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Abstract Investigating the compression properties

of randomly ordered fiber networks experimentally is

difficult which has resulted in ongoing disputes as to

the mechanisms controlling the compression strength

in such materials. In this work, we investigated

compression properties of randomly oriented fiber

networks with a special emphasis on cellulose prod-

ucts such as paperboard. We numerically recon-

structed the conditions of the short span compression

test widely used to quantify the compression strength

of paperboard. We found that the phenomenological

failure mode of such networks is elasto-plastic buck-

ling. The x-shaped failure mode observed in physical

experiments appears when test specimen restraints are

included in the model. The most significant improve-

ments to sheet strength can be obtained by improving

the elastic properties while the strain to failure is

increased most by an improvement of the plastic yield

and hardening properties of individual fibers. Bond

breaks were confirmed to have a smaller influence on

the overall response. Fiber level microscopic buckling

was investigated in depth, providing quantitative

estimates of the fraction of mass likely to buckle at

the microscopic level. The analysis indicated that only

a low to moderate number of load carrying fibers can

be expected to buckle. The inherent strength reserve in

non-ordered fiber networks was investigated by intro-

ducing hinge mechanisms throughout the network,

and the effect was shown to be small for a small to

moderate number of hinges.

Keywords Inhomogeneous material � Finite
elements � Compression strength � Micromechanics

Introduction

Cellulose based packaging materials are strong can-

didates to replace fossil-based materials such as

plastics in societies that wish to reduce their depen-

dence on non-sustainable resources. Cellulose is

abundant, cheap, biodegradable and can be tailored

to fit a range of commercial purposes. However,

cellulose based materials present challenges due to

their micromechanical structure. A sheet is made up of

densely packed fibers with a high degree of anisotropy.

There is no matrix, and all the load is transferred via

points of contact between the fibers. A simple sheet of

paper exhibits material non-linearity in the form of
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plasticity, creep, rate-dependent behavior and inelastic

strains induced by moisture and temperature.

Beginning with Cox’ predictions of fiber network

elastic modulus, analytic, experimental and numerical

methods have been devised to study the tensile

network response (Cox 1952). In a series of papers,

Page explored the connection between papermaking

inputs and product performance, culminating in a

theory for the elastic stiffness and tensile strength

(Page 1969; Seth and Page 1981).

However, packaging mainly fails in pure compres-

sion or failure of the compressed side during bending.

The McKee formula predicts the collapse load of

boxes and is given in Eq. (1) (McKee et al. 1963).

Here, a and b are empirical constants, ECT is the edge

crush strength, Z is the perimeter of the box, and Sb;MD

and Sb;CD are the bending stiffness of the paperboard in

the machine direction (MD) and cross direction (CD)

normalized with respect to the width.

BCT ¼ a � ECTbð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sb;MDSb;CD
p

Þ1�b
Z2b�1 ð1Þ

Using the McKee formula with typical fitting

parameter values (b � 0:75) suggests that improve-

ments to the edgewise compression strength is the

most effective way to improve performance (McKee

et al. 1963), which raises the question of what controls

the edgewise compression strength and how it can be

increased. A standard way of measuring the ECT is via

the Short span Compression Test, illustrated in Fig. 1

and discussed in detail in the ‘‘Method’’ section.

The strength of paper is lower in compression than

in tension, and therefore tensile properties are not

directly applicable to explain and improve compres-

sion strength. Furthermore, due to the experimental

difficulties of accurately capturing the mechanical

response of a non-affine and slender structure, differ-

ent methods of estimating compression strength give

dissimilar results (Mark and Borch 2001; Popil 2017).

It is not clear from any of the currently adopted

compression tests what can be done to delay the

initiation of failure, nor what performance gain is

possible if a particular failure mode is inhibited.

Commonly used methods to predict static strength of

even simple geometries such as corrugated boxes have

an unaccounted variance in outcome for identical

input of 18% (Coffin 2015) and state of the art models

are still off by 5–8% (Coffin 2015; Shallhorn et al.

2004; Nordstrand 2003). Given the strong correlation

between box strength and material ECT, and the

relative ease with which wall thickness can be

measured and controlled, much of this variance comes

from differences in material strength.

While there are several continuum mechanics

models which address the behavior of paper in

compression, these models are phenomenological in

nature without providing an underlying explanation

for the differences between tensile and compression

response. Ideally a model to study compression failure

should take as input the inputs of the paper-making

process: fibers, bond characteristics, and network

organization. As outputs, the most relevant measure

is that of the macroscopic failure stress or peak force

normalized with respect to width, both of which can be

compared directly with physical experiments.

Compression failure in paper and paperboard

Edgewise compression strength may refer to many

different modes of failure but is understood to apply

mainly to failure at slenderness ratios below 30. The

slenderness ratio is defined as k ¼ L=
ffiffiffiffiffiffiffiffi

I=A
p

¼
ffiffiffiffiffi

12
p

L=h where the cross-section is assumed to be

Fig. 1 The Short span Compression Test (SCT). This test is one

of the most commonly used to evaluate the edgewise

compression strength of paper and board. From a strip of

material with dimensions 15� 60 mm2, a short segment (0.7

mm) in the middle is kept free. The rest of the material is

clamped with force control. A test consists of moving the clamps

using a force-controlled program and recording the force. The

program stops once the magnitude of the recorded force at time

t is smaller than the force in the previous load step
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rectangular (hence the factor 12), L refers to the free

span length and h to the sheet thickness (Mark and

Borch 2001). Although the ECT value is meant to be

derived from a corrugated board, it is used for thinner

sheets and sheets without fluting as well. The exact

sequence of events that lead to compression failure for

such specimen remains unclear, but the most widely

cited reason is buckling. This explanation comes in

many forms: Elastic buckling, plastic buckling, as well

as combinations of the two (Mark and Borch 2001;

Uesaka and Perkins Jr 1983). It is also employed at all

length scales, ranging from boxes (Grangård 1970), to

box sides (Ristinmaa et al. 2012; McKee et al. 1963)

to sheet laminates (Habeger and Whitsitt 1983) to

individual fibers (Cavlin and Fellers 1975; de Ruvo

et al. 1978) and even individual microfibrils (Ristin-

maa et al. 2012; de Ruvo et al. 1978). Judging from

test samples compressed until collapse and the high

prevalence of buckled structures after the loss of load-

bearing capacity, buckling is either the failure mode or

is induced almost instantly after some other change in

the microstructure. For higher basis weights, Fellers

suggests that shear failure of the fiber wall may be

responsible for the failure of the network (Mark and

Borch 2001).

