Skip to main content
Log in

Direct carbamation of cellulose fiber sheets

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The paper is on introducing carbamate groups in sheets of cellulose fiber assemblies by pad-dry-cure treatments with aqueous solutions of polyethylene glycol, amide and salt. The effects of process variables—on carbamation levels and on mechanical properties of the substrate—are reported. Depending on treatment conditions, the nitrogen contents in substrates are in the range 0.668–2.252 wt%, corresponding to nominal degrees of carbamate group substitution of 0.08–0.28. The carbamation is initiated at 140 °C curing, and the levels rise with temperature up to 220 °C, but decrease at higher temperatures. The duration of curing also exerts an influence. There is a catalytic effect of sodium acetate on the carbamation, but the salt also induces a brown coloration in samples, which is likely a result of Maillard-type reactions. The treatments cause hydrolytic degradation in substrates, but there are options to adjust treatment conditions and minimize damage. Pad-dry-cure treatments are a common operation in the textile and paper industries, and the process may be adopted in commercial-scale operations to create derivatized paper or fabrics (woven, knitted or non-woven) for utilization in applications such as adsorbents for heavy metals from waste water, in hygiene products, in the creation of flame retardant products, or in creating all-cellulose composites by further treatment with alkali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blagonravova IAA, Pronina IA, Aref’eva SM (1965) The catalytic effect of metallic salts on the reaction of isocyanates with hydroxy compounds. Lakokrasochnye Materialy i Ikh Primenenie 3-5, vide. Chem Abstr 1965:410534

    Google Scholar 

  • Bredereck K, Hermanutz F (2005) Man–made cellulosics. Rev Prog Color Relat Top 35(1):59–75. doi:10.1111/j.1478-4408.2005.tb00160.x

    Article  CAS  Google Scholar 

  • Bridgeford DJ, Rahman M (1988) Cellulose aminomethanate sausage casings. European Patent 0282881A1

  • Chao Z, Sun D, Xie S (2011) Method for preparation of carbamic acid ester. China Patent 102134205A, vide. Chem Abstr 2011:953533

    Google Scholar 

  • Chen GM, Huang YP (2001) Deconvolution method for determination of the nitrogen content in cellulose carbamates. Chin Chem Lett 12(4):365–368

    CAS  Google Scholar 

  • Cheng B, Ren Y, Kang W (2007) Preparation of flame retardant cellulose fibers using carbamate. Fangzhi Xuebao 28:19-21, vide. Chem Abstr 2008:33911

    Google Scholar 

  • DIN (1977-08) 54270-3 Testing of textiles; determination of the limit-viscosity of celluloses, EWNNmod(NaCl)-procedure

  • Ershova O, Costa E, Fernandes AS, Domingues MR, Evtuguin D, Sixta H (2012) Effect of urea on cellulose degradation under conditions of alkaline pulping. Cellulose 19(6):2195–2204. doi:10.1007/s10570-012-9791-4

    Article  CAS  Google Scholar 

  • Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29(9):2176–2179. doi:10.1021/om100106e

    Article  CAS  Google Scholar 

  • Gaehr F, Hermanutz F (2002) Cellulose carbamate fibrous material suitable for low-salt dyeing and printing, its production and its use. World Patent 2002097175A2

  • Gokel GW (2004) Spectroscopy. In: Dean’s handbook of organic chemistry. 2nd edn. McGraw-Hill, New York, p 6.34

  • Guo Y, Zhou J, Song Y, Zhang L (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30(17):1504–1508. doi:10.1002/marc.200900238

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006) Structure of polysaccharides. In: Esterification of polysaccharides. Springer, Berlin, pp 5–14

  • Higazy A, Hashem MM, Zeid NYA, Hebeish A (1996) The effect of non-cellulosic constituents on the behaviour of flax towards sodium chlorite, urea and dyes. J Soc Dyers Colour 112(10):281–286. doi:10.1111/j.1478-4408.1996.tb01758.x

    Article  CAS  Google Scholar 

  • Iller E, Stupińska H, Starostka P (2007) Properties of cellulose derivatives produced from radiation—Modified cellulose pulps. Radiat Phys Chem 76(7):1189–1194. doi:10.1016/j.radphyschem.2006.12.002

    Article  CAS  Google Scholar 

  • ISO (1998) 12947-3: Textiles—Determination of the abrasion resistance of fabrics by the Martindale method—Part 3: Determination of mass loss

  • ISO (1999) 13934-1: Textiles—Tensile properties of fabrics—Part 1: Determination of maximum force and elongation at maximum force using the strip method

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998a) Comprehensive cellulose chemistry, vol. 2: Functionalization of Cellulose. Wiley-VCH Verlag GmbH, Weinheim, pp 161–164

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998b) Comprehensive Cellulose Chemistry; vol. 1: Fundamentals and analytical methods. WILEY-VCH Verlag GmbH, Weinheim, pp 130–135

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998c) Comprehensive Cellulose Chemistry; vol. 1: Fundamentals and Analytical Methods. WILEY-VCH Verlag GmbH, Weinheim, p 173

  • Koebel M, Strutz EO (2003) Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects. Ind Eng Chem Res 42(10):2093–2100. doi:10.1021/ie020950o

    Article  Google Scholar 

  • Kotek R (2007) Regenerated cellulose fibers. In: Lewin M (ed) Handbook of fiber chemistry. CRC Press, Boca Raton, pp 668–771

