 
of Fe(III), La(III), Cd(II), and Cs(I). The rate of sorp-
tion of the elements had the order Fe(III) > La(III) > 

Fig. 6   The effect of: a- Time b- concentration c- V/m ratio d- Temperature on the sorbed amount of Fe3+ onto CMC-St/Al2O3 nano 
gel
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Cd(II) > Cs(I) in agreement with the charge density 
order in Table 5.

Kinetic modeling

Figure  8a illustrates the non–linear fitting of the 
kinetic modeling. The error functions of the applied 
kinetic model fitting were present in Table 6; it was 
determined that the sorption of Fe (III) onto CMC-St/
Al2O3 nano gel was regulated by a pseudo-2nd order 
mechanism based on R2 (0.948), the highest value 
among all the applied models and the lowest values of 
χ2, SSE, and AIKc. In terms of residual error for the 
qualitative error function in Fig.  8b, the pseudo-2nd 
order model produced relatively low error residuals. 
As a result, the best-fit model of Fe(III) sorption onto 

CMC-St/Al2O3 nano gel was the pseudo-2nd order 
model, and a chemisorption mechanism for the reac-
tion was recommended. Furthermore, the calculated 
(qt, calc.) value was close to the experimental equilib-
rium adsorption capacity (qt, exp.)

Adsorption isotherm

Figure  8c shows the applied isotherm model fitting 
along with its associated parameters and quantitative 
error functions, which are listed in Table 7. The high-
est R2 (0.929), lowest χ2, SSE, and AIKc (0.0015, 
0.00603, and − 35.398, respectively) found in the 
estimated error-function of Langmuir model fitting 
that recommended it as the best suitable mechanism 
for the sorption reaction.

Furthermore, the residual error of the fitting iso-
therm model in Fig.  8d revealed that Langmuir 
has relatively low error residuals. The monolayer 
capacity of CMC-St/Al2O3 towards Fe(III) was 
0.524  mmol  g−1 (29.26  mg  g−1). Based on the RL 
values, the sorption reaction is favorable because 
(0 < RL < 1).

Thermodynamic studies

The standard free energy change (∆Go) values for 
the sorption of Fe(III) ions on CMC-St/Al2O3 nano 
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Table 5   Ionic radius, electronegativity, and charge density of 
Cs(I), Sr(II), La(III), and Fe(III)

Ion Ionic radius 
(Ao)

Electronega-
tivity

Charge 
density 
Z/r

Cs(I) 1.69 0.79 0.592
Sr(II) 1.13 0.95 1.769
Cd(II) 0.97 1.69 2.062
La(III) 1.06 1.1 2.832
Fe(III) 0.65 1.83 4.615
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gel were calculated using Eq.  23, while the stand-
ard enthalpy (∆Ho) and standard entropy changes 
(∆So) were calculated using the slope and inter-
cept of the line plotted using Eq. 21 in Fig. 9, and 
they are shown in Table  8. The measured adsorp-
tion enthalpy is (− 9.544  kJ  mol−1) pointing to an 

exothermic process. A high equilibrium constant 
was attained if the ∆Go value was negative (Yed-
dou and Bensmaili 2007). The affinity of CMC-St/
Al2O3 nano gel to adsorb Fe(III) is indicated by the 
positively sign of ∆So (+ 15.985  J  mol−1) in this 
Eq. (18).

Fig. 8   Non-linear fitting of a the kinetic models, c the isotherm models and Residual errors of b the kinetic models, d of the iso-
therm models studied for the sorption of Fe(III) onto CMC-St/Al2O3
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Desorption process

To minimize the need for a constant supply of 
adsorbent and decrease overall waste, a desorp-
tion process is essential. Therefore, the process 
is more effective, and the sorbent is better with a 
higher desorption percentage (Ossian et  al. 2014). 
The desorption efficiencies using HNO3, H2SO4, 
and HCl were investigated in Fig.  10. The sorbed 
Fe(III) had desorption efficiencies in the order of 
HCl > H2SO4 > HNO3 for a 0.1  mol L−1 concen-
tration, concerning the Ka acids strengths for HCl, 

H2SO4, and HNO3: 1.3 × 106, 1 × 103, and 2.4 × 10, 
respectively. For both H2SO4 and HNO3, the des-
orption efficiencies increased to 99% as the acid 
concentration was increased to 0.5 mol L−1. For the 
desorption process, 0.5 mol L−1 H2SO4 is chosen for 
economic consideration. Due to the chemical stabil-
ity of CMC-St/Al2O3 nano gel in Sect.  "Effect of 
pH", where more than 50% of CMC-St/Al2O3 nano 
gel was degraded at pH less than 0.5. So, CMC-St/

Table 6   Estimated coefficients and error-function data for 
kinetic modeling applied for the sorption of Fe(III) onto 
CMC-St/Al2O3