At the larger length scales the sheet can be idealized

as a set of mutually supporting orthotropic plates, and

the compression strength is correlated well with the

stiffness components C11 and C55 of the assembly of

plates where the indices indicate the component

position in the material stiffness matrix written in

Voigt notation (Habeger and Whitsitt 1983). The

relation holds even when the results are normalized

with respect to density and is amenable to non-

destructive monitoring by ultrasonic stiffness deter-

mination (Habeger and Whitsitt 1983). It is possible to

confirm that an elasto-plastic finite deflection model

using only small strain theory successfully predicts the

compression strength of paper and board using a

commercial finite element solver (Urbanik and Salik-

lis 2003).

A disadvantage of homogenizing properties is that

failure mechanisms stemming from the non-affine

nature of the network are hidden. There are indications

that some failure characteristics stem directly from

meso- and micro-scale variations (Hristopulos and

Uesaka 2004). Some authors argue that in the absence

of buckling instability, plastic deformation of the

fibers will be the dominant damage mechanism and

failure initiator (Mark and Borch 2001). The existence

of plasticity in pulp fibers is still an open question,

with some authors presenting curves which contain

some plastic behavior (Page and El-Hosseiny 1983;

Dumbleton 1971) while others do not (Mark and

Borch 2001). Certainly, single fiber plasticity under

compression loading is an under-explored subject in

the literature. By varying the bond strength inside

networks, it has been shown experimentally and by

simulation that the permanent deformation observed at

high stresses in sheets made of pulp fibers is due to

fiber deformation, not the bonds (Borodulina et al.

2012; Seth and Page 1981).

Sachs and Kuster argue that compression failure of

the network is preceded by delamination of the S1

from the S2 layer inside fibers. Such delamination

leads to a sudden decrease in effective bonding

between fibers inside the network as the S1 layer,

which is the outermost layer of the fiber, does not

contribute significantly to the mechanical perfor-

mance of the fiber. As the bonds release, even a small

amount of additional load cause fibers to buckle,

completing the structural collapse (Sachs and Kuster

1980). The reason buckling takes place directly after

delamination may be the increased span length

between intact bonds. Sachs performed a second study

working with single fibers where the failure sequence

was the same – the whole fiber buckled only after

several other failure modes had developed (Sachs

1986). Fiber buckling is a somewhat diffuse term, and

has been used interchangably with fiber kinking, fiber

plastic hinge formation and even fiber bending. A

good example of how fiber buckling looks can be

found in (Niskanen 2011), p. 86.

In summary, almost every mode of deformation has

been suggested. In this work, the previous contribu-

tions to the field are expanded upon with the help of a

comprehensive modeling framework employing direct

simulation of microscale network constituents at

sample sizes large enough to be industrially relevant.

The principal questions facing the field are

1. What is the minimum set of physical mechanisms

needed to explain the observed behavior of paper

and board in compression? In particular:

• What is the effect of perturbations to the load

bearing capacity of individual fibers?

• What is the sensitivity of network response to

plastic deformation?
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• Is the influence of the number and the strength

of fiber-fiber bonds the same as in tension?

2. How can compression strength be tailored to the

application?

The hypothesis that there are several competing

energy release mechanisms acting at the same load

level is proposed and investigated.

Method

For thin to moderately thick packaging where there is

no fluting, the ECT is typically estimated using the

Short span Compression Test, henceforth SCT. The

test is constructed by cutting samples with the

dimensions 15 � 60 mm2 (width � length). The

sample is clamped with a predefined force, leaving a

0.7 mm free span over which a displacement-con-

trolled compression test is performed. The width of the

sample is chosen to lessen the influence of local

variations and edge effects from the unclamped edges.

The free span length is kept short to prevent buckling.

The test yields a single data point: The maximum load,

typically reported as force per unit width or nominal

stress. In Fig. 1 the geometry is shown schematically.

For the sake of clarity, the sample shown is only 6 mm

wide, rather than 15 mm.

The domain in the free span is modeled using its

microscopic primitives: For paper sheets these are

fibers, bonds, and network affinity. Unlike continuum

properties such as sheet shear strength, these primi-

tives correspond directly to the inputs in the paper-

making process such as pulp quality, bonding

adhesives, the degree of pressing. A typical fiber

may have a length to width ratio of 100, and width to

wall thickness ratio of 10 (Borodulina et al. 2016). For

this reason, simplified kinematic and in turn constitu-

tive relations can be used with little loss of generality.

While the fiber has traditionally been reduced to a truss

element, the Timoshenko beam-column was used

since it is able to capture several deformation modes

inaccessible to the truss formulation while at the same

time providing a description significantly faster than

modeling the fibers using a volumetric approach. Each

fiber is represented by three-noded geometrically non-

linear Timoshenko beam elements (Ibrahimbegović

1995). The element is geometrically exact and allows

both finite rotations and finite strains. The material law

used is small strain elasto-plasticity with isotropic

hardening, which limits the finite strain effects to

scaling of the inertial properties of the cross-section to

enforce constant element volume.

Each bond between two fibers is represented by a

penalty-based beam-to-beam contact element with

cohesive strength. Using a point-to-point contact

formulation, it is possible to define the effective

mechanical properties of the bond in terms of force-

displacement-delamination energy characteristics.

