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Abstract Polyacrylonitrile (PAN)-based carbon

precursor is a well-established and researched material

for electrodes in energy storage applications due to its

good physical properties and excellent electrochem-

ical performance. However, in the fight of preserving

the environment and pioneering renewable energy

sources, environmentally sustainable carbon precur-

sors with superior electrochemical performance are

needed. Therefore, bio-based materials are excellent

candidates to replace PAN as a carbon precursor.

Depending on the design requirement (e.g. carbon

morphology, doping level, specific surface area, pore

size and volume, and electrochemical performance),

the appropriate selection of carbon precursors can be

made from a variety of biomass and biowaste mate-

rials. This review provides a summary and discussion

on the preparation and characterization of the emerg-

ing and recent bio-based carbon precursors that can be

used as electrodes in energy storage applications. The

review is outlined based on the morphology of

nanostructures and the precursor’s type. Furthermore,

the review discusses and summarizes the excellent

electrochemical performance of these recent carbon

precursors in storage energy applications. Finally, a

summary and outlook are also given. All this together

portrays the promising role of bio-based carbon

electrodes in energy storage applications.
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Introduction

Although the year 2020 has witnessed a significant

drop in CO2 emission due to global lockdown

measures against COVID-19 pandemic (Le Quéré

et al. 2020; Liu et al. 2020e), tremendous efforts are

needed to systematically tackle climate change.

Depending more on renewable energy sources and

shifting toward and relying more on environment

friendly solutions, e.g. electric vehicles, is one of the

measures toward a sustainable environment. With

that, continuing to develop more efficient storage units

is becoming the momentum to advance such sustain-

able technologies (Moriarty and Honnery 2016).

Although substantial research and efforts have been

made to enhance and develop energy storage units,

energy storage is still a barrier against fully benefiting

from renewable sources, and a significant increase in

capacity is necessary to meet future demands (Leonard

et al. 2020).

A conventional energy storage unit is composed of

three functional parts: electrodes, liquid electrolyte,

and separator. The working principle can be summa-

rized by ions traveling from one electrode to the other

passing through the separator during charging and

discharging generating energy and power. In the

recent literature, rechargeable batteries, such as
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lithium-ion batteries (LIBs), and supercapacitors

(SCs) are the most developed and researched energy

storage devices (Mehtab et al. 2019). LIBs offer high

energy density, while SCs offer high power density

and having excellent cyclability and stability. In

general, the advancement of such energy storage

devices can be briefly summarized based on their

functional parts as the following: The advancement of

liquid electrolytes is mainly related to ionic conduc-

tivity and thermal and electrochemical stabilities (Liu

and Yu 2019). While the advancement of separators is

correlated with ionic resistivity and the overall safety

of the unit (Muzaffar et al. 2019; Rai et al. 2021). The

electrochemical performance and stability are related

to the advance of the electrodes, which are the sole

focus of this review.

In energy storage devices, carbon-based electrodes

are extensively under research due to their excellent

performance. The highly regarded performance is the

result of miscellaneous and porous morphologies, ease

of modification, and high electrochemical stability and

specific capacitance (Endo et al. 2000; Ishikawa et al.

2006; Zhang and Zhao 2009). Carbon-based elec-

trodes have been derived from a verity of petroleum

chemicals such as poly(vinyl alcohol) (PVA) (Park

et al. 2011), polyethylene oxide (PEO) (Lewandowski

et al. 2001), pitch (Meng et al. 2017), polyvinylidene

fluoride (PVDF) (Son et al. 2020), and polyacry-

lonytrile (PAN) (Stojanovska and Kilic 2019). Among

them, PAN is the most commonly used precursor.

PAN has shown to be an excellent carbon precursor

due to its high carbon yield, high quality carbon

structure, and formation of wide nanostructures and

morphologies. Researchers have managed to synthe-

size and fabricate novel morphology of nanostructures

such as flower particles (Chen et al. 2018b), hollow

nanoparticles (Cao and Kruk 2015), ultrafine nanofi-

bers (Lazzari et al. 2007), 2D-nanostrucuters (Zhong

et al. 2014), and other novel nanostructures (Kopeć

et al. 2019). Each of which possesses unique surface

and physical properties making them ideal as elec-

trodes in energy storage devices. For example, high

energy density of 4.03Wh kg-1 with excellent cycling

stability over 1000 cycles were recorded for PAN-

based cloth electrode in SC (Zheng et al. 2019). While

using random PAN-based carbon nanostructures for

an electrode in lithium-sulfur battery, 840 mAhg-1

was recorded for the initial reversable capacity along

with high cycling stability over 150 cycles (Zhang

et al. 2019c).

Unfortunately, PAN and most of the other carbon

precursors are petroleum chemicals, nonrenewable

sources, and of toxic nature to the environment.

Therefore, it is imperative to start depending on a new

alternative (Fava et al. 2015). For any alternative to

take over PAN’s position as an excellent carbon

precursor needs not only to sustain all its good

advantages, but also needs to offer what PAN could

not provide, hence, environmental sustainability, low-

cost, and better electrochemical performance. This

alternative is rather a collective of renewable and

sustainable materials of bio-based origin. Bio-based

carbon precursors are environmentally sustainable

materials and of low-cost. In fact, the usage of biomass

and biowaste materials as carbon electrodes in energy

applications falls under the broad dentition of biore-

finery (Fava et al. 2015), which one of its aims is

converting bio-based resources into value-added

products (Cherubini 2010).

To shed a light on the low-cost virtue, a survey on

the available market prices of some of bio-based

carbon precursors is composed in Table 1. It is clear

that bio-bases sources offer a substantial economical

advantage in the synthesis and production of carbon

electrodes in energy applications. This advantage

comes from the fact that most of biomass materials are

the byproducts of agriculture (e.g. corn, rice, and

wheat straws) or industries (e.g. lignin). Furthermore,

most of biowaste food (e.g. rotten fish and shell of

shrimps) and plants (e.g. flowers and phoenix tree

leaves) are practically free of charge. It is worth noting

that, in principle, the carbonization process of bio-

based materials is more or less the same with that of

PAN. As a result, the processing cost of PAN and bio-

based precursors are comparable. Notable efforts to

reduce the processing cost and time are evident. For

example, increasing the production output of nanofi-

bers using electrically-assisted solution blow spinning

(Rai et al. 2020), and reducing carbonization process

time by utilizing microwave assisted-hydrothermal

(Naghdi et al. 2017) and microwave plasma pyrolysis

(Islam et al. 2017) have been reported. As a conse-

quence, bio-based materials are not only low-cost

carbon precursors, but also can be processed at least at

the same cost of PAN.

Electrochemical performance of biomass- and

biowaste-based carbon electrodes is another critical
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factor to define the feasibility of bio-based carbon

precursors in energy storage applications. Generally,

electrochemical performance of carbon-based elec-

trode is correlated with the morphology, porosity and

pore size, specific surface area, and doping level. Bio-

based carbon electrodes possess unique nanostruc-

tures, high specific surface area, and high level of

heteroatoms-doping. For some precursors, unique

nanostructures are inherited from the biomass mate-

rials before carbonization (Wang et al. 2019b).

Protein-based carbon (e.g. silk regenerated) and some

other biomass-based, e.g. chitin, precursors retain a

large amount of nitrogen, oxygen, and sometimes

sulfur species after carbonization leading to self-

doping (Chen et al. 2018a; Zhou et al. 2019). As a

result of these superior physical and chemical features,

high-performance electrodes in rechargeable batteries

and SCs have been reported as is discussed and

summarized in detail in ‘‘Bio-based nanostructured

carbon materials for high-performance energy appli-

cations’’ section.

Environmentally sustainable biomass- and bio-

wastes-based carbon electrodes are excellent options

for high-performance energy storage applications.

This review provides a summary and discussion on

the preparation and characterization of the emerging

and recent bio-based carbon precursors that can be

used as electrodes in energy storage applications. The

review is outlined based on the morphology of

nanostructure and the precursor’s type. For each

section, preparation protocols and properties are

thoroughly discussed. Furthermore, the review dis-

cusses and summarizes the excellent electrochemical

performance of these emerging carbon precursors in

storage energy applications. All this together portrays

the promising role of bio-based carbon electrodes in

storage energy applications.

Preparation and properties of nanostructured bio-

based carbon materials

Particulate nanostructures (0D-nanostructures)

This category encompasses bio-based carbon powders

with different morphologies such as nanoparticles,

nanosheets, nanoplates, random geometrical nano-

sized configurations, or nanoporous structure.

Lignin

Lignin, a complex amorphous biopolymer that acts as

a binder to provide structural integrity in plants, is the

most abundant natural material after cellulose (S.

B. Lalvani 2000; Zakzeski et al. 2010). The synthesis

of different lignin nanoparticles is an emerging

interest (Gonzalez et al. 2017; Ago et al. 2017;

Matsakas et al. 2018) but the scope of lignin-based

carbon nanoparticles is still rather limited. The reason

is that currently most of the synthesized lignin

nanoparticles are in colloidal form, which impedes

subsequent treatments such as carbonization and

Table 1 Extraction and process cost of some bio-based and petroleum materials

Carbon precursor Average cost ($/ton) References

Corn straw 29 Edwards (2020)

Rice straw 19.3 Delivand et al. (2011)

Wheat straw 60.4 Littlewood et al. (2013)

Chitin (from seafood) 110 Yan and Chen (2015)

Kraft lignin 380 L’udmila et al. (2015)

Organosolv lignin 400 L’udmila et al. (2015)

High purity lignin 750 L’udmila et al. (2015)

Cellulose (from sludge for nanofiber production) 113 Jonoobi et al. (2012)

Cellulose (dissolving cellulose for nanofiber production) 1648 Jonoobi et al. (2012)

PVA 2080* Echemi (2020)

PAN (used for carbo fiber production) 4000* Singh Gill et al. (2017)

*These prices may change significantly depending on the material grades, origin, and intended application

123

5172 Cellulose (2021) 28:5169–5218



activation. The most common configuration of lignin-

based carbon nanoparticles is carbon dots forming

colloidal suspension (Chen et al. 2016b; Rai et al.

2017; Si et al. 2018; Myint et al. 2018). The reported

physical properties, e.g. specific surface area, of these

carbon nanoparticles (Yiamsawas et al. 2017) are

inferior to conventional activated polymeric-based

carbon nanoparticles (Zhao et al. 2015b; Zhou et al.

2015). One report simultaneously managed to car-

bonize and activate lignin-based carbon nanoparticles

with large surface area, 1100 m2/g, however, the

obtained nanoparticles showed signs of agglomeration

and irregularity in their structure (Hu and Hsieh 2017).

As a result of the difficulty of handling colloidal

lignin-based carbon nanoparticles, a promising recent

study featured the recovery of lignin nanoparticles in

solvents using a two-step process (Matsakas et al.

2020); decreasing the solvent concentration and,

subsequently, isolating the particles. The rate at which

the solvent concentration evaporates was important to

obtain good quality particles. In another study, freeze-

drying method followed by subsequent stabilization

and carbonization was used to overcome the isolation

issue, however, the nanoparticles were of irregular

shapes (Gonugunta et al. 2012).

Cellulose

Cellulose makes up a large portion of the plant’s

interior structure and is the most abundant natural

material. Cellulose has been extracted from green

plants, e.g. wood pulp. Due to the nature of cellulosic

sources, their nanostructures are mainly fibrous and

whiskery (see ‘‘Cellulose’’ section), while other par-

ticulate structures such as nanoparticles are difficult to

obtain. Hence, in limited studies, randomly graphitic

nanostructures are the only formation that can be

found for limited applications, such as proton

exchange membrane fuel cell (Guilminot et al. 2008;

Sevilla and Fuertes 2010). This may not just indicate

that the cellulose-based carbon nanofibrous is a more

common structural configuration than its nanopartic-

ulate counterparts, but maybe also easier to synthesize

and apply in a variety of applications.

Chitin

Chitin, an abundant biopolymer with high nitrogen

content due to the presence of N-acetyl groups, can be

cheaply obtained as a by-product of seafood bio-

wastes, for example, shells of crab, shrimp, and lobster

(Yan and Chen 2015) and also can be extracted from

insects (Zhou et al. 2017). Only a few reports have

tackled the synthesis of carbon particulate nanostruc-

tures using chitin as a precursor. Elastic nitrogen-

doped chitin-based CNFs microspheres were synthe-

sized (Duan et al. 2016). Scanning Electron Micro-

scopy (SEM) and Transmission Electron Microscopy

(TEM) were used to capture the marvelous morphol-

ogy as depicted in Fig. 1. Although the synthesis

protocol is complicated and long, the inner structure of

the nanofibrous microspheres is outstanding. The

CNFs and sphere diameters were measured to be

around 24 nm and 39 lm, respectively. The micro-

spheres that were carbonized at 900 �C were partially

graphitized and had very high specific surface area and

pore volume of 1147 m2/g and 2.12 cm3/g,

respectively.

Chitin-based carbon particulate nanostructures

could be synthesized in different geometries demon-

strating the capability of chitin to be a miscellaneous

carbon resource. Another form of chitin carbon

particulate nanostructure is carbon quantum dots. In

one example, spherical diameters between 2 to 12 nm

have been synthesized (Naghdi et al. 2017). Briefly, in

a sealed vessel, a predetermined grammage of chitin

nanofibers mixed with CaCl2 ethanol solution was

subjected to a temperature of 180 �C using one-pot

microwave assisted-hydrothermal method. The

change of color from colorless to dark was marked

as evidence of the conversion to carbon quantum dots.

Another example, chitin-based carbon nanosheets

have also been synthesized by hydrophobization-

induced interfacial-assembly method (You et al.

2017). First, the extracted chitin nanofibers from carb

were dissolved in NaOH–urea before drop-wise addi-

tion of acrylonitrile that triggered hydrophobization

reaction. The reported thickness of the resultant

nanosheets was 27 nm and was reduced to around

3.8 nm with lateral size of 10 lm to form graphene-

like structure after carbonization at 800 �C. The

obtained chitin-based nanosheets carbon had high

specific surface area and pore size range of 724 m2/g

and 1–40 nm, respectively.

Recent reports have demonstrated the activation

with somewhat unconventional materials, e.g. KMnO4

and Hydroxylapatite, that help in increasing specific

surface area and nitrogen doping percentage as well
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(Wang et al. 2020b; Chu et al. 2020). For instance,

activation of chitin in hot KMnO4 solution resulted in

high specific surface area up to 1941 m2/g at a

relatively low carbonization temperature of 800 �C
(Wang et al. 2020b). The large surface area was

attributed to dismantling hydrogen bonds due to

KMnO4 reacting with chitin molecules before car-

bonization and the decomposition of by-products, e.g.

K2CO3, during carbonization. Interestingly, KMnO4

also acted as a template to form nanoporous structures

during carbonization. Nonetheless, one of the draw-

back of chitin is its limited carbon yield, for instance,

at a carbonization temperature of 800 �C carbon yield

is only 10.5% (Wang et al. 2020b).

Protein.

Proteins are widely abundant bio-based materials and

rich of nitrogen species (Li et al. 2013; Demir et al.

