Skip to main content
Log in

Regenerated cellulose supported palladium composite superfine fibers as an efficient and recyclable catalyst for Suzuki reaction

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Palladium cation embedded cellulose acetate/poly(vinyl butyral) composite superfine fibers were successfully fabricated by electrospinning. Then, these composite fibers were treated with hydrazine hydrate/NaOH/ethanol solution to regenerate cellulose from cellulose acetate and poly(vinyl alcohol) from poly(vinyl butyral). Meanwhile, the Pd2+ cations were reduced to Pd0 nanoparticles, which were evenly dispersed inside the fibers. The catalytic performance of these embedded Pd0 nanoparticles were evaluated by Suzuki reaction. The catalysis results show that this novel fibrous catalyst was highly active to catalyze the Suzuki reaction of aromatic iodides and bromides with yields over 90%. Moreover, this fibrous palladium catalyst could be readily recovered and reused for 15 times with little loss of initial catalytic activity. The high catalytic activity can be ascribed to the superfine diameter of fibers while the excellent recyclability can be attributed to the embedment of active palladium species inside the fibers. Therefore, we have developed a facile method to prepare highly active and stable cellulose supported palladium fibrous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdellah AR, El-Adasy A, Atalla AA (2022) Palladium nanocrystals-embedded covalent organic framework as an efficient catalyst for heck cross-coupling reaction. Microporous Mesoporous Mater 339:111961

    Article  CAS  Google Scholar 

  • Ahmad H (2022) Celluloses as green support of palladium nanoparticles for application in heterogeneous catalysis: a brief review. J Clust Sci 33(2):421–438

    Article  CAS  Google Scholar 

  • Alkan M, Baran T (2021) Design of nanostructured palladium catalyst supported by chitosan/Co3O4 microspheres and investigation of its catalytic behavior against synthesis of benzonitriles. Int J Biol Macromol 182:722–729

    Article  Google Scholar 

  • Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132

    Article  CAS  Google Scholar 

  • Balamurugan R, Liu JH, Liu BT (2018) A review of recent developments in fluorescent sensors for the selective detection of palladium ions. Coord Chem Rev 376:196–224

    Article  CAS  Google Scholar 

  • Çalışkan M, Baran T (2022) Palladium nanoparticles embedded over chitosan/γMnO2 composite hybrid microspheres as heterogeneous nanocatalyst for effective reduction of nitroarenes and organic dyes in water. J Organometal Chem 963:122284

    Article  Google Scholar 

  • Căta L, Terenti N, Cociug C, Hădade ND, Grosu I, Bucur C, Cojocaru B, Parvulescu VI, Mazur M, Čejka J (2022) Sonogashira synthesis of new porous aromatic framework-entrapped palladium nanoparticles as heterogeneous catalysts for Suzuki–Miyaura cross-coupling. ACS Appl Mater Interface 14:10428–10437

    Article  Google Scholar 

  • Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuño MA, López N, Collins SM, Midgley PA, Richard S, Vilé G, Pérez-Ramírez J (2018) A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat Nanotechnol 13(8):702–707

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SR, Roy PS, Bhattacharya SK (2017) Green synthesis and characterization of polyvinyl alcohol stabilized palladium nanoparticles: effect of solvent on diameter and catalytic activity. Adv Nat Sci Nanosci Nanotechnol 8:025002

    Article  Google Scholar 

  • Dewan A, Sarmah M, Bharali P, Thakur AJ, Boruah PK, Das MR, Bora U (2021) Pd nanoparticles-loaded honeycomb-structured bio-nanocellulose as a heterogeneous catalyst for heteroaryl cross-coupling reaction. ACS Sustain Chem Eng 9:954–966

    Article  CAS  Google Scholar 

  • Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG (2021) Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the heck coupling reactions: a review. Int J Biol Macromol 192:771–819

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Wei S, Tang M, Ye M, Tao H, Qi C, Shao (2020) Palladium nanoparticles stabilized by chitosan/PAAS nanofibers: a highly stable catalyst for heck reaction. Appl Organometall Chem 34:e5619