Such curves can be found in the literature (Fischer

et al. 2012; Magnusson 2016; Magnusson et al. 2013).

The point-wise beam-to-beam formulation with rota-

tional constraints described in (Motamedian and

Kulachenko 2018) is used. Debonding is modeled

using damage based on (Alfano and Crisfield 2001).

The contact stiffness is constant up to a specified

maximum force on the element, followed by a

reduction of the stiffness with a single evolution

parameter D 2 ½0; 1�. Damage is assumed to be

irreversible and unloading after D[ 0 (when damage

has begun) is done linearly with a reduced slope such

that there is no permanent elongation of the contact

element. Upon reloading, the stiffness used during

unloading is used. Compression forces along the

normal of the contact element are assumed not to

cause damage. The tangential forces in the plane

spanned by the two elements in contact are combined

according to Eq. (2), representing the L2-norm of

displacement in the plane formed by the beam tangents

at the contact location.

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2t1 þ u2t2

q

ð2Þ

Damage begins when the forces acting on the bond

exceeds a critical level Fc calculated as shown in

Eq. (3) where �Fn is the strength in the normal direction

and �Ft is the strength in the tangential plane,

respectively, and Fn, Ft are the forces in the normal

direction and in the tangential plane.

Fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fn

�Fn

� �2

þ Ft

�Ft

� �2
s

ð3Þ

The strength can be written in terms of critical

displacements �un and �ut as the contact stiffness kn
and kt in the normal and tangential direction are known

prior to damage initiation. A non-dimensional
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effective distance is defined in Eq. (4) where the

critical displacement corresponds to b ¼ 1.

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

un

�un

� �2

þ ut

�ut

� �2
s

ð4Þ

The damage parameter D is initialized as 0 and is

updated only if b� 1 and the value at the current time

step is larger than that in the previous one, bt [ bt�1

by Eq. (5). The parameter ucn in Eq. (5) denotes the

distance at which the contact is traction free and

completely debonded. The second term in the equation

scales D to the range of displacements over which

delamination takes place. The normalized normal

contact stiffness is shown in Fig. 2, where only the

forces that can contribute to the damage (non-

compression forces) are included, forming one quarter

of an ellipse in the ðun; utÞ-plane due to the definition

of ut in Eq. (2).

D ¼ b� 1

b
ucn

ucn � �un

� �

; D 2 ½0; 1� ð5Þ

The tangential and normal debonding is coupled

through the damage parameter D as in Eq. (6).

Fn

Ft

� �

¼ ð1� DÞ
knun

ktut

� �

ð6Þ

The normal contact stiffness kn is chosen such that the

constraint in Eq. (7) is satisfied, which is necessary to

achieve complete debonding in all directions

simultaneously.

ucn
ucn � �un

¼ uct
uct � �ut

ð7Þ

New contacts do not form during the compression.

Although frictional contacts do form during straining

of the network, they contribute little to the mechanical

properties. Experiments at the microscopic scale of

single fiber-fiber bonds show that the frictional

contribution to bond strength is small, something

which is confirmed by the rapid loss of strength if the

network is wetted (dissolving the chemical bonds) or

debonding agents are used (Seth and Page 1981; Hirn

and Schennach 2015). The non-chemically bonded

contacts could potentially improve force transmission

when testing in compression. It was assumed that this

contribution was small given the small strain at which

the sheet fails (\4% for virtually all paper and board

grades).

The fiber network is constructed by sampling fiber

data extracted via micro-tomography from real sheets

and depositing the fibers one by one on a plane surface,

resolving any resulting inter-penetrations between the

fibers. The solution is obtained with an implicit

nonlinear quasi-static solution routine. While the

deformations in a paper sheet are typically small

before failure, using a nonlinear formulation allows

the study of localization phenomena where the strains

Fig. 2 Normalized normal contact stiffness as a function of

separation distances in the normal and tangential direction. To

the left, a schematic illustration of how the damage threshold

surface is shaped via the non-dimensional coordinate b. To the

right, a schematic representation of the force-displacement

envelope of the contact element (solid line) as well as loading or

unloading from a damaged state (dashed line). ucn,u
c
t and �un,�ut

were taken from Table 2
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in small regions may become significantly larger than

the macroscopic mean, which is common in many

fiber networks (Hagman and Nygårds 2012; Deogekar

and Picu 2018). In comparison to recent and similar

computational developments (Deogekar and Picu

2018; Zhang et al. 2018; Lavrykov et al. 2012;

Berkache et al. 2017; Silberstein et al. 2012), the

main differences of the method presented are

1. Denser and larger networks are addressed, large

enough to be relevant for product design tradi-

tional cellulose pulp fibers.

2. The network is fully three-dimensional, which is

central for the distribution and density of bonds.

3. The presented contribution attempts to critically

examine claims which have been made repeat-

edly, but which cannot be easily proved with

physical experiments.

Fiber characteristics

The characteristics necessary to model a Timoshenko

beam are Young’s modulus, shear modulus, length,

width, wall thickness (if the fiber lumen is not

collapsed), and height. The Timoshenko beam formu-

lation described in (Ibrahimbegović 1995) is used

together with the fiber data in Table 1. The geometric

dimensions of the fibers have the mean and standard

deviation estimated from the observed data, while the

material data is uniformly distributed around the mean

value such that e.g. Ef �UðhEf i � 0:5; hEf i � 1:5Þ
where h	i denotes the mean value of 	.

The fiber material properties are based on testing in

tension. The properties in compression are not known

at the level of single fibers because of the difficulties in

testing fibers in compression. One method of measur-

ing compression strength of single fibers is the elastica

loop (Sinclair 1950). This method has not been used

successfully on wood pulp fibers, presumably due to

their short length. Although some fibers tested in this

way have shown radically lower compression strength

[aramid fiber (Greenwood and Rose 1974), polyviny-

lalcohol and high-performance polyethylene fibers

(Peijs et al. 1995)] the most representative model

fiber, flax, was shown to have a compression strength

equal to about 80% of the tensile strength (Bos et al.