2018). Due to the nature of extracting protein precur-

sors, the conventional spherical nanoparticle structure

is a rare configuration, while nanoporous powder and

nanoplates are more common configurations (Demir

et al. 2018). Carbonized protein-based nanoporous

Fig. 1 a, b SEM images of elastic nitrogen-doped chitin-based

CNFs microspheres, c, d corresponding TEM images and

diffraction pattern, e, g SEM images before and after 5 cycles of

compression and the corresponding stress–strain curve.

Reprinted with permission from Duan et al. (2016). Copyright

(2016) Elsevier
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carbon precursors possess excellent physical proper-

ties (Li et al. 2013). Some of the promising protein-

based carbon precursors are egg, silk, fish, tofu, and

some livestock feed such as Lemna minor, and enoki

mushroom.

High sources of protein such as activated egg white

and eggshell were carbonized and resulted in nano-

porous carbon powders (Li et al. 2016a; Zhang et al.

2019b). The nanoporous powders of egg white and

eggshell have high specific surface area of 2268 and

1572 m2/g, respectively, and pore sizes smaller than

10 nm. Silk is another good candidate that serves as a

protein source. Silk protein-based carbon nanoplates

were synthesized from cocoons by, briefly, extracting

silk fibroin from cocoons and dissolving it in lithium

bromide and the mixture was casted to form a film

(Yun et al. 2013). The as-casted film was treated with

KOH and carbonized at a temperature of 800 �C to

form nanoplates of lateral size around 5 lm and

thickness of only a few nanometers. These nanoplates

are physically similar to graphene and have similar

Raman peaks ratio as well. The specific surface area of

the activated nanoplates is substantial, 2557 m2/g.

Other protein-rich biowastes, e.g. fishes (Guo et al.

2017), have also been converted to nanoporous carbon

materials. For example, a fish activated with ZnCl2
and carbonized at 900 �C resulted in nanoporous

carbon content with high specific surface area of

850 m2/g and pore size of around 2.5 nm. Other

promising protein-based carbon sources are tofu,

livestock feed, e.g. Lemna minor, and enoki mush-

room (Guo et al. 2015, 2016; Lee et al. 2017, 2018).

Others

Unconventional pristine and composite renewable

bio-based, e.g. food and other bio-based wastes, have

successfully been used as carbon precursors. Such

materials possess high specific surface area and unique

morphology that make them attractive carbon precur-

sors for researchers to unravel their potential and find

methods to process them. Food wastes, e.g. walnut and

coconut shells, potatoes, and tea waste, are important

classes of biowaste to obtain high quality carbon

precursors (Sun et al. 2013; Long et al. 2015; Wu et al.

2015; Qu et al. 2015; Cao et al. 2019; Shang et al.

2020; Khan et al. 2020). Carbonized alkali-treated

wheat flour and reduced MnO2 nanowires-like com-

posite has been simply synthesized in one-pot but with

complex inner honeycomb-like nanoporous structure

as illustrated in Fig. 2 (Wu et al. 2015). The unique

interconnected honeycomb-like morphology was

thought to be as a result of the synergetic role KOH

played as a template and as an activation agent.

Nitrogen-doped sulfur and gelatin-based carbon com-

posite with ultrahigh surface area and total pore

volume, 2893 m2/g and 2.8 cm3/g, respectively, were

also synthesized by a series of chemical treatments

(Qu et al. 2015). The nitrogen-doping was the result of

the rich nitrogen species in gelatin while the high

surface area and large pore volume were the results of

physical activation using KOH. Also, impressively,

activated carbonized porous walnut shells and tea

waste with high specific surface areas of 3577 and

1610 m2/g, respectively, were synthesized (Khan et al.

2020; Shang et al. 2020).

A variety of biomass sources, e.g. flowers, bagasse,

have also been utilized as nanoparticulate carbon

precursors (Chen et al. 2016a; Li et al. 2016b; Gao

et al. 2017a; Liu et al. 2017a; Zhu et al. 2020b; Wan

and Hu 2020). For example, seed-free willow catkin

flower has been converted to nitrogen-doped carbon

by pyrolysis after being treated with KOH (Li et al.

2016b). The reported morphology consisted of

graphene-like nanosheets with large surface area of

1533 m2/g doped with heteroatoms nitrogen and

sulfur. The carbonization of Perilla frutescens leaves,

a common food plant in Southeast Asia, at 700 �C
resulted in graphene-like nanosheets with high

heteroatoms self-doping of oxygen and nitrogen at

around 18.8 and 1.7%, respectively (Liu et al. 2017a).

However, exhibited a somewhat moderate specific

surface area of 655 m2/g.

Nature biowastes, e.g. plant leaves, bamboo fiber,

wheat straw, and dead ants, are yet another important

class as nanoparticulate carbon precursors due to their

abundance in nature (Du et al. 2019; Ji et al. 2020; He

et al. 2020). The resultant activated graphene-like

nanosheets of phoenix leaves, bamboo fiber, and

wheat straw resulted in high specific surface area of

2208, 2561, and 2560 m2/g, respectively (Du et al.

2019; Ji et al. 2020; He et al. 2020). Another

interesting graphene-like nanosheets carbon doped

with three heteroatoms, nitrogen, oxygen, and sulfur,

was derived from dead ants (Zhao et al. 2018a). This

ant-based carbon powder possessed ultrahigh specific

surface area of 2650 m2/g with mesopore size range

between 2 to 6 nm.
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As summarized in Table 2, unconventional biomass

and biowaste materials are showing to have high value

as carbon precursors due to their distinct morphology

and superior physical properties. The abundance of

these renewable precursors for nanoparticulate carbon

materials allows them to replace their conventional

synthetic counterparts.

1D-nanostructure

This category is composed of bio-based materials that

have large length-to-width ratio such as nanofibers,

nanorods, nanoneedles, etc.

Lignin

Lignin-based carbon nanofibers (LCNFs) offer an

important renewable alternative to PAN-based CNFs

due to lignin’s abundance and its relatively high

carbon yield. There are two main approaches to obtain

CNFs using lignin as a precursor, and both approaches

involve electrospinning method. The first approach

uses lignin as the only precursor to produce nanofibers,

while the other approach, more common, uses lignin

with other auxiliary polymers to form a spinnable

blend. In the first approach, a high concentration of

lignin is required (Lallave et al. 2007; Ruiz-Rosas

et al. 2010). Usually, a high concentration solution is

not considered as a proper solution in electrospinning

due to the rapid solvent evaporation that eventually

leads to clogging. Therefore, as a remedy to this issue,

using a co-axial spinneret, allows for an extra amount

of solvent to be supplemented to the polymer jet to

compensate for the rapidly evaporating solvent. Co-

axial electrospinning, thus, offers a solution to

produce CNFs processed from pristine lignin sources.

Fig. 2 a shows wheat flour, b–e SEM images of Carbonized alkali-treated wheat flour, and f–h elemental analysis of C, N, and O,

respectively. Reprinted with permission from Wu et al. (2015). Copyright (2015) Elsevier
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However, coaxial electrospinning lacks simplicity and

requires extreme care to balance the flow rate of both

spinnerets during electrospinning. It is worth noting

that conventional electrospinning, one spinneret

model, has been reported for the production of

nanofibers of pristine lignin solution followed by

conversion to LCNFs (Lallave et al. 2007; Ruiz-Rosas

et al. 2010; Garcı́a-Mateos et al. 2018). However,

other researchers have failed to reproduce similar

results (Dallmeyer et al. 2010, 2014) and have

concluded that the system is impractical for the

production of LCNFs. One group attempted spinning

different technical lignins, namely softwood kraft

lignin, hardwood kraft lignin, and sulfonated kraft

lignin, using one-spinneret electrospinning but failed

to produce any fibers regardless of the solution

concentration (Dallmeyer et al. 2010). They only

managed to produce beaded fibers at a concentration

higher than 50% which would not be suitable for long

production process due to eventual clogging.

The second approach uses traditional electrospin-

ning by mixing lignin with some auxiliary polymers to

form a blend solution that is easily spinnable com-

pared with the poorly spinnable pristine lignin solu-

tion. It is important to note, however, that the use of

synthetic polymers defeats the purpose of using lignin

as a friendly environmental precursor to produce

CNFs. This issue has been tackled by minimizing the

amount of percentage of the auxiliary polymeric (Ding

et al. 2016), e.g. using lignin in higher percentages

compared to the auxiliary polymer, or by using water

soluble polymers, somewhat friendlier options, e.g.

PVP and PVA. As a result, blending has become a

much common approach to produce LCNF using

conventional electrospinning rather than using the

complex coaxial electrospinning setup.

Table 3 summarizes the most common auxiliary

blends, solvents, additives and enhancers, and car-

bonization conditions used to prepare LCNFs using

electrospinning method. Lignin has been blended with

a variety of polymers in order to enhance the

spinnability of lignin to produce nanofibers and

subsequently convert them into LCNFs. PAN is the

most common auxiliary polymer thanks to its high

carbon yield and mechanical properties (Ding et al.

2016). Besides PAN (Ruiz-Rosas et al. 2010; Choi

et al. 2013; Xu et al. 2013, 2014; Ding et al. 2016;

Dalton et al. 2019; Jayawickramage et al. 2019;

Demiroğlu Mustafov et al. 2019; Dai et al. 2019;

Zhang et al. 2020b; Du et al. 2020a), many other

polymers have also been used as auxiliary polymers to

enhance lignin spinnability, such as PVP (Ma et al.

2018; Cao et al. 2020), PVA (Ago et al. 2012; Lai et al.

2014; Ma et al. 2016, 2019; Zhao et al. 2018b;

Jayawickramage and Ferraris 2019; Roman et al.

2019), PEO (Dallmeyer et al. 2010; Hu and Hsieh

2013; Cho et al. 2019; Du et al. 2020b), TPU (Culebras

et al. 2019), and PLA (Culebras et al. 2019). Worth

reporting that, to some less extent instead of blending,

direct synthesize of lignin and PAN copolymer has

been reported as a precursor of LCNFs for energy

applications (Youe et al. 2016, 2018).

To further enhance the lignin/polymer blend

spinnability in electrospinning, the literature demon-

strates a wide variety of materials as potential blend

enhancers. Interestingly, nanocrystalline cellulose as

an additive has been used to enhance the spinnability

of lignin/PEO blend by controlling the molecular

orientation of lignin during electrospinning (Cho et al.

2018, 2019). Non-precious metals have been used as a

catalyst to increase the lignin yield but also showed

notable enhancement in the spinnability of lignin. For

instance, the addition of 10 wt.% of Ni ions to

organosolv lignin blend increased the light lignin

fragments yield to 87%, and enhanced the solution

spinnability during electrospinning (Du et al. 2020b).

As summarized in Table 3, other enhancers reported

are platinum acetylacetonate, methylene diphenyl

diisocyanate, graphene nanosheets, and butyric anhy-

dride (Ruiz-Rosas et al. 2010; Ding et al. 2016;

Culebras et al. 2019; Dai et al. 2019).

Depending on the starting materials, it seems that

lignin/polymer blend tends to have higher carbon yield

than the pristine polymers. Though PAN has the

highest carbon yield among synthetic polymers,

pristine lignin and lignin/PAN blend results in even

higher LCNFs yield (Xu et al. 2014; Ding et al. 2016).

The final stabilization and carbonization temperatures

are more crucial than heating rate and holding time to

determine the final carbon yield. A recent study

showed that the final stabilization temperature of

lignin-based nanofibers has a much more effect on

carbon yield compared with heating rate and holding

time combined (Cho et al. 2019). They showed that

after stabilization at 200, 230, 250, and 280 �C the

yield decreased to around 87, 82, 78, and 65%,

respectively. After carbonization at 1000 �C the

corresponding carbon yield stood at 38.4, 44.4, 47.9,
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nd 49.1%, respectively. Although this suggests that the

higher the stabilization temperature the higher the

carbon yield, when stabilization temperature reached

300 �C the carbon yield, at the same carbonization

temperature (1000 �C), decreased to 44.8%. There-

fore, the optimum stabilization temperature was

around 280 �C. Stabilization process not only help

increase carbon yield but also avoid fusion of the

nanofibers (Cho et al. 2018; Roman et al. 2019), by

cross-linking to increase the softening temperature of

lignin nanofibers (Kadla et al. 2002; Luo et al. 2011;

Chatterjee and Saito 2015). By monitoring the

carbonization temperature, the final carbon yield

could be controlled for pristine lignin-based and

lignin/polymer blended LCNFs. For instance, pristine

Alcell lignin nanofibers yielded LCNFs between 47.8

and 36.1% at carbonization temperatures of 600 to

1000 �C, respectively (Ruiz-Rosas et al. 2010), and

alkali kraft lignin blended with PAN (1:1) yielded

LCNFs between 51.2 and 39.8% at carbonization

temperatures of 600 to 950 �C, respectively (Xu et al.

2014). It is worth noting that only a few studies

reported carbon yield higher than 50% using ethanol-

soluble and tetrahydrofuran-soluble lignins at high

carbonization temperatures (Du et al. 2020a). Accord-

ing to Table 3, it could be concluded that carbon yield

of lignin-based materials is in the range between 30 to

49%, and, strictly speaking, has a rough average yield

of around 42%.

LCNFs, without post- or pre-treatments, already

possess somewhat high specific surface area and pore

volume (Wang et al. 2013; Ma et al. 2018). These are

attributed to the removal of volatile substances during

carbonization, such as oxygen which is present at high

content on lignin fibers after stabilization (Brodin et al.

2010; Ruiz-Rosas et al. 2010; Baker et al. 2012; Yun

et al. 2019). It is worth noting that lignin of lower

molecular weight might play a crucial role in the

Fig. 3 SEM and TEM images of LCNF@SnO2 with lignin and

PMMA mixed at different mass ratios of a, b 1:9, c, d 3:7, e,
f 5:5, g, h 7:3, and i, j 9:1, k HR-TEM image of when lignin

PMMA ratio was 5:5, and l) XRD patterns of the samples.

Reprinted with permission from Cao et al. (2020). Copyright

(2020) Elsevier
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formation of pores after carbonization (Jeon et al.

2015). Furthermore, specific surface area, pores size,

and pore volume of traditional CNFs can be enhanced

using chemical agents such as KOH, NaOH, H3PO4,

K2CO3, Na2CO3, and ZnCl2 (Jiang et al. 2002;

Gryglewicz et al. 2005; Mitani et al. 2005; Kim

et al. 2007; Im et al. 2009). Notably, KOH and NaOH

are the common agents to treat LCNFs (Hu and Hsieh

2013; Li et al. 2014; Dai et al. 2019). Physical post-

treatment methods, include air plasma, a mixture of

CO2 and N2 gas, and N2 gas, were also applied to

increase surface area and porosity of LCNFs (Wang

et al. 2013; Jayawickramage and Ferraris 2019; Zhang

et al. 2020b). On the other hand, pre-treatment

methods include the incorporation of porogen in the

spinning solution (Ma et al. 2018). Surface treatment

and activation of LCNF incorporated with graphene

nanosheets were carried out by dispersing the CNFs

into KOH solution using ultrasonic treatment (Dai

et al. 2019). Graphene nanosheets played an agent role

to induce heteroatoms of N and S in LCNF and

increase surface area. Furthermore, lignin/polymer

blend section does not just affect the spinnability

during electrospinning, but also affects the final

morphology of LCNF. Depending on the chosen

polymer, solution viscosity and electrical conductivity

vary that in turn the nanofiber diameter could either

increase or decrease. Moreover, if the selected poly-

mer is miscible with lignin, e.g. TPU, the resulted

LNCFs are smooth and of low pore volume, e.g. 0.01

cm3g-1, however; if the selected polymer is immis-

cible with lignin, e.g. PLA, the resulted LNCFs

contain pores and have high pore volume, e.g. 0.31

cm3g-1 (Culebras et al. 2019).