    Google Scholar 

  • Kwak EJ, Lim SI (2004) The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino Acids 27(1):85–90. doi:10.1007/s00726-004-0067-7

    Article  CAS  Google Scholar 

  • Laxen T, Hassi H (2007) Preparation of antimicrobial cellulose material from polysaccharides and its pharmaceutical applications. World Patent 2007135245A1

  • Loth F, Schaaf E, Fink HP, Kunze J, Gensrich HJ (2004) Procedure for preparation of cellulose carbamate in an inert organic solvent which is non-miscible with water. Germany Patent 10253672B3

  • Lundström A, Andersson B, Olsson L (2009) Urea thermolysis studied under flow reactor conditions using DSC and FT-IR. Chem Eng J 150(2–3):544–550. doi:10.1016/j.cej.2009.03.044

    Article  Google Scholar 

  • Maimaiti H, Kebier B (2011) Method for preparing cellulose sponge. China Patent 102212211A, vide. Chem Abstr 2011:1312576

    Google Scholar 

  • McNeal I (2010) Adsorption of lanthanides on cellulose carbamate: silica hybrid materials. paper presented at the 41st middle atlantic regional meeting of the american chemical society, Wilmington, DE, United States, vide. Chem Abstr 2010:420793

    Google Scholar 

  • Nada A-AMA, Kamel S, El-Sakhawy M (2000) Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355. doi:10.1016/S0141-3910(00)00119-1

    Article  CAS  Google Scholar 

  • Nozawa Y, Higashide F (1981) Partially carbamate reaction of cellulose with urea. J Appl Polym Sci 26(6):2103–2107. doi:10.1002/app.1981.070260633

    Article  CAS  Google Scholar 

  • Rizzi GP (2008) Effects of cationic species on visual color formation in model maillard reactions of pentose sugars and amino acids. J Agric Food Chem 56(16):7160–7164. doi:10.1021/jf801197n

    Article  CAS  Google Scholar 

  • Schindler WD, Hauser PJ (2004) Softening finishes. Chemical finishing of textiles. Woodhead Publishing Limited, Cambridge, pp 29–42

    Chapter  Google Scholar 

  • Segal L, Seggerton FV (1961) Some aspects of the reaction between urea and cellulose. Text Res J 31(5):460–471. doi:10.1177/004051756103100510

    Article  CAS  Google Scholar 

  • Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17(1):103–115. doi:10.1007/s10570-009-9378-x

    Article  Google Scholar 

  • Struszczyk H, Starostka P, Urbanowski A, Mikoiajczyk W, Wawro D, Jozwicka J, Chodzinski J, Jarzebowski Z, Loster M, Nowotarski A, Wnuk J (1997) Preparation of cellulose carbamate forming stable spinning solution Germany Patent 19635246A1

  • Tajima H, Saito H (1997) Adsorbents containing cellulose carbamate for water treatment. Japan Patent 09099238A, vide. Chem Abstr 1997:361248

    Google Scholar 

  • Vo LTT, Široká B, Manian AP, Bechtold T (2010) Functionalisation of cellulosic substrates by a facile solventless method of introducing carbamate groups. Carbohydr Polym 82(4):1191–1197. doi:10.1016/j.carbpol.2010.06.052

    Article  CAS  Google Scholar 

  • Vo LTT, Široká B, Manian AP, Duelli H, MacNaughtan B, Noisternig MF, Griesser UJ, Bechtold T (2013) All-cellulose composites from woven fabrics. Compos Sci Technol 78(1):30–40. doi:10.1016/j.compscitech.2013.01.018

    Article  CAS  Google Scholar 

  • Wendlandt WW, Kasper M, Bellamy S (1984) A TG—DSC investigation of the thermal dissociation of selected guanidinium salts. Thermochim Acta 75(1–2):239–244. doi:10.1016/0040-6031(84)85024-8

    Article  CAS  Google Scholar 

  • Woodings C (2001) New developments in biodegradable nonwovens. http://www.technica.net/magazines/emagazines.htm. Accessed 17 Dec 2012

  • Yang G, Zhang L, Feng H (1999) Role of polyethylene glycol in formation and structure of regenerated cellulose microporous membrane. J Membr Sci 161(1–2):31–40. doi:10.1016/s0376-7388(99)00095-2

    Article  CAS  Google Scholar 

  • Yin C, Shen X (2007) Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation: structure and rheological properties. Eur Polymer J 43(5):2111–2116. doi:10.1016/j.eurpolymj.2007.01.041

    Article  CAS  Google Scholar 

  • Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: synthesis and characterization of cellulose carbamate. Carbohydr Polym 67(2):147–154. doi:10.1016/j.carbpol.2006.05.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 214015. Dr. B. Široká gratefully acknowledges support from the Amt der Vorarlberger Landesregierung, Europäischer Fonds für Regionale Entwicklung (EFRE). Ms. Sandra Koeppel and Dr. Hai Vu-Manh (Research Institute of Textile Chemistry/Physics) are acknowledged for the assistance with nitrogen content determinations and for preparation of the FeTNa solvent respectively. The authors are indebted to the Höhere Technisches Bundeslehr- und Versuchsanstalt Dornbirn for access to their facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avinash P. Manian or Thomas Bechtold.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vo, L.T.T., Hajji, F., Široká, B. et al. Direct carbamation of cellulose fiber sheets. Cellulose 21, 627–640 (2014). https://doi.org/10.1007/s10570-013-0116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0116-z

Keywords

Navigation