2002).

Bond characteristics

The bond parameters given in Table 2 were used. The

data was taken from samples tested in tension and is

further described in (Borodulina et al. 2012).

The values are within the ranges expected from

experimental works (Fischer et al. 2012; Magnusson

2016; Magnusson et al. 2013), in which the fiber

bonds were tested and the load combination acting in

the bond area was estimated using inverse procedures

using physical models. Although the uniqueness of

such estimations cannot be guaranteed, this is prob-

ably the only way to quantify the bond strength

currently. As we specify the debonding criteria in

terms of forces, we were not affected by the inaccu-

racy in estimating the bonded area. We did not include

Table 1 The fiber properties used, obtained through a fiber

characterization tool

Mean SD

Fiber length 0.998 0.812 mm

Fiber width 24.2 9.05 lm

Fiber wall thickness 1.80 1.81 lm

Width-to-height ratio 2.59 0.17 –

Fiber real over projected length 1.06 0.046 –

Young’s modulus Ef 30 8.66 GPa

Shear modulus G 10 2.88 GPa

Yield stress ry 200 0 MPa

Tangent modulus H 10 0 GPa

The data acquisition is described in (Borodulina et al. 2016).

The mean and standard deviation values are calculated on

sample populations

Table 2 The bond properties used

Normal stiffness 2780 Nm�1

Tangent stiffness 2780 Nm�1

Shear strength 10,000 lN

Normal strength 2500 lN

Tangent separation distance 1.03 lm

Normal separation distance 4.14 lm

The data was obtained by fitting the numerical model against

experimental data for samples tested in tension and is described

in (Borodulina et al. 2012). The values are within the ranges

expected from experimental works (Fischer et al. 2012;

Magnusson 2016; Magnusson et al. 2013)
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the moments acting in the point-wise contact in the

debonding criteria, which can be an additional

enhancement (Deogekar et al. 2019).

Network generation

Many methods of network generation exist, e.g.

(Deogekar and Picu 2018; Bronkhorst 2003; Lavrykov

et al. 2012). The method used is described in (Mota-

median and Kulachenko 2018) in which fibers are

deposited on an initially empty surface, incrementally

forming a network through random generation and

placement of fibers. This method is similar to the

physical process of making handsheets. In industrial

manufacture, additional effects stemming from the

high velocity of deposition must be considered. Due to

the stochastic nature of the process, mesoscale clusters

of sparser and denser areas appear in the network. The

deposition process is two-sided which creates rela-

tively symmetric through-thickness density profiles.

The network characteristics used in most of the

figures, unless otherwise stated were a grammage of

300 g m�2 and a sheet thickness of 0.49 mm. The

elastic modulus was probed in tension using larger

sections of the same network, and was 2:5
 0:1 GPa.

As this article does not address the effect of changes in

fiber orientation, only in-plane isotropic sheets were

created.

Enforced boundary conditions

Most of the conditions tested do not explicitly model

the clamps. Instead, the following procedure is

applied:

1. A network with dimensions at 12 � 12 � Sheet

Thickness mm3 is generated. The network consists

of elements connected in series to form fibers.

2. The network is centered such that the middle of

the network is at the middle of the SCT free span

domain.

3. The elements which lie outside the free span

domain are removed.

4. The elements which cross the boundary of the free

span domain are edited, by moving the end-node

which is outside of the domain to the boundary of

the domain. The mid-node coordinate is adjusted

such that the mid-node remains in the middle of

the element.

Since the SCT has large amounts of material inside the

clamps on either side and the free span is shorter than

the average fiber length there is a significant number of

fibers crossing the free span. Rather than eliminate

them, they are truncated at both ends. In the end, the

network on which loads are applied contains the free

span domain. On the boundary of the free span domain

are located 1 node of each element which originally

passed through the boundary. The boundary condi-

tions, which are displacement based, are applied on the

nodes located on the boundary of the free span

domain. The nodes on the boundary of the free span

domain are subjected to enforced displacements which

are 0 for all degrees of freedom except the degree of

freedom along � (which coincides with the direction

of the clamp motion in the real test) on one side of the

test. Slippage, which is common in the physical

experiment owing to the difficulty of restraining the

sample without crushing it, is neglected here. Here, an

enforced displacement equal to 5% (for tensile tests)

or �5% strain (hence 
0:05 � ð0:7mmÞ ¼ 
0:035

mm is applied. Typically this value is not reached, as

the simulation is terminated if softening relative the

peak force exceeds 5%. The enforced boundary

conditions are shown schematically in Fig. 3, on the

left.

When a section of the clamped volume is explicitly

included in the model, the same procedure as above is

performed except the generated volume is 0.175 mm

larger on both sides of the free span domain along the

x-axis. The same boundary conditions are applied on

the boundary of the domain, now containing both the

free span and the modeled section of the clamps.

Furthermore, displacement of all nodes inside the

clamped domains in the z-direction (out-of-plane) is

entirely prohibited as indicated in Fig. 3, on the right.

Pre- and postprocessing

The preparation of results was performed using

(MATLAB 2018) and visualized using Gramm (Morel

2018). The pre- and post-processing of models was

done using (ANSYS 2015).

Results

A mesh study was performed, and a mean element

length of 54 lm was chosen as the results did not
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change upon further refinement. Furthermore, the

computational size of the model was minimized by

performing a response study where the width of the

sample was progressively decreased from the SCT

standard of 15 mm to the point where the response

began to deviate from the result when using the full

width. A width of 6 mm was found to be

representative.