Complex carbon-based morphological nanostruc-

tures using lignin have been reported. A simple but

interesting approach demonstrates the fabrication of a

composite LCNF@SnO2 as hollow multichannel

nanofibrous powder using electrospinning method

has been reported (Cao et al. 2020). First, at different

mass ratios, 1:9, 3:7, 5:5, 7:3 and 9:1, lignin and

PMMA were mixed in a DMF solution to which a

predetermined amount of PVP and SnCl2.H2O were

added. The final mixture was used to prepare

Fig. 4 SEM images of a pristine cellulose-based CNFs

b polypyrrole-coated cellulose-based CNFs, c TEM image of

polypyrrole-coated cellulose-based CNFs, and d EDS image

showing nitrogen content on polypyrrole-coated cellulose-based

CNFs. Reprinted with permission from Cai et al. (2015).

Copyright (2015) American Chemical Society
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nanofibers using electrospinning. After acid treatment

and carbonization of the as-spun nanofibers,

LCNF@SnO2 composite as powder was prepared.

The reason for obtaining the carbonized composite in

powder from perhaps because of the brittleness of the

resulted composite. PVA and PMMA were used as

spinning auxiliary polymer and as a sacrificial phase

material to create multichannel nanofibers, respec-

tively. When the amount of lignin was the smallest

(lignin to PMMA 1:9), the nanofibers formed almost a

single hollow structure as shown in Fig. 3a, b. As the

lignin amount was increased, smaller multiple hollow

channels started to form up until solid nanofibers were

formed (lignin to PMMA 9:1) shown in Fig. 3c–j.

Specific surface area and total pore volume, 659 m2/g

and 0.56 cm3/g, respectively, were the highest for

multichannel nanofibers (lignin to PMMA 5:5). In

addition, with the increase in the lignin amount, the

nanofiber diameter decreased from 310 to 210 nm.

Lignin offers an alternative green option to PAN to

produce LCNFs with tunable morphology.

Cellulose

Self-assembly or bottom-up method of cellulose

nanofibers is possible by a series of chemical pretreat-

ments, controlling the initial cellulose concentration,

and introducing freeze-drying (Han et al. 2013). The

process, however, is long and somewhat complicated.

Therefore, electrospinning, top-down method, is an

attractive and simple method. Due to the poor

spinnability of pristine cellulose, electrospun cellulose

nanofibers are prepared using cellulose acetate (CA)

dissolved in acetone, or a mixture of acetone/DMAc,

or a mixture of acetone/DMF/trifluoroethylene. The

as-spun membrane can be deacetylated by immersing

CA nanofibers in alkaline solutions, i.e. NaOH at room

temperature (Deng et al. 2013; Li et al. 2019b; Liu and

Hsieh 2002, 2003; Lu and Hsieh 2010; Cai et al. 2015),

or NaOH at elevated temperature (Ma et al. 2005), or

NH4OH, mixture of NH4OH and NH4Cl (Kuzmenko

et al. 2014), or KOH (Son et al. 2004). The salts can be

dissolved in ethanol, water, a mixture of ethanol and

water, or a mixture of acetone and water. The

deacetylated cellulose nanofibrous membranes tend

to have a lower average fiber diameter, fiber distribu-

tion, and pore size compared with as-spun CA

nanofibers (Deng et al. 2013). In addition, the

deacetylation process conditions, i.e. salt concertation,

mixture ratio, temperature, and immersing duration,

affect the final morphology, surface area, surface

roughness, and carbon yield of CNFs. For example,

cellulose nanofibers immersed in low concentrated

NaOH–ethanol or water solutions resulted in rather

film-type structure after carbonization (Cai et al.

2015). While, cellulose nanofibers immersed in

NaOH–low ethanol/water ratio solution, after car-

bonization, resulted in interbonded fused nanofibers

due to diffusion inability of the mixture causing

unhydrolyzed spots. Electrospun polypyrrole-coated

cellulose-based CNFs deacetylated in 0.1 M NaOH-

ethanol solution and carbonized at 850 �C resulted in

nitrogen-doped interconnected network with a specific

surface area of 501 m2/g and pore size of 2.7 nm as

shown in Fig. 4 (Cai et al. 2015). As Fig. 4 shows,

polypyrrole-coated cellulose-based CNFs have

rougher surface area than pristine cellulose-based

CNFs. The rougher surface was the resultant of the

high specific surface area, while nitrogen species were

the results of the polypyrrole-coated layer. EDS results

in Fig. 4d shows the nitrogen content on the coated

nanofibers.

Carbon content in cellulose is around 44%, which is

relatively low compared with other carbon precursors,

and the final carbon yield after carbonization is only

between 10–15%. This low-carbon yield issue was

addressed in a two-decade old study by suggesting the

impregnation of sulfuric acid to increase the yield

(Kim et al. 2001). Sulfuric acid acted as dehydrating

catalyst to remove oxygen atoms in form of water

instead of CO and CO2 gases that led to smaller loss of

carbon atoms during carbonization. At optimum does

of sulfuric acid, * 6 wt.%, carbon yield reached 38%,

which suggested loss of carbon atoms to be around 6%

only. To further improve on this, a much recent study,

improved the carbon yield simply by altering the

composition of the deacetylated solution, NH4OH,

with the inclusion of NH4Cl (Kuzmenko et al. 2014).

Subsequently, without washing, the deacetylated cel-

lulose nanofibers were carbonized. NH4Cl offered

thermal stability and increased carbon yield from 13 to

20%.

Cellulosic nanowhiskers are nanorod-like structure

with a diameter between 10 to 30 nm, and unlike

cellulosic nanofibers, they do not form interconnected

nanofibrous structure. The art of production of cellu-

losic nanowhiskers (nanorod-like) and the effect of

processing conditions can be found in a review that

123

5184 Cellulose (2021) 28:5169–5218



provides a thorough comprehension on the topic

(Eichhorn 2011). Briefly, depending on the initial

cellulose source, nanowhiskers can be prepared using

acid hydrolysis method. By controlling processing

conditions, e.g. initial source, hydrolysis duration,

temperature, and polydispersity, the final morphology

and physical properties can be tuned (Eichhorn 2011;

Haafiz et al. 2014). Moreover, cellulose-based carbon

nanowhiskers, widely referred to as carbon nanonee-

dles, can be prepared by hydrolysis of microcrystalline

cellulose using sulfuric acid at temperature of 45 �C
for 3 h followed by thermal stabilization and car-

bonization at 240 �C and 1200 �C, respectively (Cho

et al. 2015). Although some studies show the potential

of manipulating the structure of cellulose-based car-

bon nanoneedle to develop nitrogen-enriched (Silva

et al. 2012) and copper, nickel, or iron-doped carbon

nanoneedles (Araujo et al. 2016) or form composite

(Silva et al. 2015), there is a still more work to do to

study and improve the current state of cellulosic-based

carbon nanoneedles.

The cellulosic part of plants offers a solution to

produce cellulose acetate nanofibers using electro-

spinning, while bacterial cellulose (BC), produced by

bacterial fermentation, offers an alternative fast route

without the need for electrospinning, due to its readily

ultrafine nanofibers. BC nanofibers form 3D intercon-

nected structure with a typical diameter of around

50 nm. Also, BC is distinguished against plant cellu-

lose by its high chemical purity, crystallinity, mechan-

ical property, degree of polymerization, and self-

assembly (Shoda and Sugano 2005; Huang et al.

2014). Nonetheless, before carbonization, the network

structure of bacterial cellulose pellicles needs to be

preserved by subjecting it to freeze-drying (Lee et al.

2013; Yu et al. 2014; Jiang et al. 2016). Although the

nanofibril is preserved after carbonization, the carbon

yield is rather low, 2.3%. If freeze-drying is omitted as

a pretreatment step, the carbon yield could be

increased up to around 20%, however; the nanofibril

structure will be completely destroyed after carboniza-

tion (Lee et al. 2013). To overcome this issue, freeze-

dried BC as CNF precursor mixed with potassium

citrate as carbon nanosheet precursor to act as a bridge

between the nanofibers was carbonized at 850 �C
(Jiang et al. 2016). The carbon yield was notably high,

around 42%, which is probably due to the additional

carbon content in potassium citrate. In addition, these

nanosheet bridges enhanced the surface area and total

pore volume, 1037 m2/g and 1.03 cm3/g, respectively,

compared with pristine BC-based CNFs, 510 m2/g and

0.74 cm3/g, respectively.

In order to obtain a free-standing membrane, one

group has demonstrated a strategy involving liquid

nitrogen prior freeze-drying over a series of studies

(Chen et al. 2013a, b). In addition, the same group has

also suggested a cost-effective and industrially appli-

cable method to prepare a free-standing nitrogen and

phosphorus doped BC-based CNFs (Chen et al. 2014).

In a typical procedure to obtain phosphorus-doped

free-standing membrane, before freezing in liquid

nitrogen, BC pellicle slices were immersed in NH4-

H2PO4 aqueous solution at room temperature for 10 h.

Subsequently, the samples were kept in liquid nitro-

gen, freeze-dried, and finally carbonized at 800 �C.
The diameter range of BC-based CNFs was found to

be 16 to 25 nm, while specific surface area and pore

size were around 290 m2/g and 2.2 nm, respectively.

Table 4 summarizes different process conditions

and protocol of cellulose derived CNFs. It can be seen

that each source of cellulose retains a unique prepa-

ration protocol providing suitable and applicable

options for industrial scaling.

Chitin

Depending on the source of chitin, chitin nanofibers

are extracted by a series of chemical and mechanical

treatments with a diameter of around 20 nm. For

example, using crab shells, chitin is extracted by

treating the shells with NaOH and HCl for few days

before being subjected to ethanol for few hours.

Grinder treatment is followed to obtain non-aggregate

nanofibers (Ifuku and Saimoto 2012). Due to the

nanofibrous nature of chitin and its high nitrogen

content, nitrogen-doped chitin-based CNFs (CCNFs)

can be directly prepared from pure chitin without

further subsequent activation. However, CCNFs do

not sustain a free-standing membrane but rather

nanofibrous powder.

Nitrogen-doped CCNFs have been prepared by

thermal stabilization at 300 �C for 1.5 h followed by

carbonization at 500, 600, 700, 800, and 900 �C (Hao

et al. 2018b). Result demonstrated that as the temper-

ature increased from 500 to 900 �C the specific surface

area dropped from around 531 to 285 m2/g, respec-

tively. Nitrogen content decreased from around 10%

down to 5%, respectively, while Raman spectra
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recorded an increase in D-band to the G-band intensity

ratio with the increase in carbonization temperature,

which is an indication in increase in graphitization

degree. Similar results, using pure chitin nanofibers,

were reported in a separate study that showed as the

carbonization temperature increased, from 500 to

900 �C, specific surface area decreased from around

458 to 263 m2/g, with increase in pore size from 2.75

to 2.86 nm (Hao et al. 2018a). The results also showed

graphitization degree increases with the increase of

carbonization temperature. Heteroatoms doping, oxy-

gen and nitrogen doping, of CCNFS was synthesized

from an insect, namely cicada slough (Zhou et al.

2017). The chitin powder obtained from cicada slough

was mixed with physical activation agent, KOH at

different weight ratios, (KOH:chitin) 1:2, 1:1, 2:1, and

3:1, before carbonization at 800 �C. Results showed

that oxygen amount increased as KOH content

increased, and vice versa for the nitrogen amount.

Although at weight ratio of 3:1, results showed that

CCNFs possess high surface area and total pore

volume of 2217 m2/g and 1.02 cm3/g, respectively,

and the carbon yield was at 10.9%. It was also shown

that as the weight ratio increased the carbon yield

decreased, while specific surface area increased. At

weight ratio of 1:2 the surface area and total pore

volume were shown to be 1243 m2/g and 0.57 cm3/g,

respectively, and carbon yield was at 38.2%. These

results shed the light on the possibility of synthesizing

oxygen- and nitrogen-doped CCNFs and controlling

the surface area and carbon yield. CCNFs offer finer

nanofibers compared with most synthetic-based CNFs

but lack the ability to form stand-free membranes due

to the nature of chitin extraction conditions.

Protein

Protein is an abundant source for CNFs but lacks the

ability to form a stand-alone CNF membrane. To

tackle this issue, one group suggested the incorpora-

tion of lignin into plant protein to form CNFs. Though

the structure of the membrane was maintained, the

average fiber diameter increased drastically from 540

to 2610 nm after lignin addition (Yang et al. 2018a).

Other proteins, such as prolamin, loss their fibril

structure upon carbonization. Thus as a remedy

solution, the addition of calcium salt, on one hand,

enhanced the thermal stability and retained nanofibril

structure, on the other hand, however, resulted in

brittle CNFs (Yang et al. 2018b). To fabricate

stable and flexible prolamin protein-based CNFs, the

same previous group has suggested the utilization of

transition metals, zinc, cobalt, and nickel (Wang et al.

2017b). They also followed a meticulous carboniza-

tion procedure after determining degradation temper-

ature range of prolamin protein which was between

200 and 300 �C. First, the sample was heated to

200 �C at a rate of 5 �C/min and maintained for 2 h.

Second, at lower heating rate of 1 �C/min the

temperature was increased to 300 �C and maintained

for 4 h. Finally, at heating rate of 1 �C/min the

temperature was increased to 800 �C and maintained

for 2 h before it was allowed to cool down to room

temperature. The notable issues of protein-based

CNFs are brittleness and free-standing capability that

are yet to be addressed thoroughly.

Others

Biowaste-based nanofibrous and 1d-structures are

rather limited compared with 0d-strcuture. For

instance, carbonized kiwi fruits have shown to yield

only partial carbonized nanofibrous structure along

with nanosheet structure (Cheng et al. 2020). With a

more distinct hollow nanofibrous structure, hexagonia

apiaria, a type of fungus, has shown capability to

preserve this distinct hollow nanofibrous structure

after activation with KOH and carbonization at 800 �C
for 2 h (Deng et al. 2017). The fiber diameter of

hexagonia apiaria decreased from 2 lm to 620 nm

after carbonization and was reported to have high

specific surface area of 1280 m2/g. A group of

researchers managed to synthesize magnetic nanofi-

borus carbon composite as sawdust as the carbon

precursor (Liu et al. 2014). Briefly, purified sawdust

waste, was mixed in Fe precursor, FeCl3 solution, at

elevated temperature, and the resultant dried material

was carbonized. The nanofibers growth was thought to

be as a combination of the high temperature and the

role of catalyst played by Fe species mimicking

chemical vapor deposition method. The specific

surface area of the fibers was recorded to be around

360 m2/g.