The highest R2 and the lowest χ2, SSE, and AICc are in bold 
and Italics

Parameters Kinetic model

Pseudo-1st-order
qt (mg g−1) (calculated) 9.674
K1 (min−1) 1.435
R2 0.947
χ2 0.0401
SSE 0.2003
AICc − 10.877
Pseudo-2nd-order
qt (mg g−1) (calculated) 9.932
K2 (g mg−1 min−1) 0.325
R2 0.948
χ2 0.0393
SSE 0.1963
AICc − 11.018
qt (mg g−1) (experiment) 9.985
Elovich kinetic model
α (mg g−1 min−1) 2.917
β (g mg−1) 2.46
R2 0.576
χ2 0.319
SEE 1.595
AICc 3.647
Intra-particle diffusion model
K 0.15339
C 8.603
R2 0.289
χ2 0.543
SEE 2.673
AICc 7.261

Table 7   Estimated coefficients and error function data for 
adsorption isotherm models applied for the sorption of Fe(III) 
onto CMC-St/Al2O3

The highest R2 and the lowest χ2, SSE, and AICc are in bold 
and Italics

Parameters Adsorption 
isotherm 
models

Langmuir model
qmL 0.525
KL 4.875
RL 0.281
R2 0.929
χ2 0.0015
SSE 0.00603
AICc − 35.398
Freundlich model
N 5.92
Kf (mmol n−1 g−1.L−n) 0.364
R2 0.822
χ2 0.0038
SSE 0.0151
AICc − 28.972
Temkin model
K 255.496
B 0.0684
R2 0.898
χ2 0.00217
SSE 0.00867
AICc − 32.857
Dubinin-Radushkevich model
qmDR (mol g−1) 0.4999
βDR (mmol2 kJ−2) 0.1702 × 10–8

E (kJ mol−1) 8.168
R2 0.876
χ2 0.0093
SSE 0.01054
AICc − 31.489
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Al2O3 has a drawback for the regeneration process, 
but according to the cost of its constituent, it could 
be recommended as a sorbent for Fe(III). Fe(III) 
was separated from Al2O3 in the desorbed solution 
by magnetic seeding separation (Han et al. 2021).

Mechanism discussion

Figure  11 suggests a possible mechanism for the 
preparation of CMC-St/Al2O3 nano gel where Al3+ 
is formed by Eq. 1. Three CMC molecules are linked 
to Al3+ form cross-linked (CMC)3-Al then starch is 
linked to the OH-group of CMC. This mechanism 
was suggested by Braihi (2014). Regarding the FT-IR 
spectrum of CMC-St/Al2O3 nano gel in Fig.  2b, 
The intensities of the peaks for the O–H group and 
the ether group C–O–C decreased after Fe(III) load-
ing. This supports the possibility that these groups 
could contribute the sorption reaction. This is due to 
the lowest space hindrance at this site. So, the sorp-
tion mechanism of Fe(III) onto CMC-St/Al2O3 nano 
gel takes place through three routes: (i) movement of 

Fe(III) from the solution bulk to the CMC-St/Al2O3 
nano gel surface. (ii) Diffusion of Fe(III) from the 
boundary layer inside the pores of CMC-St/Al2O3 
nano gel. (iii) Sorption of Fe(III) onto the active 
functional groups mentioned through electrostatic 
attraction force. The following chemical equations 
(Eqs. 24, 25) propose a mechanism for Fe(III) sorp-
tion onto CMC-St/Al2O3 nano gel.

 

Real application

The efficiency of Fe(III) separation onto CMC-St/
Al2O3 nano gel from rare earth mineral leachate was 
examined using digested Monazite concentrate by 
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Fig. 9   Thermodynamic plot for Fe(III) sorption onto CMC-St/
Al2O3 nano gel

Table 8   Thermodynamic 
parameters for Fe(III) 
sorption onto CMC-St/
Al2O3 nano gel

Sorbent ∆ Ho kJ mol–1 ∆So J mol–1 K–1 ∆Go kJ mol–1

Temperature (K)

298 308 318 328

CMC-St/Al2O3 − 9.544 15.985 − 14.31 − 14.47 − 14.63 − 14.79

HCl HNO3 H2SO4
0

20

40

60

80

100

D
es

or
bt

io
n 

%

Desorbing agent

 0.1 mol L-1

 0.5 mol L-1

Fig. 10   Desorption efficiency of Fe(III) sorbed onto CMC-St/
Al2O3 nano gel using different eluents with different concentra-
tion at 25 °C
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caustic soda (Ali et  al. 2022) and sulfate leaching 
solutions of Sela mineralization (Khawassek et  al. 
2015) with initial concentrations of total rare earth of 
25,000 mg g−1 and 3481 mg g−1, respectively. 0.1 g of 
CMC-St/Al2O3 nano gel was conducted with 10 mL 
of the digested rare earth minerals solutions at the 
optimum sorption parameters (pH = 2, equilibrium 
time = 15.0 min at 25 °C). The initial and final solu-
tion concentrations of rare earth elements and Fe(III) 
were measured. The sorption efficiency of Fe(III) and 
total rare earth in the monazite liquor and Sela lea-
chate is listed in Table 9. The distribution coefficient 
and separation factor were calculated using Eqs. (26), 
and (27).