The size of the model was 0.7 � 6 � Sheet

Thickness mm3, which corresponds to 40% of the

volume in the free span in the SCT. Thematerial inside

the clamps was not modeled unless where explicitly

stated (e.g. Fig. 6). When the material inside the

clamps was modeled, the volume modeled was 0.175

� 6 � Sheet Thickness mm3 on each side, which is

0.2% of the volume inside the clamps in a physical

test. However, the reason the clamped volume is so

large is to make the test sample easy to handle and

allow the clamps to immobilize the test piece with

limited damage to the material due to crushing. By

assigning numerical boundary conditions slippage at

the clamps is entirely prevented, making it unneces-

sary to explicitly model such a large volume. The main

factor investigated when modeling the clamps is

whether the geometry-change induced by the force-

controlled pressing of the clamps in itself is enough to

alter the failure mode as compared to when idealized

restraints are used.

Throughout the presentation and discussion of

results, compression failure will be taken to mean

the point in the force–displacement or engineering

stress-engineering strain diagram where the largest

negative value of force or stress is recorded. One

softening branch per parameter combination is also

presented. The accuracy of this softening branch

should be considered low. The onset of the post-peak

response is shown with a dotted line. The quantitative

condition was that the stress should have decreased in

magnitude by 5% relative the peak. The post-peak

behavior was the most computationally intensive due

to deteriorated convergence rate. In some instances,

the entire stress–strain curve is shown. Caution should

be exercised when comparing the strain values with

values obtained using physical experiments, as some

slippage is often inevitable in physical testing. Hence,

the strain reported here will tend to be less than the

strain measured if the correction for slippage is

imperfect.

Fig. 3 Enforced boundary

conditions for models

without the clamped

material (left) and with the

clamped material (right),

respectively
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The effect of the short free span on tensile

properties

A free span of 0.7 mm is too small to accurately

estimate the material properties of a sheet (Ku-

lachenko et al. 2012; Cowan and Cowdrey 1974).

Furthermore, at small length scales the structural

response is also altered. For example, in a short

network segment a significant number of fibers cross

the entire domain. As the macroscopic load is applied

these fibers carry the load without interacting with the

rest of the network. As individual fibers are much

stiffer than the sheet, such fibers stiffen the mechanical

response.

To establish how big the effect of a small free span

length is in tension, tests were performed comparing

two networks with the same macroscopic properties

but with a free span of 0.7 mm and 0.35 mm,

respectively. A sample with significantly longer free

span was also included. The results are shown in

Fig. 4. Not only are the small networks stiffer, but they

also have a higher strain at failure. The failure was

defined as the point where the macroscopic response

of the network, represented by the tangent to the curve

in Fig. 4 turning negative. In tension, paper sheets

typically fail due to cascading bond failures across a

cross-section. In the smaller samples, bonds are not

utilized because a large number of fibers are crossing

the entire domain. The softening part of each curve has

been removed.

In Fig. 5 networks with identical aggregate prop-

erties were subjected to a tensile and a compression

load. The sample free span length is 0.7 mm, just as in

the SCT. The elastic response is independent of load

direction, but in compression, the sample begins to

deviate from the elastic response at a lower macro-

scopic strain. Comparing Figs. 4 and 5 compressive

strength and strain to failure are 30–50% of tensile

strength and strain to failure, as observed experimen-

tally (Fellers et al. 1980; Stockmann 1976; Setterholm

and Gertjejansen 1965). The elastic response is the

same in tension and compression, in agreement with

experimental data (Stockmann 1976; Setterholm and

Gertjejansen 1965; Seth et al. 1979).

Both Fellers and Habeger investigated buckling of

paper, primarily linerboard, extensively (Fellers 1980;

Habeger andWhitsitt 1983). A principal reason for the

choice of 0.7 mm free span in the SCT is that it

represents the ‘‘plateau’’ in strength observed in

experiments (Fellers 1980).

The effect of grammage

The effect of grammage on compression strength is

well established (Popil 2017). The model was com-

pared to the experimental data, with an emphasis on

correctly capturing the effect of increased grammage.

0 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

Fig. 4 Tensile force-displacement response of a network with a

free span significantly shorter than what is customary in tensile

tests. The stiffening influence of fibers crossing the entire model

domain and becoming clamped at both edges is clearly visible

from the increase in stiffness and strain to failure of the shorter

samples. The shaded areas indicate
1 standard deviation. Each

mean curve and standard deviation is calculated on five samples

-0.01 0 0.01 0.02 0.03

-10

0

10

20

30

Fig. 5 Tensile versus compression response for samples with a

free span length of 0.7 mm. The tension and compression test

were performed from the reference configuration of the network
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The result is shown in Fig. 6. No fitting was performed

as the data reported in the experimental data sets is

insufficient to uniquely determine a set of parameters.

The response is more similar to the RCT than the SCT,

indicating that the chosen parameter combination is

somewhat more compliant than the sheets tested

experimentally. However, the data is within the

bounds of what can be expected. Sheets with a

grammage below 80 gm�2 are not tested in compres-

sion, as there is no commonly accepted test protocol. If

the compression strength is normalized with respect to

grammage our data and the SCT data would form a

horizontal line, independent of the basis weight. Such

a constant relationship between compression strength

and mass is an indication that what is measured can be

regarded as a material property.

The effect of clamping the specimen during testing

Due to the orthotropy of many fibrous composites,

where the out-of-plane stiffness is much lower than the

in-plane elastic properties, even moderate clamping

pressure can lead to large out of plane compression

strains. Such strains may cause the sample to fail at a

lower load and may also promote certain failure

modes, such as delamination failure. Typical strains

were estimated and imposed by combining the ISO-

standard for SCT (Standard 2013) with the out-of-

plane strain-stress data from (Stenberg and Fellers

2002). In these tests the clamping causes significant

delamination, as shown in Fig. 7. The loss of

compression strength is shown in Fig. 8.