The use of electrospinning to prepare nonconven-

tional biomass and biowaste-based carbon nanofibers

is rather limited because the process strongly depends

on the spinnability of the biomass precursor, which is

usually poor. Depending on the nature of the starting

123

5186 Cellulose (2021) 28:5169–5218



T
a
b
le

4
P
ro
ce
ss

co
n
d
it
io
n
s
an
d
p
ro
to
co
l
o
f
ce
ll
u
lo
se

d
er
iv
ed

C
N
F
s

C
ar
b
o
n

p
re
cu
rs
o
r

M
at
er
ia
ls

p
ro
ce
ss
in
g
co
n
d
it
io
n
s

C
ar
b
o
n
co
n
v
er
si
o
n
co
n
d
it
io
n
s

C
ar
b
o
n

y
ie
ld

(%
)

R
ef

A
ss
em

b
ly

m
et
h
o
d

A
u
x
il
ia
ry
/

st
ar
ti
n
g

su
b
st
an
ce

S
o
lv
en
t/

E
x
tr
ac
ti
o
n

m
ed
iu
m

C
o
n
ce
n
tr
at
io
n

(w
t.
%
)

R
eg
en
er
at
io
n
/

P
u
ri
fi
ca
ti
o
n

ag
en
t

A
id

p
ro
ce
ss

S
ta
b
il
iz
at
io
n

C
ar
b
o
n
iz
at
io
n

C
el
lu
lo
se

ac
et
at
e

E
le
ct
ro
sp
in
n
in
g

–
A
ce
to
n
e
an
d

D
M
A
c

2
0

0
.0
5
M

N
aO

H
–

A
tm

o
sp
h
er
e@

2
4
0
�C

@
3
�C

/m
in

fo
r
1
h

A
rg
o
n
@
8
0
0
u
p

to
2
2
0
0
�C

@
1
0
�C

/

m
in

fo
r
2
.5

h

–
D
en
g
et

al
.

(2
0
1
3
)

C
el
lu
lo
se

ac
et
at
e

E
le
ct
ro
sp
in
n
in
g

–
A
ce
to
n
e
an
d

D
M
A
c

2
0

0
.0
5
M

N
aO

H
–

A
tm

o
sp
h
er
e@

2
4
0
�C

@
5
�C

/m
in

fo
r
1
h

A
rg
o
n
@
9
0
0
@
1
0
�C

/

m
in

fo
r
0
.5

h

–
L
i
et

al
.

(2
0
1
9
b
)

C
el
lu
lo
se

ac
et
at
e

E
le
ct
ro
sp
in
n
in
g

A
ce
to
n
e
an
d

D
M
A
c

–
N
aO

H
o
r
N
H
4
O
H

–
–

N
it
ro
g
en

@
8
0
0

@
5
�C

/m
in

fo
r
2
h

2
0

K
u
zm

en
k
o

et
al
.

(2
0
1
4
)

C
el
lu
lo
se

ac
et
at
e

E
le
ct
ro
sp
in
n
in
g

–
–

–
0
.1

M
N
aO

H
–

–
N
it
ro
g
en

@
8
5
0
fo
r
2
h

–
C
ai

et
al
.

(2
0
1
5
)

C
el
lu
lo
se

ac
et
at
e

E
le
ct
ro
sp
in
n
in
g

P
A
N

D
M
F

*
1
2

–
–

A
tm

o
sp
h
er
e@

2
4
0
�C

fo
r
2
h

A
rg
o
n
@
8
0
0
fo
r
2
h

–
L
i
et

al
.

(2
0
1
9
a)

C
el
lu
lo
se

n
an
o
w
h
is
k
er
s

S
el
f-
as
se
m
b
ly

(H
y
d
ro
ly
si
s

p
ro
ce
ss
)

M
ic
ro
cr
y
st
al
li
n
e

ce
ll
u
lo
se

H
2
S
O
4

–
–

C
en
tr
if
u
g
at
io
n

&
fr
ee
ze
-

d
ry
in
g

@
2
4
0
�C

@
3
�C

/m
in

fo
r
1
h

@
8
0
0
o
r1
2
0
0
@
1
0
�C

/

m
in

fo
r
2
.5

h

–
C
h
o
et

al
.

(2
0
1
5
)

C
el
lu
lo
se

n
an
o
w
h
is
k
er
s

S
el
f-
as
se
m
b
ly

(H
y
d
ro
ly
si
s

p
ro
ce
ss
)

C
o
tt
o
n

6
5
%

H
2
S
O
4

–
–

C
en
tr
if
u
g
at
io
n

–
N
it
ro
g
en

@
8
0
0
o
r1
2
0
0

–
A
ra
u
jo

et
al
.

(2
0
1
6
)

B
ac
te
ri
al

ce
ll
u
lo
se

S
el
f-
as
se
m
b
ly

(G
el
at
io
n

p
ro
ce
ss
)

N
at
a-
d
e-
C
o
co

D
ei
o
n
iz
ed

w
at
er

–
0
.1

M
N
aO

H
F
re
ez
e-
d
ry
in
g

–
@
9
5
0
o
r1
2
0
0
@
5
�C

/

m
in

fo
r
0
.5

h

2
.3

L
ee

et
al
.

(2
0
1
3
)

B
ac
te
ri
al

ce
ll
u
lo
se

S
el
f-
as
se
m
b
ly

(G
el
at
io
n

p
ro
ce
ss
)

B
C

p
el
li
cl
es

–
–

D
ei
o
n
iz
ed

w
at
er

F
re
ez
e-
d
ry
in
g

N
it
ro
g
en
@
3
5
0
�C

@
1
.5

�C
/m

in
fo
r

1
h

N
it
ro
g
en
@
8
0
0
fo
r
1
h

Y
u
et

al
.

(2
0
1
4
)

B
ac
te
ri
al

ce
ll
u
lo
se

S
el
f-
as
se
m
b
ly

(G
el
at
io
n

p
ro
ce
ss
)

B
C

p
el
li
cl
es

–
–

D
ei
o
n
iz
ed

w
at
er

L
iq
u
id

n
it
ro
g
en

an
d
fr
ee
ze
-

d
ry
in
g

–
N
it
ro
g
en
@
8
5
0

@
3
�C

/m
in

fo
r
1
h

*
4
2

Ji
an
g
et

al
.

(2
0
1
6
)

B
ac
te
ri
al

ce
ll
u
lo
se

S
el
f-
as
se
m
b
ly

(G
el
at
io
n

p
ro
ce
ss
)

B
C

p
el
li
cl
es

–
–

D
ei
o
n
iz
ed

w
at
er

L
iq
u
id

n
it
ro
g
en

an
d
fr
ee
ze
-

d
ry
in
g

–
A
rg
o
n
@
1
3
0
0
fo
r
6
h

–
Y
an
g
et

al
.

(2
0
1
9
)

123

Cellulose (2021) 28:5169–5218 5187



material, spinnability simply could be improved by

blending with an auxiliary polymer. For example, by

employing electrospinning using a mixture of PEO

and sodium alginate followed by a treatment in ionic

cobalt solution, alginate nanofibers decorated with

cobalt nanoparticles were fabricated (Li et al. 2015a).

The electrospun nanofibers were carbonized in ammo-

nia atmosphere before immersion in acid treatment.

The resultant carbonized alginate nanofibers had

distinct half-sphere mesopores between 10 to 40 nm

and a diameter of around 100 nm as shown in Fig. 5. It

was argued that during acid treatment, cobalt nanopar-

ticles were removed leaving behind the mesopores,

and that the ammonia environment was a key role to

aid in graphitization process and forming desirable

defects sites that enhance electrochemical properties.

Another method features using electrospinning and

liquefied walnut shell followed by carbonization to

synthesize walnut shell-based nanofibers has been

reported (Tao et al. 2017). The calculated average

diameter was around 175 nm and had a specific

surface area of around 408m2/g. Since electrospinning

offers great control on the morphology of the

nanofibers, more efforts are needed to prepare tailored

unconventional biomass and biowaste-based carbon

nanofibers by means of developing spinnable biomass

and biowaste materials.

To summarize, lignin, cellulose, chitin, and other

biomass materials can be considered as the modern

precursors for CNFs. Such materials not only provide

us a renewable and sustainable option but also can be

easily manipulated to obtain a tailored nanostructure

with substantial physical properties suitable for energy

applications. Table 5 summarizes the physical prop-

erties of different biomass- and biowaste-based CNFs.

It is worth to emphasize the different methodolo-

gies of KOH activation treatment due to their impact

on the physical properties of carbon electrodes as is

evident in Tables 2, 3, and 5, and throughout the

reviews. The application of the KOH treatments

differs depending on the adopted protocol. The most

conventional method involves activation by soaking

pre-carbonized materials into KOH solution or with a

mixture of KOH and other activation agents. Solution

concentration, mixture ratio, activation time, and

activation temperature are the effective parameters

that control the final physical properties of the carbon

electrodes (He et al. 2016; Shehnaz et al. 2018; Zubbri

et al. 2021). Others have utilized less common

approach to active their samples using KOH as the

activation agent. For example, one group utilized

Fig. 5 a, b SEM and c, d TEM images of half-sphere mesopores alginate nanofibers carbonized at 600 �C. Reprinted with permission

from Li et al. (2015a). Copyright (2015) American Chemical Society
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ultrasonic treatment to impregnate KOH on CNFs (Dai

et al. 2019). Recent KOH activation methods involve

assisted tool to minimize cost and time have also been

reported. For instance, a group demonstrated that

KOH treatment polysized in a microwave reactor can

be effectively done within short time, 10 min (Feng

et al. 2020). While another group showed that laser

writing is also an effective method for KOH activation

treatment since it’s cost and time effective method

(Liu et al. 2020b).

Most biomass and bio-based carbon precursors

contain different chemical groups, thus making the

KOH activation treatment differs from the activation

treatment in carbon materials of petroleum nature. A

recent study attempted to explore the role of KOH

activation in biomass rich with oxygen groups (Chen

et al. 2020b). They utilized Bamboo waste as their

starting materials. As the result of abundant oxygen

species, they found that activation with KOH can be

effectively done at low impregnation ratios and low

temperatures. Furthermore, activation can be further

improved by allowing KOH to further react with

carbon at slightly higher temperatures or higher

impregnation ratios. It was argued that at low

temperatures KOH reacted with the biomass and

completely converted into K2CO3 accompanied with

the release of byproducts such as phenols. As the

temperature increased, K2CO3 was transformed to

K2O, and phenols release dropped. At the end of the

activation process, stable oxygen groups were present

and stable.

2D-nanostructure

This category is composed of bio-based carbonized

thin films or papers with distinct nanocrystalline, and/

or nanoporous structures.

Lignin

The potential of lignin-based carbon thin films in

energy applications is still relatively new. The first

characterization of a lignin-based carbon thin film is

dated back to 2007 (Shen and Zhong 2007). The pore

size and porosity of the film were found to be

influenced by the amount of lignin (8–20 wt.%) that

in turn influenced the UV adsorption and electric

resistance properties of lignin-based carbon thin film.

Recently, more complex lignin-based carbon thin film

structures have been developed (Sun et al. 2019a; Luo

et al. 2019). Interestingly, the addition of NiCl2 as a

catalyst and Na2CO3 as both a template and an

activator to lignin solution had a pronounced effect on

the physical properties of lignin-based carbon thin film

(Sun et al. 2019a). Specific surface area of pristine

lignin-based carbon thin film carbonized at 1000 �C
was measured to be around 287 m2g-1, while lignin-

based carbon thin film incorporated with Na2CO3 and

treated with NiCl2 carbonized at the same temperature

was measured to be around 730 m2g-1. This increase

of surface area was attributed to pores generated by the

formation of Ni nanoparticles that helped form pores

and channels, and to the decomposition of Na2CO3

into gases at different stages during carbonization that

helped form more pores. Investigation of new activa-

tors and lignin’s solvents, may prove vital for the

development of lignin-based carbon thin films and the

enhancement of their physical properties.

Cellulose

Pristine cellulosic-based and hierarchical composite

nanostructured carbon films have attracted the atten-

tion of many research groups (Vuorema et al. 2010; Li

et al. 2017a; Hwang et al. 2018;Meng et al. 2019). At a

low-cost, a high degree of graphitization of pristine

CNC film was fabricated at a carbonization temper-

ature of 1000 �C (Zhu et al. 2017). Results illustrated

surface area and pore sizes of 146 m2/g and

1.7–30 nm, respectively. A simple and straightfor-

ward strategy was developed to prepare flexible film

cellulose-based carbon nanofibers filled with activated

carbon (Li et al. 2016c). First, cellulose and activated

carbon were thoroughly mixed together and vacuum-

filtered. Secondly, a flexible film, formed after freeze-

drying, was carbonized at 800 �C for 2 h. The

carbonized film preserved its integrity perhaps due to

the available functional groups on cellulose nanofi-

bers, e.g. hydroxyl group, that enhanced the intercon-

nection between the twomaterials. The morphology of

the film is depicted in Fig. 6. Results showed that the

carbonized film had a large surface area of 1840 m2/g

which was due synergetic effect of the readily large

surface area of the activated carbon and carbonized

cellulose nanofibers. In a separate study, a combina-

tion of cellulose nanofibrils and cellulose nanocrystals

(CNC) was prepared as nanostructured carbon film (Li

et al. 2017b). But in order to avoid aggregation
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between cellulose nanofibrils and CNCs, a sacrificial

5 nm thick layer of Al2O3 was deposited using atomic

layer deposition on the uncarbonized cellulose

nanofibrils/CNC film. The layer of Al2O3 was able

to penetrate inside the sample through mesopores,

thus, avoiding aggregation during carbonization

which was carried out at 900 �C. The partially

graphitized nanostructured carbonized film not only

maintained nanofibrous and nanoporous structures but

also exhibited large surface area, large total pore

volume, and small pore size of around 1244 m2/g, 2.2

cm3/g, and 3.5 nm, respectively. Effort to fabricate a

2D-nanostructed composite film is noted too. A

flexible 10 lm thick composite composed of car-

bonized cellulose paper and graphene/thin-graphite

layer was fabricated in a one-step process using

microwave plasma enhanced chemical vapor deposi-

tion (Ren et al. 2016). Edge oriented graphene sheets

were grown on the paper, which was simultaneously

carbonized during the process. The graphene growth

and cellulose carbonization process were done in only

5 min. The carbon fibers are hollow filled with micro-

and mesopores on their surfaces.

Chitin

Carbon nanoporous films have also been prepared

from chitin derivatives. Using silica as a sacrificial

material, chitin-based carbon film with high surface

area and large pore volume was prepared (Nguyen

et al. 2014). At the optimum silica concentration,

surface area and pore volume were reported to be 1130

m2/g and 1.0 cm3/g, respectively, which were

attributed to the space that was created by silica

matrix during carbonization. In addition, silica content

might have increased carbon yield too. Unique and

scalable composite honeycomb-like chitin and

reduced graphene film was also prepared (Wang

et al. 2016). Before carbonization, the process consists

of freezing and thawing cycles of a dispersion of chitin

Fig. 6 SEM images at different magnifications of cellulose

nanofibrils- and cellulose nanocrystals-based carbon film A,
B before carbonization, C–E after carbonization, and F TEM

image of single cellulosic carbon fiber. Reprinted with

permission from Li et al. (2016c). Copyright (2016) Elsevier
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and graphene oxide in NaOH-urea-water solution

followed by coagulation using ethanol. Large pore

interconnected structure, 1–3 lm, which is the result

of phase separation, was attributed to the formation of

honeycomb structure.