    Article  CAS  Google Scholar 

  • Erdal NB, Hakkarainen M (2022) Degradation of cellulose derivatives in laboratory, man-made, and natural environments. Biomacromolecules 23:2713–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong K, Sajjadi M, Suh JM, Zhang KQ, Nasrollahzadeh M, Jang HW, Varma RS, Shokouhimehr M (2020) Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, heck, and Sonogashira cross-coupling reactions. ACS Appl Nano Mater 3(3):2070–2103

    Article  CAS  Google Scholar 

  • Jatoi AW, Ogasawrara H, Kim IS, Ni QQ (2020) Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications. Mater Sci Eng C Mater 110:110679

    Article  CAS  Google Scholar 

  • Jebali Z, Granados A, Nabili A, Boufi S, do Rego AMB, Majdoub H, Vallribera A (2018) Cationic cellulose nanofibrils as a green support of palladium nanoparticles: catalyst evaluation in Suzuki reactions. Cellulose 25:6963–6975

    Article  CAS  Google Scholar 

  • Kargar PG, Nayebi M, Parhizi Z, Varma RS (2022) Nickel nanoparticles adorned on magnetized cellulose nanofibers: ultrasound-facilitated cross coupling reactions. Cellulose 29:9183–9198

    Article  Google Scholar 

  • Kempasiddaiah M, Raj K, Kandathil V, Dateer RB, Sasidhar BS, Yelamaggad CV, Rout CS, Patil SA (2021) Waste biomass-derived carbon-supported palladium-based catalyst for cross-coupling reactions and energy storage applications. Appl Surf Sci 570:151156

    Article  CAS  Google Scholar 

  • Khan J (2008) Pharmaceutical significance of cellulose: a review. Eexpress Polym Lett 2:758–778

    Article  Google Scholar 

  • Liu DH (2021) Recent progress in palladium-catalyzed radical reactions. Adv Syn Catal 363:6275–6292

    Google Scholar 

  • Miao J, Xing L, Ouyang J, Li Z, Wang X (2023) Adsorption properties of anionic dyes on quaternized microcrystalline cellulose. ACS Omega 8(6):5617–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyo PS, Matsinha LC, Makhubela B (2021) Mizoroki–Heck carbon-carbon cross-coupling reactions by water-soluble palladium(II) complexes in neat water. Tetrahedron Lett 78:153274

    Article  CAS  Google Scholar 

  • Olusanya SO, Ajayi SM, Sodeinde KO, Fapojuwo DP, Atunde MO, Diduyemi AE, Olumayede EG, Lawal OS (2023) Hydrophobic modification of cellulose from oil palm waste in aqueous medium. Polym Bull https://doi.org/10.1007/s00289-023-04756-y

    Article  Google Scholar 

  • Parreira LA, Gonçalves DC, Menini L, Gusevskaya EV (2016) Aerobic oxidation of naturally occurring α-bisabolol catalyzed by palladium(II) salts as sole catalysts. Appl Catal A Gen 524:126–133

    Article  CAS  Google Scholar 

  • Patel M, Desai B, Ramani A, Dholakiya BZ, Naveen T (2021) Recent developments in the palladium-catalyzed/norbornene-mediated synthesis of carbo- and heterocycles. ChemistrySelect 6:8085–8106

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Buchner R, Röder T, Ebner G, Bruglachner H, Sixta H, Kosma P (2002) The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9(1):41–53

    Article  CAS  Google Scholar 

  • Qiao S, Deng W, Deng G, Liang Y, Yang Y (2022) Research advances in palladium-catalysed intermolecular C–H annulation of aryl halides with various aromatic ring precursors. Org Biomol Chem 20:6275–6292

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Shi P, Lei Y, Weng S, Li S, Huang L, Lin X (2019) Polyvinyl butyral/graphene oxide nanocomposite modified electrode for the integrate determination of terminal metabolites of catecholamines in human urine. J Electroanal Chem 848:113267

    Article  CAS  Google Scholar 

  • Salama A, Hesemann P (2020) Recent trends in elaboration, processing, and derivatization of cellulosic materials using ionic liquids. ACS Sustain Chem Eng 8:17893–17907