The effect of fiber quality

Using the same networks (meaning that the geometry

obtained from the network deposition process was

reused, eliminating the sample to sample variance

inherent to destructive testing and allowing an exact

comparison of response dependent only on the change

in constitutive parameters), the effect of changing the

material properties of the fibers was examined. This

can be seen as a proxy for the fiber structural integrity

and pulp type. Four sets of material data were tested

and are given in Table 3. The fibers in the reference

case, used elsewhere in this article, have mechanical

properties representative of chemo-thermomechanical

pulp. By screening or using different pulp varieties, it

is possible to improve both the average elastic

modulus of the fibers and the plastic properties, which

correlate with the degree of fiber level damage.

Finally, a test where only the bonding properties have

been improved is performed by scaling the bond

strength by a factor 2. Bond strength is often improved

through the use of additives, such as starch, whereas

bond stiffness is strongly affected by lumen configu-

ration, and thus may be improved through increased

wet pressing.

The force-displacement response in Fig. 9 as

expected highlights the fiber elastic modulus which

0 100 200 300 400

2

4

6

8

Fig. 6 The effect of grammage on the compression strength of

the sheet determined by the Ring Crush Test (RCT) and the

Short span Compression Test (SCT). The experimental data are

taken from (Popil 2017). The model response is not fitted to the

experimental data

Fig. 7 The effect of clamping compression on the failure mode.

In the top picture no clamping is introduced, resulting in a

uniform deformation consisting mostly of bending. In the

bottom picture, ez ¼ �0:40 clamping strain in the ZD results in

the failure mode shifting, with clearly visible delaminated parts
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has a decisive influence on the mechanical response,

mainly through increased stiffness. The failure strain

remains almost stationary. There is a moderate effect

of bond strength on the results. This may be due to the

high degree of bonding already present in the sheet.

The response did not show much sensitivity to the

plastic parameters specified, indicating that for the

chosen parameters, which are representative for paper

and board, the plastic parameters have a limited

influence in compression. The non-affine character of

the sheet appears to have a limited influence (also

supported by Fig. 7), which is a by-product of the low

porosity of industrially relevant board compared to

many other fiber networks.

Bond breaks

The ultimate strength of paper in tension is governed

by bond strength (Page 1969). In compression, since

the ultimate strength is lower, bond strength may be

utilized less effectively. In poorly bonded sheets the

effect of an increased number of bonds is strongly

positive, just as in tension (Watt and Fox 1981). Bond

breaks were studied numerically as a function of

applied strain for networks subjected to a tensile and a

compression load. The networks were identical at the

onset of the test. The bond breaks as a function of the

applied macroscopic strain were recorded and plotted

normalized to the sample width which was always 6

mm in Fig. 10. As the tests were performed on

identical samples, all 0.7 mm in length, the bond

breaks in the tensile load case are likely underesti-

mated compared to what would be observed if the

sample was longer which is typical in tensile testing.

Bonds start breaking at a lower strain in compres-

sion than in tension and continue to increase in

quantity more rapidly than in the tensile case until

failure. In the post-peak response not shown, the

number of bond breaks levels off as bending of the

Fig. 8 The effect of clamping compression on failure stress.

The decrease in failure load is mainly due to a change in failure

mode, from out-of-plane bending or buckling to delamination as

the compression strain is increased

Table 3 The fiber

properties typical of CTMP

fibers as well as various

modifications that could be

made to the pulp

Reference values are given

in Tables 1 and 2

Base Higher Higher Stiffer Better

(CTMP) ry;H Ef bonds bonds

ry multiplier 1 2 1 1 1

H multiplier 1 2 1 1 1

Ef multiplier 1 1 2 1 1

Bond stiffness multiplier 1 1 1 2 1

Bond strength multiplier 1 1 1 1 2

Fig. 9 The effect of changing material properties. The changes

made to each network are described in Table 3. Only the stress–

strain curve up to compression failure is shown. Shaded areas

indicate ± 1 standard deviation calculated on five samples each
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sample takes over as the dominant deformation mode.

The implications of this result are that while the

number of bonds may be important, it is primarily the

most stressed bonds that affect the compression

strength. No localization of bond breaks was detected

in any of the tests performed. Such localization is a

central aspect of tensile failure, but seems not to occur

in compression.

Fiber buckling

The results presented so far have not explicitly

addressed the potential of fiber segments to buckle,

although the numerical scheme employed is in prin-

ciple able to resolve geometric buckling. To include

fiber buckling as a deformation mode in the model, it is

necessary to make additional assumptions beyond

what has been needed up to this point. To fully

characterize the mechanical response during and after

buckling, a model needs as input

– the load at which buckling occurs (determination

of Pcrit),

– the factors that influence the onset of buckling

(parametric dependency on e.g. Young’s modulus,

second area moment of inertia, free span length),

and

– a description of the post-buckled response of the

fiber segment.

There are no reported studies which contain such

information for pulp fibers. In this article, modeling is

substituted in place of experimental data. Buckling is

assumed to take place over the free span of the fiber

between bonded sites. The buckling onset is modeled

by pin-pin column buckling with has the critical load

given by Eq. (8) where ET is the tangent modulus, I is

the second area moment of inertia and L is the free

span length. We did not track of the stress state of each

Gauss point when extracting ET . Once a single Gauss

point yielded, the cross-section was regarded as

yielded and ET appropriately lowered. This approach

is equivalent to the Shanley elasto-plastic buckling

model.

Pcrit ¼
p2ETI

L2
ð8Þ

The free spans L in the network at the peak load were

calculated, taking into account that some bonds had

already delaminated at that point. Any fiber which was

bonded in only one place was omitted from the

analysis, as it would not transmit mechanical load. The

free span can be calculated in two ways, as shown in

Fig. 11. The method which accounts for fiber width

was used, averaging the free spans l1 and l2.