Others

There have been very few recent reports utilizing

unconventional biomass and biowaste materials such

as glucose, rice straw, and poly(furfuryl alcohol) as

carbon precursors to develop nanostructured films

(Hawes et al. 2019). The reported films were prepared

by filtration method. Using infrared (IR) laser writing

as the carbonization tool, carbonized poly(furfuryl

alcohol) (PFA), a polymer that was derived from a

biowaste, and reduced graphene composite (rGO)

composite was prepared (Hawes et al. 2019). It was

reported that the carbonization of PFA film using IR

laser was not possible unless the medium contains

some loads of graphene oxide (GO). In the composite,

the laser intrigued the carbonization of PFA film and

the reduction of GO to rGO sheets. The resultant

morphology of the film was composed of PFA-based

carbonized spheres with an average diameter of

670 nm with distributed rGO sheets that have lateral

size ranging from 100 to 1400 nm. Another approach

to prepare 2D-nanostructed carbon composite film

using cotton fabrics as a substrate was also noted (Li

et al. 2020). Nonetheless, binder-free 2D-nanostrcu-

tured films and papers derived from biomass and

biowaste materials are limited.

3D-nanostructure

This category is composed of bio-based 3D intercon-

nected networks with distinct nanostructure features

such as aerogel and foams.

Lignin

Aerogels are of low density and porous 3d-nanostruc-

tures. The preparation of lignin-based aerogels has

been investigated by many groups. The main material

parameters that go into the formation of lignin

aerogels are (i) content of lignin and its molecular

weight, (ii) auxiliary resins and their mass ratios, (iii)

catalyst content, and (iv) extraction conditions, e.g.

freeze-drying or CO2 supercritical drying (Chen and

Li 2010; Chen et al. 2011; Grishechko et al. 2013a).

The initial amount of lignin and its molecular weight

influence both gelation time and pore structure of the

carbonized aerogel (Seo et al. 2014; Yang et al. 2017).

The most notable auxiliary resin mixtures that have

been studied are phenol–formaldehyde (Grishechko

et al. 2013a), resorcinol–formaldehyde (Chen and Li

2010; Chen et al. 2011), and tannin–formaldehyde

(Grishechko et al. 2013b), and NaOH and Na2CO3 are

the most widely used catalysts among many others.

These parameters have a pronounced effect on the

final properties. For example, an interesting report

showed that copper-doped lignin carbon aerogels

resulted in higher porosity and specific surface area,

67% and 431 m2g-1, respectively, compared with

pristine lignin-based carbon aerogel, 55% and 162

m2g-1, respectively (Xu et al. 2018a). In this example,

copper played the role of the catalyst during sol–gel

process, and the role of activator during carbonization.

Table 6 summarizes some of these parameters and

their corresponding physical properties for lignin-

based and other biomass carbon aerogels.

The main advantage of lignin is that it has reactive

sites, e.g. para carbon and ortho meta, that are

available to react with formaldehyde as crosslinker,

which lower the need to crosslinking in the presence of

phenol or resorcinol (Grishechko et al. 2013a; Xu et al.

2015), unfriendly substances. Worth reporting that

lignin-based carbon aerogels have shown to be

fabricated without using phenol or resorcinol (Yang

et al. 2017). Nonetheless, the main disadvantage of

lignin-based aerogels is that they are brittle in nature

which limits applications scope. To tackle brittleness

of lignin aerogels, in one study, bacterial cellulose was

incorporated to lignin to increase the elasticity of

lignin-based carbon aerogels at a reversible strain of

20%, albeit with a low reported compressive strength

of only 0.03 MPa (Xu et al. 2015).

Cellulose

Unlike lignin-based carbon aerogels, which typically

involve resorcinol–formaldehyde as their main con-

sentient, most of cellulose precursors, i.e. cellulose

nanofibers, cellulose microcrystalline, and bacterial

cellulose, could be used without auxiliary chemicals to

fabricate carbon aerogels.

First, cellulose nanofibers have been used to form

aerogels. For example, nitrogen doped cellulose-
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nanofibers aerogels reinforced with GOwas fabricated

and carbonized to convert the cellulose-nanofibers to

carbon and the graphene oxide to reduced graphene

resulting in cellulose nanofibers-based reinforced rGO

carbon aerogel (Zhang et al. 2018). Briefly, the

nitrogen doping was possible by preparing a homoge-

nous mixture of melamine, an organic material rich

with nitrogen, and cellulose nanofibers in one pot. The

resulted mixture was mixed with a predetermined

amount of GO solution. The composite mixture was

allowed to be dried in nitrogen liquid before initiating

freeze-drying followed by carbonization at 600 �C.
The carbonized aerogel resulted in a specific surface

area of 487 cm3/g, while its rich nitrogen content

facilitated hydrophilicity, and the rGO allowed the

aerogel to exhibit 40% recoverable volume change

under compression loading. Another example illus-

trates hierarchical structure of cellulose-nanofibers

composite aerogels decorated with NiCo2S4 nanocrys-

tals (Liu et al. 2020a). The cellulose-nanofibers were

freeze-dried to form aerogel then immersed in NiCo2-
S4 precursor before initiation of a hydrothermal

reaction and carbonization at low temperature of

500 �C. It was found that the carbon aerogel compos-

ite has a relatively high specific surface area and large

pore volume of 394 m2/g and 0.9 cm3/g, respectively.

Secondly, a recent study showed that another

source of cellulose, namely cellulose microcrystalline,

dried in a supercritical CO2 was possible to produce

carbon aerogels with large surface area and pore

volume, 892 m2/g and 1.80 cm3/g respectively, which

substantially further increased after CO2 activation,

1873 m2/g and 2.65 cm3/g respectively (Zu et al.

2016). Moreover, by comparing specific surface area

and total pore volume of the nonactivated carbonized

(carbonized at the same temperature 800 �C) and

freeze-dried carbon aerogel, 418 m2/g and 0.75 cm3/g

respectively, with their supercritical dried counter-

parts, 892 m2/g and 1.80 cm3/g respectively, it seems

that supercritical drying might be more effective. This

was attributed to the inner structure difference where

supercritically dried carbon aerogels are characterized

as homogenous and its nanofibrous structure tending

to aggregate less. Worth reporting that the process of

making based carbon aerogels from cellulose micro-

crystalline is more complex than previous cellulosic

nanofibers because it involves preparation of nanocel-

lulose gels and regeneration before obtaining aerogel

structure.

Thirdly, BCs have been carbonized to prepare

carbon aerogels. The preparation of BC as carbon

aerogel is a two-step process: freeze-drying of BC

pellicles, to preserve nanofibril structure, and car-

bonization at high temperature to convert BC aerogels

to low dense BC-based carbon aerogels (Wu et al.

2013; Huang et al. 2015). Other practices may involve

freezing at -196 �C in liquid nitrogen prior to freeze-

drying (Liang et al. 2012; Wang et al. 2014, 2020a) or

freezing in supercritical CO2 (Liebner et al. 2010).

BC-based aerogels, filled with 3D nanofibrous struc-

ture with a diameter equal or less than 20 nm, are

flexible and tend to be less dense, 0.004 to 0.008 cm3/g

(Liebner et al. 2010; Wu et al. 2013), than their

traditional carbon counterparts, 0.15 to 0.75 cm3/g (Fu

et al. 2003; Wu et al. 2004). Depending on the initial

size of BC pellicles and the fact that around 15% of the

initial volume will be lost, carbonized BC aerogels

size and volume can be tuned. In addition, BC aerogels

can afford reduction in volume up to 90% when the

carbon aerogels are under compression loads and

return to their original shape after removal of loads

(Wu et al. 2013). BC-based carbon aerogel hierarchi-

cal composites have also been developed (Wan et al.

2015; Huang et al. 2016; Zhuo et al. 2019; Wang et al.

2019a). For example, BC-based carbon aerogel dec-

orated with iron oxide nanoparticles was developed

with a specific surface area of 322 m2/g (Wan et al.

2015). Briefly, after obtaining BC aerogels in liquid

nitrogen, the as-prepared aerogels immersed in

Fe(NO3)3.9H2O solution for subsequent hydrothermal

synthesis to obtain Fe2O3 nanoparticles. The resulted

composite was freeze-dried and carbonized at 600 �C
to obtain BC-based carbon aerogels decorated with

Fe2O3 nanoparticles.

BC-based nitrogen-doped carbon aerogels can be

prepared simply by thermally treating BC pellicles in

ammonia environment followed by carbonization as

illustrated in Fig. 7. Such treatment further enhances

physical properties. For example, specific surface area

and pore volume of BC-based nitrogen-doped carbon

aerogels were found to be 875 m2/g and 0.78 cm3/g,

respectively. While specific surface area and pore

volume of pristine BC-based carbon aerogel were 585

m2/g and 0.55 cm3/g, respectively. Plus, nitrogen

doping decreased graphitization degree by imparting

defects (Zhu et al. 2018a). Nitrogen-doping has also

been featured for BC-based carbon aerogels. Recent

studies have demonstrated that nitrogen-doping in BC
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could be obtained by incorporating the 3D structure

with nitrogen-rich nanocrystals such as zeolitic imi-

dazolate frameworks, e.g. ZIF-8 and ZIF-67, that

contain 2-methylimidazole which is rich in nitrogen

species (Fei et al. 2020; Chen et al. 2019). For

example, using ZIF-8 nanocrystals, it was shown that

the nitrogen content could reach up to 7% at a

carbonization temperature of 900 �C (Chen et al.

2019).

Rapid microwave plasma pyrolysis as an alterna-

tive carbonization method has been reported to

carbonize BC (Islam et al. 2017). The procedure was

done in microwave plasma enhanced chemical vapor

deposition system in methane and hydrogen environ-

ment under controlled pressure. The estimated tem-

perature of carbonization was around 1200 �C. The
entire plasma pyrolysis had lasted only for 15 min, and

the pyrolyzed BC aerogel miniated its nanofibrous

structure. The reported surface area, 57.5 m2/g,

however, is inferior to traditionally carbonized BC

aerogels. Overall, cellulosic carbon aerogels prepared

from BC not only are easy to prepare compared with

other cellulosic precursors, but also show high quality

porous inner nanostructure.

Chitin

Depending on chitin source and preparation protocols,

chitin-based carbon aerogels have successfully been

developed with distinct inner structures. Usually,

chitin aerogels have nanofibrous inner structure with

a fine diameter of 10 nm (Nogi et al. 2010). Unlike

cellulose- and lignin-based carbon aerogels, chitin-

based carbon aerogels already contain high amount of

nitrogen atoms depending on carbonization condi-

tions, for example, at 600 and 900 �C the nitrogen

content is around 8% and 6%, respectively (Nogi et al.

2010; Li et al. 2015c). Moreover, self-doping of

heteroatoms, nitrogen and oxygen atoms, is possible

too. For example, nitrogen- and oxygen-rich chitin-

based nanosheets carbon aerogels with high surface

area of 586 m2/g and average pore size less than 2 nm

have been developed (Gao et al. 2019). The protocol

starts by dispersing chitin powder in phytic acid and

hydrogen peroxide solution before placing the mixture

in autoclave environment at elevated temperature of

110 �C for 6 h. Subsequently, after rinsing with water,

the mixture was freeze-dried before carbonization.

The attributed large surface area was thought to be

related to the decomposition of nitrogen and oxygen

content during carbonization.

Depending on the starting chitin, different prepa-

ration methods have been reported. One approach

involves the use of sol–gel method (Ding et al. 2012;

Dassanayake et al. 2018). First, chitin powder was

dispersed in NaOH-urea-water solution at low tem-

perature, - 20 �C, before thawing (Dassanayake

et al. 2018). Freezing and thawing cycles were

repeated more than once for the solution before

subjecting the obtained transparent solution to gela-

tion process at elevated temperature, 50 �C. After

washing with water, the hydrogel was freeze-dried

at - 105 �C. The chitin aerogel was carbonized at

800 �C and resulted in high specific surface area.

Another different approach illustrated in Fig. 8

involves using deacetylated chitins nanofibers dis-

persed in NaOH solution after weak acid treatment

(Ding et al. 2018). Next, a hydrogel process was

initiated by ammonia and ethanol gas coagulation to

form hydrogen cross-linking at room temperature.

Before freeze-drying, solvent exchange was carried

out using t-BuOH. The nanofibrous chitin aerogel was

carbonized at 500, 700, 900, and 1000 �C for 2 h. The

nitrogen and oxygen content of chitin-based carbon

Fig. 7 Preparation of bacterial cellulose-based carbon aerogel. Reprinted with permission from Zhu et al. (2018a). Copyright (2018)

Elsevier
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aerogel decreased as the carbonization temperature

increased. However, when the carbonization temper-

ature increased from 500 to 1000 �C, the surface area
and pore volume substantially increased from 528 to

1597 m2/g and from 1.5 to 3.2 cm3/g respectively,

while average pore size decreased from 5.7 to 4.1 nm,

respectively. A similar decreasing trend was observed

for graphitization degree as the carbonization temper-

ature increased, Raman intensity ratio of ID/IG (inten-

sity ratio of D band to G band) decreased from 1.02 to

0.89, respectively.

Hierarchal chitin-based carbon complex compos-

ites are another possible structure. For instance,

nanohybrid chitin/cellulose/NiFe2O4 composite aero-

gel rich with nitrogen was synthesized (Liu et al.

2020c). Briefly, a homogenous composite dispersion

of chitin/cellulose/NiFe2O4 synthesized in the pres-

ence of NaOH was heat treated in autoclave environ-

ment at 180 �C to form hydrogel once cooled down.

After thoroughly washing with water, the chitin/cel-

lulose/NiFe2O4 composite hydrogel was freeze-dried

to obtain aerogel. Finally, at different temperatures the

composite aerogel was carbonized. Before freeze-

drying, the nanofibers composed of both chitin, 8 nm

in diameter, and cellulose, 3–4 nm in diameter, was

thought to be used as nucleation sites to homogenously

growing NiFe2O4 nanoparticles with a diameter of

10 nm. However, after carbonization and freeze-

drying, the nanofibrous structure along the nanopar-

ticles became nanofiborus/nanosheets aerogel rich

with nitrogen atoms. In addition, the size of nanopar-

ticles increased dramatically to around 100 nm, which

could be controlled by controlling the carbonization

temperature and duration.

Protein

Protein-based carbon aerogels are rich with heteroa-

toms, especially nitrogen atoms, however, are brittle in

nature. The brittleness has shown to be overcome by

adopting protein-based composite instead. Such com-

posites are made of protein sources, e.g. ovalbumin,

soya bean flour, or silk regenerated proteins, and

carbohydrates, e.g. cellulose and glucose, or graphene

oxide (White et al. 2011; Yun et al. 2014a; Alatalo

et al. 2016). For instance, a composite carbon aerogel

was prepared from silk regenerated proteins, extracted

from cocoons, and graphene oxide (Yun et al. 2014a).

The composite was carbonized at 800 �C for 2 h to

convert proteins to carbon and graphene oxide to rGO.

Although the composite aerogel has a pore size of

around 11 nm, the specific surface area, 181 m2/g, is

very modest compared with other carbon aerogels.