The higher separation factor for Fe(III) and rare 
earth elements in the case of monazite liquor than 
Sela leachate was due to the higher percentage of rare 
earth elements in monazite liquor than Sela leachate. 
Figure 12a, b indicated the SEM of loaded CMC-St/
Al2O3 nano gel monazite liquor and Sela leachate 
onto CMC-St/Al2O3 nano gel. Comparing them with 
the SEM of CMC-St/Al2O3 nano gel (Fig.  2f,), the 
monazite liquor and Sela leachate onto the CMC-St/
Al2O3 nano gel image depicted a rougher and denser 
structure due to the occupation of Fe (III) ions and 
traces of rare earth elements, as indicated in EDX 
results (Fig. 12 c, d). The main peaks for C, O, and Al 
are referred to as the main constituents of CMC-St/
Al2O3 nano gel while Fe(III) and some rare earth ele-
ments confirm the sorption and separation processes. 

(26)Kd(ml∕g) =

(

Ci − Cf

Cf

)

×
V

m

(27)SF Fe

REE

=
Kd(Fe)

Kd(REE)

The appearance of the S peak in the EDX spectrum 
of Sela leachate is due to H2SO4 used in the diges-
tion process of Sela ores. All of the absorption peaks 
observed in the IR spectra of loaded CMC-St/Al2O3 
nano gel with Monazite liquor and Sela leachate 
(Fig.  12 e, f) were also present in the IR spectra of 
pure CMC-St/Al2O3 nano gel. However, the intensity 
of the carboxyl absorption peaks decreased due to the 
adsorption of Fe(III) and trace amounts of rare earth 
elements. A great similarity between Fig. 2b for the 
IR spectra of Fe-loaded onto CMC-St/Al2O3 nano gel 
and Fig.  12 e, f of loaded monazite liquor and Sela 
leachate onto CMC-St/Al2O3 nano gel confirms the 
participation of carboxyl functional and ether groups 
in the sorption process. The result indicated the possi-
bility of using CMC-St/Al2O3 nano gel, as a prospec-
tive material, to separate Fe(III) from REEs in the 
rare ore leachates, especially for monazite liquor.

Conclusion

A new nano gel Carboxymethyl cellulose-Starch/
Alumina (CMC-St/Al2O3) was successfully prepared 
with an average particle size of 51 nm by the sol–gel 
technique. The prepared nano gel was characterized 
to investigate its structure and functional groups 
using FT-IR, SEM, TEM, X-ray diffraction, Particle 
size, and thermal analysis. The investigation clarified 
the nanostructure of the prepared nano hydrogel with 
modifications in thermal stability. Sorption experi-
ments were carried out to estimate the possibility of 
its use to purify the leach liquor of rare earth miner-
als from Fe(III), which is considered the most con-
taminating metal in the REE mineral liquor. 97.6% 
of Fe(III) efficiently sorbed onto CMC-St/Al2O3 
at pH = 2, after 15.0  min, at an initial concentration 
of 100  mg L−1 and 25  °C. The sorption efficiency 
decreased to 68.4% in the binary system of Fe(III)/
La(III), 72.97% for Fe(III)/Sr(II), and 84.71% for the 

Fig. 11   Suggested mechanism for a- CMC-St/Al2O3 nano 
gel preparation and b- sorption of Fe(III) onto CMC-St/Al2O3 
nano gel

◂

Table 9   Sorption efficiency and separation of Fe (III) from rare earth minerals leachate onto CMC-St/Al2O3 nano gel

Rare earth mineral leachate Sorption efficiency (%) Distribution coefficient kd Separation factor

Fe (III) Total rare earth Fe (III) Total rare earth

Monazite liquor 89.03 5 923.5 5.263 175.47
Sela Leachate 92.7 14.84 36.990 17.426 2.122
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Fig. 12   a, b SEM, c, d EDX and e, f FTIR of loaded monazite liquor and Sela Leachate sorbed onto CMC-St/Al2O3 nano gel, 
respectively
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Fe(III)/Cs(I) binary system due to the competition 
effect. 99.9% of Fe(III) eluted by 0.5 mol L−1 H2SO4. 
The sorption process was fitted with a pseudo-2nd-
order and Langmuir model based on the error func-
tions: Coefficient of determination (R2), Reduced 
Chi-square (χ2), Sum of square Errors (SSE), and 
Corrected Akaike Information Criterion (AICc) as 
well as residual error plots. The sorption process 
was spontaneous and exothermic. Finally, (CMC-St/
Al2O3) nano gel was used to adsorb Fe(III) from the 
minerals liquor Monazite and Sela at the optimized 
sorption condition with sorption efficiency of 89.03% 
and 92.7%, respectively.
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