The distribution of free span lengths is given in

Fig. 12. Depending on the search radius used in the

contact detection algorithm, the median segment

Fig. 10 Bond failures per mm width of the sample in tension

and compression, respectively. A compression load causes more

bonds to break at a low degree of loading, but due to the

development of other deformation mechanisms (mainly bend-

ing) as the test progresses, the number of bonds broken at

compression failure stress is significantly lower than what is

observed in tension

L

l1

l2

Fig. 11 Ways of estimating the free span between fiber bonds.

One method is to use the distance from centerline to centerline,

which results in the distance denoted with L. The alternative

method used in this article employs the distance from fiber hull

to fiber hull, which results in a strictly smaller free span, but is

more physically realistic as the fibers are volumetric entities, as

are the bonds
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length between bond sites was between 10 and 17 lm.

Given the cross-sectional properties of the fibers

(Table 1) the aspect ratio of each segment was below

1. Such a segment could not be used to successfully

resolve the geometrical buckling with a Timoshenko

beam, but the segment length, cross-section and load

can be used to estimate the buckling load. Accounting

for fiber width has a large effect and much of the

network is in a bonded state. the estimates are shown

to be insensitive to the specific distance chosen as

demonstrated by varying the distance at which two

fibers are considered bonded (denoted search radius in

the figure).

Comparing the predicted buckling load using

Eq. (8) with the actual axial load in the fiber at failure,

the ratio between the buckling load and the actual load

is calculated using Eq. (9).

g ¼ Pcrit

Paxial

ð9Þ

The longest free spans can be expected to both have

the lowest buckling load, and to represent a larger

proportion of the network mass. To include this effect

the results are presented as mass-weighted empirical

distribution functions (EDF) using the implementation

in (Kovesi 2000). Figure 13 shows the mass-weighted

EDF that would buckle for a certain factor g. As

expected, only a fraction of the free spans is able to

buckle: Some segments are completely covered by the

crossing fiber width, whereas others are in a state of

tension.

The results suggest that the majority of fibers are

not near the load state Pcrit that would cause buckling.

However, if the network is very brittle, the few fibers

that are close to the buckling load could still cause

macroscopic failure. Furthermore, the analysis has not

taken into account the effect of imperfections and

misalignments, which lower the buckling load.

Finally, cascading fiber failures are not considered.

While little of the mass of the system is close to

buckling if g ¼ 1, about 10% of the fibers are within a

factor 100 of the buckling load. Given the assumptions

in the analysis, a factor 100 decrease in buckling load

due to defects, fiber curl and load eccentricity is high

but not completely unreasonable. Studying the far-

right end of the EDF diagrams, the cumulative mass at

risk of buckling for any load, given the degree to

which the fiber mass is bonded is limited to about 20%

in the considered network.

The fiber wall could also buckle, and to investigate

that we evaluated Eq. (10) where in addition to

previously defined quantities, h is the wall thickness

and m is the Poisson ratio, assumed to be 0.3. To

calculate the estimate of mass able to undergo such

instability, we calculated the wall buckling load for all

segments where the fiber was not inside a bonded

segment and the lumen was open. In Fig. 14 the

Fig. 12 Empirical distribution function of the free spans in the

network, with and without taking into account the width of the

fibers. The figure shows that a large fraction of the network is

bonded

Fig. 13 Factor required to induce buckling in the free span. The

fraction is calculated by weighting each occurrence by the

fraction of mass in the segment. The network used to calculate

the figure has a grammage of 300 gm�2 and a thickness of 490

lm. However, the trend is identical in all of the networks

examined
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proportion of mass at risk of buckling in this way is

compared to the free span buckling mode. A smaller

fraction of the volume is at risk of buckling from wall

buckling, mainly because only a fraction of fibers have

open cross-sections. Finally, Shanley buckling taking

into account the influence of the transverse force in the

beam segments is also examined. When taking into

account the influence of the transverse force the

buckling load no longer tends to infinity for small free

spans, although the buckling load remains high if the

material is isotropic. If the relation between E and the

shear modulus G is very large, the critical load

decreases rapidly, as discussed in (Cedolin et al.

2010), chapter 1 according to Eq. (11) where m is the

shear correction factor, set to 1.2 in this work.

Pwall
cr ¼ 2pETh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� m2Þ
p ð10Þ

Pshear
cr ¼ Pcrit

1þ mp2L�2IA�1ðE=GÞ ð11Þ

Examining the three proposed buckling modes, the

mass at risk of buckling is relatively low, although it

may be enough to bring about cascading fiber failures

if the network is brittle. As Figs. 13 and 14 show only

a single, relatively dense network, we performed a

parametric study of several networks for varying

density. In Fig. 15 the worst case (free span buckling

without neglecting the influence of transverse forces

and assuming E=G ¼ 10) is plotted for a variety of

densities, covering the whole range of commercial

paperboard densities (400–800 kgm�3) and gram-

mages (80 – 400 gm�2). The thickness was 280 lm
for all samples except for the samples discussed in the

rest of the article, which had a grammage of 300 gm�2

and a thickness of 490 lm. The fraction at risk of

buckling is moderate to high in the samples with low

density. However, while the low density samples are

within the limits of what the SCT testing standard

allows, it would be practically difficult to generate a

sheet with such low density (due to gravity induced

draining during sheet forming) and it is unlikely that a

sheet with a density below 300 kgm�3 would ever be

used for the purpose of carrying mechanical compres-

sion or bending load. Nonetheless, were such networks

used, fiber level buckling is likely to have an influence

on the overall sheet compression strength.

Finally, we tabulated some summary statistics on

the fiber free span level. Of particular importance is

the relation between the fraction in free spans (which

could theoretically buckle), the fraction in compres-

sion, and the fraction likely to buckle. These quantities

are plotted as functions of density in Fig. 16.

The presented results give some indication of the

likelihood that fiber level buckling can initiate a sheet

failure.