Another example, soy bean flour, as the protein source,

mixed with either glucose or cellulose were car-

bonized at 1000 �C to fabricate carbon aerogels

Fig. 8 Preparation steps of chitin-based carbon aerogel. Reprinted with permission from Ding et al. (2018). Copyright (2018)

American Chemical Society
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(Alatalo et al. 2016). Results showed that soy protein-

glucose-based carbon aerogel has acceptable specific

surface area of around 449 m2/g and total pore volume

0.25 cm3/g, while soy protein-cellulose-based carbon

aerogel possesses higher specific surface area and

larger total pore volume, 697 m2/g and 0.38 cm3/g,

respectively, albeit its nitrogen content is lower. The

difference in physical properties was attributed to the

difference in the end physical structure of the

composites, where glucose-based carbon aerogel

resulted in aggregated nanoparticles and cellulose-

based carbon aerogel resulted in fibril structure.

Others

Unconventional biowastes and biomass materials have

been employed as carbon precursors to fabricate

aerogels. Hydrothermal treatment accompanied with

auxiliary chemical process have shown to be simple

and rapid approach to fabricate biomass-based, e.g.

glucose and agaric, hierarchical nanostructure carbon

aerogels (Fellinger et al. 2012; Zhang et al. 2019a).

For example, a hydrothermal treatment to agaric, type

of mushroom fungus, solution followed by freeze-

drying and carbonization chemical blowing resulted in

agaric-based nanosheets carbon aerogel with high the

specific surface area of 2200 m2/g (Zhang et al.

2019a). It was argued that the blowing gas, NH4CL,

decomposed into NH3 and HCl gases that generate

mesopores in the range 5 to 10 nm and also facilitated

the formation of 1.5 nm thick nanosheets carbon

layers. Another recent report has utilized hydrother-

mally treated aloe juice, a plant source, as carbon

precursor to fabricate Co3O4/C composite hierarchical

aerogel structure with high specific surface area, 728

m2/g (Yin et al. 2019). Figure 9 shows preparation

step of aloe-based carbon composite and its surface

morphology after freeze-drying, hydrothermal treat-

ment, and carbonization. The corresponding Raman

spectra and X-ray diffraction are also shown.

Unconventional carbon precursors that have been

used as a starting material for aerogels include

polysaccharides, waste foods, e.g. vegetables, fruits,

and nuts, and biowastes, e.g. leather. Polysaccharide

derivates aerogels have also successfully been utilized

as carbon precursors to form hierarchical aerogel

structures (El-Naggar et al. 2020; Si et al. 2016). To

illustrate, resilient konjac glucomannan-based nanofi-

brous carbon aerogel has been designed and fabricated

(Si et al. 2016). SiO2 nanofibers have been employed

as a template to support the inner honeycomb structure

of the aerogel. The resultant aerogel was reported to be

highly elastic with ultralarge porosity of 99.99% and

ultralow density of only 0.14 mg/cm3.

Waste foods and plant parts are excellent natural

precursors for cheap and high-quality carbon aerogels.

Many researchers have been investigating a wide

range of biowaste organic foods, e.g. vegetables,

fruits, and nuts, to fabricate high-performance elec-

trodes in a form of 3D-structure. Cabbage waste has

shown to be converted into carbon aerogels after a

series of treatment, cryofreezing, freeze-drying, and

carbonization (Cai et al. 2018). The partially nitrogen-

and oxygen doped cabbage-based carbon aerogel have

reported a high specific surface area of 536 m2/g and

an average pore size of 1.9 nm. Employing a simple

approach of hydrothermal treatment, freeze-drying

and carbonization, a recent study has utilized the core

of two tropical fruits, namely durian and jackfruit, to

fabricate carbon aerogels (Lee et al. 2020). Durian-

and jackfruit-based carbon aerogels exhibited specific

surface area and pore volume of around 618 m2/g and

0.4 cm3/g, and 511 m2/g and 0.28 cm3/g, respectively.

Both carbon-based aerogels showed relatively high

heteroatoms doping that were considered as important

pseudo-capacitance performance boosters. Likewise,

KOH activated hydrothermally treated pear, a fruit,

has been used to fabricate highly graphitized carbon

aerogel with ultrahigh specific surface area 2323 m2/g

(Myung et al. 2019). Other recent waste foods and

plant parts as carbon precursors are potatoes and elm

seeds (Lu et al. 2019; Guo et al. 2019).

Biowaste materials have engaged researchers’

attention to synthesize biowaste-based hierarchical

carbon aerogels as high-performance electrodes for

energy applications. For instance, leather, a natural

material, wastes were treated with KOH solution

before initiating freeze-drying and carbonization pro-

cesses (Liu et al. 2020d). The low-dense lather-based

aerogel, 0.56 mg/cm3, showed high specific surface

area of 2523 m2/g and heteroatoms doping. Another

example, sodium lignosulphonate, a biomass sub-

stance used in food industry, as carbon precursor and

mesoporous silica template as a supporting template

have been used to fabricate hierarchical ordered

activated with ZnCl2 (Bai et al. 2020). The aerogel

had a large specific surface area and pore volume of

1481 m2/g and 2.62 cm3/g, respectively. Likewise,
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wheat straw, harvesting biowaste, has been treated to

fabricate lignocellulose-based 30 nm thick nanosheets

carbon foam with large specific surface area and large

mean pore size, 1063 m2/g and 420 nm, respectively

(Gou et al. 2020).

Bio-based nanostructured carbon materials

for high-performance energy applications

Biomass and biowaste carbon precursors are abun-

dant, environment friendly, and renewable materials.

Such biomass and biowaste materials include lignin,

cellulose, chitin, protein, and other unconventional

biomass choices, e.g. food waste, flowers, seeds, plant

Fig. 9 a preparation steps of aloe-based carbon aerogel, SEM

images of aloe composite after b freeze-drying, c hydrothermal

treatment, and d carbonization at 700 �C, e–g TEM images and

elemental analysis of aloe-based carbon composite aerogel, and

h, i corresponding XRD pattern and Raman spectra. Reprinted

with permission from Yin et al. (2019). Copyright (2019)

Elsevier
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by-product wastes, etc. After carbonization, each of

these materials possesses unique physical, chemical,

and morphological properties qualifying it to be a

high-performance electrode in energy storage devices,

namely lithium-ion batteries and supercapacitors

(Selvan et al. 2018; Li et al. 2018a; Zhu et al. 2020a).

The paradigm shift we are witnessing toward

electric vehicles and high-performance electronic

portables pushes the limit of energy storage devices

every day. To meet such technological demand, new

material preparation protocols have been researched

and developed to reach high electrochemical perfor-

mance in energy storage devices using carbon-based

electrodes. Such protocols involve doping of single

atoms or heteroatoms, increasing specific surface

area, and enhancing physical structure. In the fol-

lowing sections, a review of the factors influencing

electrochemical performance and summary of the

most recent electrochemical performance of bio-based

carbon electrodes in rechargeable batteries and SCs

are given.

Factors influencing electrochemical performance

of carbon electrodes

In energy storage devices, it has been established that

N-doped (nitrogen-doped) carbon electrodes show

better electrochemical performance than the same

non-doped electrodes. For example, in SCs, N-doped

carbon electrodes yielded lower resistance (0.23 X)
and higher capacitance (313 F.g-1 at 1 A.g-1)

compared with non-doped carbon electrodes that

yielded higher resistance (1.32 X) and lower capac-

itance (* 225 F.g-1 at 1 A.g-1) (Zhao et al. 2015a). It

was also demonstrated that N-doped carbon electrodes

are of hydrophilic nature (Zhai et al. 2011; Yang and

Zhou 2017; Chen et al. 2017) while non-doped

counterpart is of hydrophilic nature (Zhao et al.

2015a). Therefore, the enhancement in SCs using

N-doped electrodes is attributed to the increased ion

diffusion, improved wettability, and pseudocapaci-

tance activity which is the result of nitrogen doping

(Zhao et al. 2015a; Hou et al. 2015). Similar

enhancement is seen in LIBs after nitrogen doping,

which is attributed to the ability of lithium ions to be

tucked and stored between the defect sites created by

the presence of nitrogen functional groups (Zhang

et al. 2014). Generally, N-doping can be realized by

carbonizing enriched-nitrogen carbon precursors, e.g.

PAN, at low temperature to maintain some of the

original nitrogen content. Another important class of

doping is sulfur-doping. Sulfur-doping enhances

cycling stability, increases conductivity, and paves

the way for more ions to be stored by providing extra

reactive spots (Yun et al. 2014b; Li et al. 2015b).

Additionally, oxygen- and heteroatom-doping have

also shown to enhance the electrochemical perfor-

mance of energy storage devices by increasing wet-

tability, microporosity, and pseudocapacitance

activity (Wu et al. 2012; Chen et al. 2014; Xu et al.

2017). For example, three-dimensional heteroatom-

doping using phosphor, boron, and nitrogen atoms was

shown to be an effective approach to improve

electrochemical performance in SCs (Chen et al.

2014).

Another effective approach to enhance reach high

electrochemical performance is by adopting materials

with high specific surface area. The main virtues of

high specific surface area in an electrode in energy

applications are the extra space provided for ions in the

electrolyte solution to be stored at higher rate,

facilitation of ions diffusion, and lower electrical

resistance (Yang et al. 2011; Liu et al. 2017b). It has

been shown that electrodes with high specific surface

area result in high-performance electrodes regardless

of the initial starting materials, e.g. graphene or PAN

(Zhang and Lou 2013; Zhang et al. 2013; Heo et al.

2019). Generally, for carbon-based electrodes, high

specific surface area can be achieved by either

physical or chemical activation or by incorporation

of nanoparticles to increase roughness of the surface as

is discussed in the previous section.

Physical structure is mainly related to the stability

of the electrode which provides a better medium to

store energy. That could be controlled by modifying

the preparation protocol to involve steps promoting

stable physical structure, for example, freeze-dried

carbon-based aerogels allow for a stable physical

structure and a control over the nanoporous structure

that results in electrodes of good electrochemical

stability and high-performance (Jung et al. 2015; Zhou

et al. 2018). The physical structure of carbon materials

could be further enhanced by allowing graphene-like

nanosheets to be apart from each other so that an extra

space is available for ions to be tucked in and stored.

This approach was best illustrated in a recent work

particularly for supercapacitors (Dai et al. 2019). It

was shown that the additional spaces provided by

123

Cellulose (2021) 28:5169–5218 5199



graphene-like nanosheets not only improved electro-

chemical performance but may be also was advanta-

geous to the cycle life of the device.

High-performance bio-based nanostructured

electrodes in rechargeable batteries

Efforts to utilize carbon-based materials in energy

storage devices as functional electrodes have been

widely noted among many research groups due to their

chemical and electrochemical stability and charge

storage ability (Zhu et al. 2015, 2016, 2020a; Li et al.

2018b). Conventional batteries consist of electrodes,

electrolyte, and a separator. In principle, lithium ions

flow in the electrolyte (e.g. lithium hexafluorophos-

phate dissolved in DMC or EC. See Table 7 for more

details) from cathode and intercalates on anode during

charging, and flow in reverse during discharging. The

anode and cathode are physically separated by a

porous separator to prevent short circuit control flow

of ions.

Five of the most researched batteries are lithium-

ion battery (LIB), lithium-oxygen battery (Li–O),

lithium-sulfur battery (Li–S), sodium-ion battery

(NIB), and potassium-ion battery (KIB) due to their

abundance in Earth and good performance (Ji 2019).

The advance of their electrochemical performance is

mainly tight with the advance of the electrodes by

extending the life cycle and increasing the reversible

capacity. In batteries, efforts aimed at fabricating

high-performance electrodes to meet the ever-increas-

ing technological demands. For many groups, devel-

oping and testing the performance of carbon-based

electrodes in batteries have been their immediate aim

(Zhu et al. 2016, 2018b; Li et al. 2018a).

The most recent research has been focusing on

utilizing biomass or biowaste materials that delivers

high degree of oxygen and nitrogen species to allow

for self-doing mechanisms after carbonization, or that

delivers high specific surface area, or a combination of

the two (Gao et al. 2017b). They also focused on

artificially sulfur-doping the initial starting materials

to allow for heteroatoms- or co-doping in order to

enhance the overall performance of the battery. To

demonstrate, as shown in Fig. 10, in LIBs and Li-Ss,

large reversible specific capacities exceeding 500

mAhg-1 limit with electrochemical stability over 100

cycles have been demonstrated by utilizing honey-

comb-like carbon electrode derived from bagasse

(Wan and Hu 2020). Such high-performance was

mainly attributed to the synergetic effect of the sulfur

and oxygen species hanging from the honeycomb-like

structure. For both LIBs and Li-Ss, it was shown that

the higher the sulfur/oxygen ratio the larger the storage

capacity as long as the sulfur amount did not exceed

the optimum limit because otherwise conductivity

might be negatively affected. It has been shown that

that bio-based carbon electrodes in Li-Ss reduce the

effect of the shuttle effect (Wang et al. 2017a; Senthil

and Lee 2021). A recent study focused on designing

high specific surface area and pore volume for a

carbon anode, derived from reed flowers, in Li–S

(Wang et al. 2020c). As a result of the tailored

morphology, a large reversible specific capacity of 908

mAhg-1 with electrochemical stability over 100

cycles were achieved. It was argued that the large

surface area and pore volume helped in increasing the

adsorption of sulfur and polysulfide, thus minimizing

dissolution of polysulfide or shuttle effect, and as a

result large capacity good electrochemical stability

were achieved. Other groups have also demonstrated

the applicability of using the different properties of

biomass-based electrodes to deliver high-performance

in other storage batteries, e.g. as Li-OBs, NIBs, and

KIBs, by manipulating the physical and chemical

properties of those electrodes (Hao et al. 2018b; Sun

et al. 2019b; Yang et al. 2020).

Efforts to develop high-performance composite

biomass-based electrodes in storage batteries have

also been reported (Zhang et al. 2020a; Sun et al.

2019b). Incorporating the right amount of NiCo2O4

nanoparticles/nanoneedles in carbonized pomelo peel,

working as anode in LIB, increased specific surface

area that in turn enhanced storage capacitance up to

474 mAhg-1 after 120 cycles (@0.5 Ag-1) (Zhang

et al. 2020a). And also allowed for a stable perfor-

mance over 1100 cycles at a capacitance of 363

mAhg-1 at current density of 2 Ag-1. In a separate

study concerning the cathode of Li-Os, it was shown

that by embedding CoFeP nanodots in a honeycomb-

like anode derived from egg white rich with nitrogen

and oxygen species, large storage capacitance of 1000

mAhg-1 after 141 cycles (@0.1 Ag-1) was recorded

as shown in Fig. 11 (Sun et al. 2019b). Although the

incorporation of CoFeP nanodots might have blocked

some pores on the surface of the carbonized egg white

leading to a lower specific surface area than pristine

carbonized egg white, the large capacitance and the
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Table 7 Electrochemical performance of biomass- and biowaste-based carbon electrodes in batteries

Carbon

precursor

Nanostructure

of the

electrode/

Assembly

state-of-the-art

Battery

type

Electrolyte Additive Reversible

specific

capacity

(mAhg-1)/#

of cycles/

@current

density

(Ag-1)

Capacity

retention

rate (%)

Coulombic

efficiency

References

Bagasse Honeycomb-

like/Polymer

binder

Lithium-

ion

1.25 M LiPF6 in

a mixture of

DMCa and ECb

(1:1 vol%)

– 691/100/0.1 – 99.1% after

50 cycles

Wan and

Hu

(2020)

Lignin Nanofiber

membrane/

Binder-free

Lithium-

ion

1 M LiPF6 in

mixture of EC

&DECc

Fe2O3 * 715/80/

0.05

95.1% – Ma et al.