    Article  CAS  Google Scholar 

  • Shamsuri AA, Abdan K, Jamil S (2021) Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review. E-Polymers 21(1):869–880

    Article  CAS  Google Scholar 

  • Shao L, Ji W, Dong P, Zeng M, Qi C, Zhang XM (2012) Coupling reactions of aromatic halides with palladium catalyst immobilized on poly(vinyl alcohol) nanofiber mats. Appl Catal A Gen 413–414:257–272

    Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci B Polym Phys 42:5–11

    Article  CAS  Google Scholar 

  • Wang B, Ran M, Fang G, Wu T, Tian Q, Zheng L, Romero-Zerón L, Ni Y (2020) Palladium nano-catalyst supported on cationic nanocellulose–alginate hydrogel for effective catalytic reactions. Cellulose 27:6995–7008

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Xie Y, Zhang K (2018) Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose 25(7):3703–3731

    Article  CAS  Google Scholar 

  • Yang SB, Karim MR, Lee J, Yeum JH, Yeasmin S (2022) Alkaline treatment variables to characterize poly(vinyl alcohol)/poly(vinyl butyral/vinyl alcohol) blend films. Polymers 14:3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SB, Yoo SH, Lee JS, Kim JW, Yeum JH (2017) Surface properties of a novel poly(vinyl alcohol) film prepared by heterogeneous saponification of poly(vinyl acetate) film. Polymers 9:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Zafari R, Mendonça FG, Tom Baker R, Fauteux-Lefebvre C (2023) Efficient SO2 capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent. Sep Purif Technol 308:122917

    Article  CAS  Google Scholar 

  • Ziyadi H, Heydari A (2014) PVA/Fe(NO3)3 nanofiber mats: an efficient, heterogeneous and recyclable catalyst for the synthesis of quinolones via Friedlander annulations. RSC Adv 4:58208–58213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

National Natural Science Foundation of China (Nos. 12075154 and 11975157).

Author information

Authors and Affiliations

Authors

Contributions

YL, XZ, XH: Investigation. LS, GX: Conceptualization; investigation; writing. CQ: Funding acquisition; supervision. SZ: Resources; writing. JL: Writing, review.

Corresponding authors

Correspondence to Linjun Shao or Guiying Xing.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1H NMR data of the Suzuki coupling products

1H NMR data of the Suzuki coupling products

Biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.50–7.42 (m, 4 H), 7.29 (t, J = 7.6 Hz, 4 H), 7.20 (t, J = 7.3 Hz, 2 H).

2-Fluoro-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.60–7.48 (m, 2 H), 7.43–7.17 (m, 5 H), 7.17–7.03 (m, 2 H).

4-Fluoro-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.39 (ddd, J = 7.1, 5.1, 2.6 Hz, 3 H), 7.14 (ddd, J = 8.2, 7.0, 4.5 Hz, 6 H).

2-Bromo-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.59–7.48 (m, 4 H), 7.47–7.31 (m, 5 H).

4-Chloro-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.54–7.45 (m, 4 H), 7.44–7.29 (m, 5 H).

2-methyl-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.47–7.42 (m, 2 H), 7.41–7.34 (m, 3 H), 7.33–7.25 (m, 4 H), 2.31 (s, 3 H).

3-methyl-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.59–7.52 (m, 2 H), 7.42–7.25 (m, 6 H), 7.12 (d, J = 7.5 Hz, 1 H), 2.38 (s, 3 H).

4-methyl-1,1’-biphenyl: 1 H NMR (400 MHz, CDCl3) δ 7.58 (dd, J = 7.4, 6.1 Hz, 2 H), 7.51–7.37 (m, 4 H), 7.34–7.20 (m, 3 H), 2.38 (s, 3 H).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, X., Huang, X. et al. Regenerated cellulose supported palladium composite superfine fibers as an efficient and recyclable catalyst for Suzuki reaction. Cellulose 30, 10243–10255 (2023). https://doi.org/10.1007/s10570-023-05502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05502-3

Keywords

Navigation