A second method of investigating fiber buckling is

to study the effect of the presence of weak points in the

network. In this setting, the buckled fibers are assumed

Fig. 14 Factor required to induce either free span buckling or

wall buckling. The fraction is calculated by weighting each

occurrence by the fraction of mass in the segment

Fig. 15 Factor required to induce free span buckling under the

assumption that E=G ¼ 10. The fraction is calculated by

weighting each occurrence by the fraction of mass in the

segment
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to be unable to carry any load even at the onset of

loading. This is likely a too conservative estimate, but

taken together with the buckling analysis above

(which is not conservative enough as cascading

failures are not accounted for) it can yield an upper

bound on the sensitivity to fiber failure. A method is

proposed to study the influence of imperfections by

making some further assumptions:

– A number of points exist along fibers that buckle

instantly.

– The failure results in a local but complete loss of

bending stiffness.

– The onset of failure does not depend on any other

characteristic of the network.

These extreme conditions will be the topic of the

final investigation in this article.

Hinge formation, kinks, and localized damage

In naturally formed materials defects are inevitable.

For example, wood fibers often have pits around which

stress concentrations form, and paper pulp fibers are

damaged during the manufacturing and drying process

resulting in kinks, micro-compressions and other types

of local defects. Depending on the damage the load-

bearing capacity may be adversely affected. This is

particularly interesting in compression applications,

where various types of kinks and curvature may

strongly impact the ultimate load-bearing capacity of

the fiber and consequently, the network. The buckling

load is strongly influenced by the degree of imperfec-

tion along the length of the structural member as well

as misalignment.

Some estimates of the number of fiber defect

densities are given in Table 4. In this context, an

irregularity is some type of visible damage on the

fiber, whereas a severe damage is more significant

such as a large kink. There are experimental observa-

tions indicating that the number of imperfections in the

network is not strongly correlated with the compres-

sion strength (Panek et al. 2005). In fact, the study

found that the correlation between tensile strength and

fiber damage was stronger than that between com-

pression strength and fiber damage.

These singularities were modeled by introducing

discrete hinge elements deposited randomly through-

out the network. Each hinge is a relaxation of the

compatibility requirement from C1 to C0. Typically, a

beam element enforces continuity in both displace-

ments and rotations across elements, but at the hinge

locations a frictionless joint is introduced by coupling

the beam’s translational degrees of freedom only, that

is, allowing one end of the fiber at the place of the

hinge to rotate independently of the other. In Fig. 17 it

is shown that compression strength is essentially

independent of the number of hinges as long as the

number is of the same order as the number of

singularity-type defects reported in literature. If the

number of hinges is increased significantly, the

numerical solution method chosen becomes unsta-

ble and for that reason no results are shown in the

density range of pulp irregularities. It is unlikely that

such relatively minor irregularities would be accu-

rately represented by a complete loss of bending

stiffness.

Conclusions

The compression response of dense non-woven fiber

networks was studied. The material parameters and

network character was chosen to be similar to

paperboard. The model was shown to correctly follow

the experimental trend with respect to the grammage

of the network. As no experimental data of compres-

sion tests performed on single pulp fibers has been

published, the material properties in compression were

Fig. 16 Summary of the fiber state at the peak macroscopic

load. Comparing the fraction in compression, the amount of

mass at risk of buckling decreases rapidly with increasing

density, primarily due to shortening free spans
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assumed to be equal to those in tension. This is an

untested and critical assumption in this work, which

should be confirmed with physical experiments. The

model behavior and difference between response in

tension and compression suggests this is not an

unrealistic assumption.

The x-shaped deformation mode often observed in

the Short-span Compression Test (SCT) can be an

artifact of the clamping pressure necessary to restrain

the sample. This is especially true for sheets that are

comparatively bulky, with low out-of-plane stiffness,

due to the clamping being force controlled. The failure

load in samples failing by delamination is not

significantly lower than the failure load of the sheet

under idealized loading conditions.

The number of bond breaks during the straining or

compression of the sample, respectively, were shown

to be lower than in the tensile load case, and no

localization of bond breaks was observed. The

importance of bond strength is therefore less than in

the tensile case. However, while the strength of bonds

might be less important, the number of bonds may be

more important as the number of bonds causes the free

spans in the network to decrease rapidly in length.

A detailed analysis of the stress state of individual

fibers at the point of macroscopic failure showed that a

bifurcation analysis, even when taking into account

plastic yielding, predicts that only a small to moderate

fraction of fibers will undergo buckling. Since the

network is built up by random sampling from distri-

butions obtained using micro-tomography, a large

number of observations were drawn upon for analysis.

The fact that most of the fiber length is bonded speaks

to the unlikeliness of fiber buckling as a failure

initiator. Quantitative measures of the total mass at

risk of buckling were obtained and could be used for

further analysis.

The conclusion that fiber level buckling is unlikely

is further supported by the results obtained when

introducing hinges explicitly into the model. The

introduction of hinge elements randomly deposited

throughout the network allows the study of sensitivity

to such hinges, which is shown to be small for low to

moderate number of hinges.

Acknowledgments Open access funding provided by Royal

Institute of Technology.

Funding Funding was provided by Vetenskapsrådet (Grant
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Table 4 Estimations of the number of imperfections per mm length of fiber

Pulp sample Fiber count Density (mm�1)

Estimates of severe damage along fiber

Mill kraft (Iribarne 1998) 3344 0.078

Laboratory kraft (Iribarne 1998) 3544 0.048

Holocellulose (Iribarne 1998) 2252 0.085

At its essence, a pre-existing hinge-like type of defect that causes the buckling force to approach 0 should be possible to view under a

microscope and should look like some type of damage

Fig. 17 The effect of hinge density on compression strength.

While the hinges reduce the compression strength, the reduction

is minor for the investigated range, although it may be larger

when the number of hinges is increased further. The network has

a strength reserve which compensates for the loss of load

carrying cappacity of some fibers. The experimental data was

taken from (Iribarne 1998)
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