(2019)

Lignin Nanofiber

membrane/

Binder-free

Lithium-

ion

1 M LiPF6 in

mixture of EC

&DEC with 3

wt.% VCc

– 611/500/

[0.5C]

– – Culebras

et al.

(2019)

Pomelo peels Wrinkled

sheet/

Polymer

binder

Lithium-

ion

1 M LiPF6 in a

mixture of EC

and DMC (1:1

vol%)

NiCo2O4 * 500/120/

0.05

– 97.6% after

120

cycles

Zhang

et al.

(2020a)

Corn straw Nanoparticles/

Polymer

binder

Lithium-

ion

1 M LiPF6 in a

mixture of EC

and DMC (1:1

vol%)

– 546/100/

[0.2C]

– 85.8% after

100

cycles

Yu et al.

(2020)

Seaweed 3D connected

network/

Binder-free

Lithium-

ion

1 M LiPF6 in a

mixture of EC

and DMC (1:1

vol%)

– 550/300/[1C] – – Zhang

et al.

(2017a)

Reed flowers Nanoporous

powder/

Polymer

binder

Lithium-

sulfur

1 M LiTFSI in a

mixture of

DMEd &DOLe

(1:1 vol%)

– 908/100/

[0.1C]

– 99.7% after

100

cycles

Wang

et al.

(2020c)

Pomelo peel Nanoporous

powder/

Polymer

binder

Lithium-

sulfur

1 M Li2S

&sublimated

sulfur in a

mixture of

DME &DOL

(1:1 vol%)

– 718/300–/

[0.2C]

– 98% after

300

cycles

Xiao et al.

(2020)

Nanocellulose 3D nanofibril

network/

Binder-free

Lithium-

sulfur

1 M LiTFSI in a

mixture of

DME &DOL

(1:1 vol%)

– 590/200/

[0.5C]

– Close to

100%

after 200

cycles

Chen et al.

(2020a)

Egg white 3D

honeycomb-

like/Polymer

binder

Lithium-

oxygen

1 M

LiN(CF3SO2)2
in a mixture of

TEGDMEf

CoFeP 1000/141/0.1 – – Sun et al.

(2019b)
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Table 7 continued

Carbon

precursor

Nanostructure

of the

electrode/

Assembly

state-of-the-art

Battery

type

Electrolyte Additive Reversible

specific

capacity

(mAhg-1)/#

of cycles/

@current

density

(Ag-1)

Capacity

retention

rate (%)

Coulombic

efficiency

References

Starch Nanoporous

skeleton/

Polymer

binder

Lithium-

oxygen

1 M LiTFSI in a

mixture of

TEGDME

IrCo 100/ * 210/

0.2

77 – Shen et al.

(2019)

Pomelo peel Microtube/

Coated on

carbon paper

Lithium-

oxygen

1 M LiCF3SO3

in a mixture of

TEGDME

NiFe 13.8/290/0.1* – 99.4 Jing et al.

(2019)

Bagasse Honeycomb-

like/Polymer

binder

Sodium-

ion

1.25 M NaPF6

in a mixture of

DMC &EC

(1:1 vol%)

– 506/100/0.1 – Close to

100%

after 50

cycles

Wan and

Hu

(2020)

Bacterial

cellulose

Nanofiber

membrane/

Binder-free

Sodium-

ion

1 M NaOTfg in a

mixture of

diglyme

– 233/100/0.2 – – Yang et al.

(2019)

Chitin Nanofiber/

Polymer

binder

Sodium-

ion

1 M NaClO4 in

a mixture of

EC &DEC (1:1

vol%)

&5 wt.% FECh

– 105/8000/1 85% Close to

100%

after 8000

cycles

Hao et al.

(2018b)

Spring onion

peel

Parallel thin

flake/

Polymer

binder

Sodium-

ion

1 M NaClO4 in

a mixture of

EC &DEC (1:1

vol%)

&5 wt.% FEC

– 605/2000/

0.05

94% – Zhao et al.

(2020)

Cotton linter

pulp

Wrinkled flake

cauliflower/

Polymer

binder

Sodium-

ion

1 M NaClO4 in a

mixture of EC

and PCi (1:1

vol%) & 5

wt.% FEC

395/500/0.1 – Close to

100%

after 500

cycles

Dan et al.

(2020)

Potato Porous

powder/

Polymer

binder

Potassium-

ion

3 M KFSIj in a

mixture of

DME

– 248/100/0.1 91.7 Close to

100%

after 400

cycles

Cao et al.

(2019)

Chitin Nanofiber

powder/

Polymer

binder

Potassium-

ion

0.8 M KPF6 in a

mixture of EC

&DEC (1:1

vol%)

– 215/100/

[0.2C]

– 90% after

100

cycles

Hao et al.

(2018a)

Ganoderma

lucidum

spore

(Fungus)

Cage-like

porous

powder/

Polymer

binder

Potassium-

ion

1 M KPF6 in a

mixture of EC

&DEC (1:1

vol%)

– 407/50/0.05 94.1 90% after

50 cycles

Yang et al.

(2020)
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stability over 140 cycles were the result of unique

physical structure (honeycomb-like) and the combined

effect and activity role of Co, Fe, and P.

Most of the high-performance electrodes that are

derived from some biomass precursors are assembled

using polymer binders. Although polymer binders are

essential additive to support the active powder in

storage batteries, as a consequence, the dead-weight of

the electrode increases, overall electrochemical per-

formance drops, and the preparation time and cost

increase (Zhang and Lou 2013; Shen et al. 2015;

Zhang et al. 2017b). A common approach to tackle this

issue is done by adopting self-standing materials such

as in the case of lignin-based CNFs and bacterial

cellulosic-based CNFs. Table 7 summarizes the elec-

trochemical performance of polymer binders and

binder-free electrodes derived from a wide variety of

biomass and biowaste materials. Using lignin as CNFs

precursor to fabricate anode for LIBs, a remarkable

reversible specific capacity of around 715 mAhg-1

with capacity retention over 95% was reported, albeit

the electrochemical stability extends to only 80 cycles

(Ma et al. 2019). The large capacity was the result of

the incorporation of iron oxide nanoparticles which

have high theoretical capacity. Self-standing bacterial

cellulose-based CNFs as an anode in NIB resulted in a

somewhat moderate reversible specific capacity of

233 mAhg-1 (Yang et al. 2019). However, most self-

standing biomass-based carbon electrodes lack the

ability of self-doping due to the nature of the starting

materials, e.g. lignin, bacterial cellulose, and cellulose

acetate, that luck enough nitrogen and oxygen species

after carbonization. Hence, adopting an appropriate

aerogel preparation protocol as the assembly method

for the biomass materials that sustain self-doping is a

promising approach and also promotes a unique

physical property. For example, by adopting alginate

from seaweed as the starting carbon precursor, a

carbon aerogel anode was fabricated for Li–S (Zhang

et al. 2017a). It was shown that even at high current

density of 1C the reversible specific capacity reaches

550 mAhg-1 after 300 cycles. The adoption of

nitrogen- and oxygen-enriched species biomass- and

biowaste-based carbon aerogel anodes in storage

batteries is still limited and more research is needed

to unravel its true potential.

High-performance bio-based nanostructured

electrodes in supercapacitors

SC is another important class of storage devices that

can deliver high power in short period of time. Their

excellent cycling stability is another outstanding

feature that storage batteries lack. The main parts of

a supercapacitor are electrodes, electrolyte, and a

separator. As in the case with rechargeable batteries,

the electrolyte provides the medium for ions to float

during charging and discharging, and the separator

keeps the electrodes physically apart. The electrodes

are the main functional part that contributes the most

Table 7 continued

Carbon

precursor

Nanostructure

of the

electrode/

Assembly

state-of-the-art

Battery

type

Electrolyte Additive Reversible

specific

capacity

(mAhg-1)/#

of cycles/

@current

density

(Ag-1)

Capacity

retention

rate (%)

Coulombic

efficiency

References

Bamboo

charcoal

Rod-like

powder/

Polymer

binder

Potassium-

ion

0.8 M KPF6 in a

mixture of EC

&DEC (1:1

vol%)

– 393/300/0.05 87.1 Close to

100%

after 300

cycles

Tian et al.

(2020)

*Capacity and current density units are in mAhcm-2 and mAcm-2, respectively. a refers to dimethyl carbonate, b refers to ethylene

carbonate, c refers to diethyl carbonate, d refers to 1,2-dimethoxy ethane, e refers to1,3-dioxolane, f refers to tetraethylene

glycoldimethyl ether, g refers to sodium triflate, h refers to fluoroethylene carbonate, i refers to propylene carbonate, and j refers to

potassium bis(fluoro-slufonyl)imid
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to the electrochemical performance. One of the best

suited electrodes is carbon-based due to their excellent

physical properties and chemical stability in SCs

(Merlet et al. 2012).

The recent research in SCs has been concerned

about obtaining high-performance electrodes derived

from renewable sources. Although the starting bio-

mass and biowaste materials are ubiquitous, the

approach of obtaining high-performance electrodes

is almost the same which is fabricating electrodes with

superior specific surface area, controlled physical

structure, doping with different atoms, and enhanced

Fig. 10 Electrochemical and cycle performance of bagasse-derived electrodes at different current densities in (1) LIB and (2) in Li–S.

Reprinted with permission from Wan and Hu (2020). Copyright (2020) Elsevier

Fig. 11 Electrochemical and cycle performance of CoFeP nanodots incorporated in a honeycomb-like electrode derived from egg

white at different current densities. Reprinted with permission from Sun et al. (2019b). Copyright (2018) Elsevier
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pseudocapacitance activity by incorporating active

materials. Electrodes made of activated eggshells, in a

supercapacitor that its other parts (electrolyte and

separator) are also made of the rest of the eggs (white,

yolk, and membrane), delivered high capacitance of

421 Fg-1 with high power of 10 KWkg-1 (Zhang et al.

2019b). The results were attributed to the high specific

surface area and self-doped nitrogen, oxygen, and

sulfur species that might have triggered pseudocapac-

itance activities. Utilizing walnut shell-based elec-

trodes with ultrahigh specific surface area and tuned

pore size delivered capacity of 216 Fg-1 with high

energy density and ultrahigh power density of 48

Whkg-1 and 100 KWkg-1, respectively (Shang et al.

2020). This is illustrated by Fig. 12 which shows a

comparison between the electrochemical performance

of the walnut shell-based electrode and an activated

carbon counterpart. The large surface area facilitated

ion and electron transport, while the tuned pores

facilitated accumulation of charges, thus larger capac-

itance was achieved. Other recent efforts have utilized

biomass and biowaste materials such as cabbage,

durian, and aloe to obtain high-performance electrodes

to deliver high power density with relevantly high

energy density (Cai et al. 2018; Yin et al. 2019; Lee

et al. 2020). Table 8 summarizes the electrochemical

performance of various bio-based carbon materials in

SCs. The excellent electrochemical performance can

also be explained by the inner structure that provides

new paths for ion diffusions and space for storing

charges, and enhanced interface between electrodes

and electrolyte which is the result of nitrogen and

oxygen species. In addition, the nitrogen content also

increases electronic conductivity that in turn increases

pseudocapacitance activities.

Unlike electrodes in batteries, binder-free elec-

trodes in SCs are much common. The two most

common approaches for a binder-free electrode are

electrospun membranes and aerogels as summarized

in Table 8. With such processed materials it is not only

possible to obtain high-performance and self-standing

materials, but also it is possible to modify the starting

materials to embed additives to further enhance the

performance. Incorporating graphene nanosheets in

Fig. 12 Preparation steps and the electrochemical performance of the walnut shell-based electrode compared with an activated carbon

counterpart. Reprinted with permission from Shang et al. (2020). Copyright (2020) Elsevier
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lignin-PAN-based electrospun electrode was argued to

increase specific surface area and to anchor nitrogen

and sulfur species in the base material after carboniza-

tion that otherwise might have decomposed to gases

(Dai et al. 2019). The composite delivered an

enhanced energy density of around 9.3 Wh kg-1

compared to the pristine electrode’s, 4.1 Wh kg-1.

Impressively, the incorporation of Co3O4 nanocrystals

in aloe-based aerogel electrode improved the pseudo-

capacitance activity by delivering a capacitance of

Table 8 Electrochemical performance of biomass- and biowaste-based carbon electrodes in supercapacitors

Carbon

precursor

Nanostructure of

the electrode/

Assembly state-

of-the-art

Electrolyte Additive Specific

capacitance

(Fg-1)/current

density (Ag-1)

Energy

density

(Wh

kg-1)

Power

density (W

kg-1)

Rate

capability

References

Organosolv

lignin

Nanofibers/

Binder-free

6 M KOH Graphene

nanosheet

267/1 9.3 493 97% after

5000

cycles

Dai et al.

(2019)

N.

Enzymatic

hydrolysis

lignin

Nanofibers/

Binder-free

6 M KOH – 345/1 – – 97% after

2000

cycles

Zhang

et al.

(2020b)

Lignin

extracted

from

poplar

sawdust

Multichannel

nanofibers

powder/

Polymer binder

6 M KOH SnO2 406/0.5 11.5 451 95% after

10,000

cycles

Cao et al.

(2020)

Cellulose

nanofibrils

3D nanofibril

network/

Binder-free

2 M KOH NiCo2S4 1569/0.5 53.7 184 78% after

5000

cycles

Liu et al.

(2020a)

Chitin hierarchical

nanoporous

structure/

Binder-free

6 M KOH – 413/0.5 9.7 – 99.6%

after

10,000

cycles

Wang

et al.

(2020b)

Chitin 3D nanofibril

network/

Binder-free

6 M KOH – 221/1 – – 92% after

8000

cycles

Ding et al.

(2018)

Eggshell Graphene-like

nanoporous

powder/

Polymer binder

6 M KOH

mixed

with egg

white

&yolk

– 421/0.5 * 7 * 10,000 – Zhang

et al.

(2019b)

Walnut shell Stacked flake

powder/

Polymer binder

6 M KOH – 216/0.5 48 100,000 81% after

10,000

cycles

Shang

et al.

(2020)

Aloe 3D net-like

network/

Binder-free

6 M KOH Co3O4 1345/1 68.2 549 92.7%

after

10,000

cycles

Yin et al.

(2019)

Cabbage 3D nanoporous

network/

Binder-free

6 M KOH – 291/0.5 97.1 1456 96.8%

after

10,000

cycles

Cai et al.

(2018)

Durian 3D tunneled

network/

Binder-free

0.5 M KOH – 519/1 41.5 730 – Lee et al.

(2020)
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1345 Fg-1 (@1 Ag-1) with excellent cycling stability

over 10,000 cycles and energy density of 68.2

WhKg-1 (Yin et al. 2019). Other additives such as

SnO2 and NiCo2S4 have been investigated for their

performance in SCs (Liu et al. 2020a; Cao et al. 2020).

Even with the substantial efforts that have been made

to improve the current state of SCs more research is

needed to deliver higher energy density at high power

density of carbon electrodes derived from biomass and

biowaste resources.

Summary and perspective

Environmentally sustainable bio-based carbon precur-

sors are excellent alternatives to precursors of

petroleum chemicals origin. Bio-based carbon precur-

sors are inexpensive due to their large abundance in

nature. Moreover, bio-based carbon electrodes have

excellent physical properties that permit them to

perform outstandingly in energy storage applications.

In this review, emerging and recent bio-based carbon

precursors as high-performance electrodes in energy

storage applications are classified and categorized

based on their nanostructured morphologies (0D, 1D,

2D, and 3D) and natural origin. Some of these carbon

precursors are lignin, cellulose, chitin, protein (e.g.

egg), and other unconventional precursors (e.g. plant

and food wastes). Under the four morphological

categories, each of these materials is summarized

and critically evaluated in terms of methodology,

preparation protocols, morphology, physical proper-

ties, and doping mechanisms. In addition, the electro-

chemical performance of the most recent bio-based

electrodes is discussed and summarized for recharge-

able batteries and supercapacitors. The entirety of the

review also serves as compacted guideline to design

high-performance bio-based carbon electrodes for

energy storage applications.

Tremendous efforts have been noted on designing

and fabricating novel nanostructured bio-based elec-

trodes with excellent morphological and physical

properties that are capable of delivering high electro-

chemical performance in batteries and supercapaci-

tors. Some studies focused on engineering nanoporous

electrodes with specific surface area of larger than

1000 m2/g and even exceeding 3000 m2/g limit.

Depending on the initial precursor, such physical

properties are the results of the novel preparation

protocols combined with some activation agents.

While other studies worked on developing novel

methods demonstrating the feasibility of heteroatoms-

and self-doping in bio-based carbon electrodes. This is

achieved either by finding methods to maintain the

already existed species (e.g. nitrogen and oxygen

groups) in the bone structure of the biomass material

after carbonization, or by artificially importing some

species by incorporating different substances. Such

outstanding properties have shown to promote large

capacity and ionic conductivity, increase in pseudo-

capacitance activity, and extend electrochemical sta-

bility. As a result, high-performance bio-based carbon

electrodes have also been developed.

Despite the noted huge efforts to utilize bio-based

carbon precursors as high-performance electrodes,

more research focusing on further improving the

current status of rechargeable batteries and superca-

pacitors to meet the ever-increasing future demands is

imperative. To improve the status of bio-based carbon

electrodes in energy applications the following chal-

lenges need to be addressed in future studies: (i) For

most biomass and biowaste materials, the carbon yield

is very low compared with synthetic materials.

Increasing carbon yield would decrease the cost of

processing which will reflect back on the total cost of

the energy device. This can be approached by

deploying additives that minimize the loss of carbon

species during carbonization. (ii) The relation between

specific surface area, pore size, and doping should be

further investigated so that electrodes with optimum

physical properties can be designed to obtain the best

electrochemical performance possible. (iii) Due to the

processing nature of some biomass and biowaste

materials, the final carbonized state requires the use of

organic binders to assemble it together as functional

electrode. However, such approach undermines the

overall performance of the electrode. To tackle this

issue, developing new and simple preparation proto-

cols to fabricate free-standing electrodes from mate-

rials that sustain self-doping are urged.

To summarize, environmentally sustainable bio-

based carbon electrodes possess unique physical and

chemical properties for high-performance electro-

chemical applications. Further research and more

efforts are needed to tackle the immediate barriers to

fully exploit the potential of the electrodes in energy

storage applications.
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Brodin I, Sjöholm E, Gellerstedt G (2010) The behavior of kraft

lignin during thermal treatment. J Anal Appl Pyrolysis

87:70–77. https://doi.org/10.1016/j.jaap.2009.10.005

Cai J, Niu H, Li Z et al (2015) High-Performance Supercapacitor

Electrode Materials from Cellulose-Derived Carbon

Nanofibers. ACS Appl Mater Interfaces 7:14946–14953.

https://doi.org/10.1021/acsami.5b03757

Cai T, Wang H, Jin C et al (2018) Fabrication of nitrogen-doped

porous electrically conductive carbon aerogel from waste

cabbage for supercapacitors and oil/water separation.

J Mater Sci Mater Electron 29:4334–4344. https://doi.org/

10.1007/s10854-017-8381-5

Cao L, Kruk M (2015) Ordered arrays of hollow carbon nano-

spheres and nanotubules from polyacrylonitrile grafted on

ordered mesoporous silicas using atom transfer radical

polymerization. Polymer 72:356–360. https://doi.org/10.

1016/j.polymer.2015.04.003

Cao M, Cheng W, Ni X et al (2020) Lignin-based multi-chan-

nels carbon nanofibers @ SnO2 nanocomposites for high-

performance supercapacitors. Electrochim Acta

345:136172. https://doi.org/10.1016/j.electacta.2020.

136172

Cao W, Zhang E, Wang J et al (2019) Potato derived biomass

porous carbon as anode for potassium ion batteries. Elec-

trochim Acta 293:364–370. https://doi.org/10.1016/j.

electacta.2018.10.036

Chatterjee S, Saito T (2015) Lignin-Derived Advanced Carbon

Materials. Chemsuschem 8:3941–3958. https://doi.org/10.

1002/cssc.201500692

Chen C, Yu D, Zhao G et al (2016a) Three-dimensional scaf-

folding framework of porous carbon nanosheets derived

from plant wastes for high-performance supercapacitors.

Nano Energy 27:377–389. https://doi.org/10.1016/j.

nanoen.2016.07.020

Chen F, Li J (2010) Synthesis and Structural Characteristics of

Organic Aerogels with Different Content of Lignin. In:

Adv. Mater. Res. /AMR.113–116.1837. Accessed 19 May

2020

Chen F, Xu M, Wang L, Li J (2011) Preparation and charac-

terization of organic aerogels by the lignin - resorcinol -

formaldehyde copolymer. BioResources 6:1262–1272

Chen H, Liu T, Mou J et al (2019) Free-standing N-self-doped

carbon nanofiber aerogels for high-performance all-solid-

state supercapacitors. Nano Energy 63:103836. https://doi.

org/10.1016/j.nanoen.2019.06.032

Chen H, Wang G, Chen L et al (2018a) Three-Dimensional

Honeycomb-Like Porous Carbon with Both Interconnected

Hierarchical Porosity and Nitrogen Self-Doping from

Cotton Seed Husk for Supercapacitor Electrode. Nano-

materials 8:412. https://doi.org/10.3390/nano8060412

Chen J, Liu Y, Liu Z et al (2020a) Carbon nanofibril composites

with high sulfur loading fabricated from nanocellulose for

high-performance lithium-sulfur batteries. Colloids Surf

Physicochem Eng Asp 603:125249. https://doi.org/10.

1016/j.colsurfa.2020.125249

Chen L-F, Huang Z-H, Liang H-W et al (2013a) Flexible all-

solid-state high-power supercapacitor fabricated with

nitrogen-doped carbon nanofiber electrode material

derived from bacterial cellulose. Energy Environ Sci

6:3331–3338. https://doi.org/10.1039/C3EE42366B

Chen L-F, Huang Z-H, Liang H-W et al (2013b) Bacterial-

Cellulose-Derived Carbon Nanofiber@MnO2 and Nitro-

gen-Doped Carbon Nanofiber Electrode Materials: An

Asymmetric Supercapacitor with High Energy and Power

Density. Adv Mater 25:4746–4752. https://doi.org/10.

1002/adma.201204949

Chen L-F, Huang Z-H, Liang H-W et al (2014) Three-Dimen-

sional Heteroatom-Doped Carbon Nanofiber Networks

Derived from Bacterial Cellulose for Supercapacitors. Adv

Funct Mater 24:5104–5111. https://doi.org/10.1002/adfm.

201400590

Chen S, Koshy DM, Tsao Y et al (2018b) Highly Tunable and

Facile Synthesis of Uniform Carbon Flower Particles. J Am

Chem Soc. https://doi.org/10.1021/jacs.8b05825
Chen W, Gong M, Li K et al (2020b) Insight into KOH acti-

vation mechanism during biomass pyrolysis: Chemical

reactions between O-containing groups and KOH. Appl

Energy 278:115730. https://doi.org/10.1016/j.apenergy.

2020.115730

Chen W, Hu C, Yang Y et al (2016b) Rapid synthesis of carbon

dots by hydrothermal treatment of lignin. Mater Basel

Switz. https://doi.org/10.3390/ma9030184

Chen Y, Xiao Z, Liu Y, Fan L-Z (2017) A simple strategy

toward hierarchically porous graphene/nitrogen-rich car-

bon foams for high-performance supercapacitors. J Mater

Chem A 5:24178–24184. https://doi.org/10.1039/

C7TA09039K

Cheng D, Tian M, Wang B et al (2020) One-step activation of

high-graphitization N-doped porous biomass carbon as

advanced catalyst for vanadium redox flow battery. J Col-

loid Interface Sci 572:216–226. https://doi.org/10.1016/j.

jcis.2020.03.069

123

5208 Cellulose (2021) 28:5169–5218

https://doi.org/10.1021/bm201828g
https://doi.org/10.1021/bm201828g
https://doi.org/10.1557/mrs.2017.88
https://doi.org/10.1016/j.carbon.2015.09.108
https://doi.org/10.1016/j.carbpol.2015.11.036
https://doi.org/10.1016/j.carbpol.2015.11.036
https://doi.org/10.1186/s11671-020-03305-0
https://doi.org/10.1186/s11671-020-03305-0
https://doi.org/10.1002/app.33596
https://doi.org/10.1016/j.jaap.2009.10.005
https://doi.org/10.1021/acsami.5b03757
https://doi.org/10.1007/s10854-017-8381-5
https://doi.org/10.1007/s10854-017-8381-5
https://doi.org/10.1016/j.polymer.2015.04.003
https://doi.org/10.1016/j.polymer.2015.04.003
https://doi.org/10.1016/j.electacta.2020.136172
https://doi.org/10.1016/j.electacta.2020.136172
https://doi.org/10.1016/j.electacta.2018.10.036
https://doi.org/10.1016/j.electacta.2018.10.036
https://doi.org/10.1002/cssc.201500692
https://doi.org/10.1002/cssc.201500692
https://doi.org/10.1016/j.nanoen.2016.07.020
https://doi.org/10.1016/j.nanoen.2016.07.020
https://doi.org/10.1016/j.nanoen.2019.06.032
https://doi.org/10.1016/j.nanoen.2019.06.032
https://doi.org/10.3390/nano8060412
https://doi.org/10.1016/j.colsurfa.2020.125249
https://doi.org/10.1016/j.colsurfa.2020.125249
https://doi.org/10.1039/C3EE42366B
https://doi.org/10.1002/adma.201204949
https://doi.org/10.1002/adma.201204949
https://doi.org/10.1002/adfm.201400590
https://doi.org/10.1002/adfm.201400590
https://doi.org/10.1021/jacs.8b05825
https://doi.org/10.1016/j.apenergy.2020.115730
https://doi.org/10.1016/j.apenergy.2020.115730
https://doi.org/10.3390/ma9030184
https://doi.org/10.1039/C7TA09039K
https://doi.org/10.1039/C7TA09039K
https://doi.org/10.1016/j.jcis.2020.03.069
https://doi.org/10.1016/j.jcis.2020.03.069


Cherubini F (2010) The biorefinery concept: Using biomass

instead of oil for producing energy and chemicals. Energy

Convers Manag 51:1412–1421. https://doi.org/10.1016/j.

enconman.2010.01.015

Cho HE, Seo SJ, Khil M-S, Kim H (2015) Preparation of carbon

nanoweb from cellulose nanowhisker. Fibers Polym

16:271–275. https://doi.org/10.1007/s12221-015-0271-y

Cho M, Karaaslan M, Chowdhury S et al (2018) Skipping

Oxidative Thermal Stabilization for Lignin-Based Carbon

Nanofibers. ACS Sustain Chem Eng 6:6434–6444. https://

doi.org/10.1021/acssuschemeng.8b00209

Cho M, Ko FK, Renneckar S (2019) Impact of Thermal

Oxidative Stabilization on the Performance of Lignin-

Based Carbon Nanofiber Mats. ACS Omega 4:5345–5355.

https://doi.org/10.1021/acsomega.9b00278

Choi DI, Lee J-N, Song J et al (2013) Fabrication of polyacry-

lonitrile/lignin-based carbon nanofibers for high-power

lithium ion battery anodes. J Solid State Electrochem

17:2471–2475. https://doi.org/10.1007/s10008-013-2112-

5

Chu M, Zhai Y, Shang N et al (2020) N-doped carbon derived

from the monomer of chitin for high-performance super-

capacitor. Appl Surf Sci 517:146140. https://doi.org/10.

1016/j.apsusc.2020.146140

Culebras M, Geaney H, Beaucamp A et al (2019) Bio-derived

Carbon Nanofibres from Lignin as High-Performance Li-

Ion Anode Materials. Chemsuschem 12:4516–4521.

https://doi.org/10.1002/cssc.201901562

Dai Z, Ren P-G, Jin Y-L et al (2019) Nitrogen-sulphur Co-doped

graphenes modified electrospun lignin/polyacrylonitrile-

based carbon nanofiber as high performance supercapaci-

tor. J Power Sources 437:226937. https://doi.org/10.1016/j.

jpowsour.2019.226937

Dallmeyer I, Ko F, Kadla JF (2010) Electrospinning of Tech-

nical Lignins for the Production of Fibrous Networks.

J Wood Chem Technol 30:315–329. https://doi.org/10.

1080/02773813.2010.527782

Dallmeyer I, Ko F, Kadla JF (2014) Correlation of Elongational

Fluid Properties to Fiber Diameter in Electrospinning of

Softwood Kraft Lignin Solutions. Ind Eng Chem Res

53:2697–2705. https://doi.org/10.1021/ie403724y

Dalton N, Lynch RP, Collins MN, Culebras M (2019) Ther-

moelectric properties of electrospun carbon nanofibres

derived from lignin. Int J Biol Macromol 121:472–479.

https://doi.org/10.1016/j.ijbiomac.2018.10.051

Dan R, Chen W, Xiao Z et al (2020) N-Doped Biomass Carbon/

Reduced Graphene Oxide as a High-Performance Anode

for Sodium-Ion Batteries. Energy Fuels 34:3923–3930.

https://doi.org/10.1021/acs.energyfuels.0c00058

Dassanayake RS, Gunathilake C, Abidi N, Jaroniec M (2018)

Activated carbon derived from chitin aerogels: preparation

and CO2 adsorption. Cellulose 25:1911–1920. https://doi.

org/10.1007/s10570-018-1660-3

Delivand MK, Barz M, Gheewala SH (2011) Logistics cost

analysis of rice straw for biomass power generation in

Thailand. Energy 36:1435–1441. https://doi.org/10.1016/j.

energy.2011.01.026

Demir M, Ashourirad B, Mugumya JH et al (2018) Nitrogen and

oxygen dual-doped porous carbons prepared from pea

protein as electrode materials for high performance

supercapacitors. Int J Hydrog Energy 43:18549–18558.

https://doi.org/10.1016/j.ijhydene.2018.03.220
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