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Abstract
Smart dust devices are tiny systems-on-a-chip platforms capable of sensing, storing and trans-
mitting data wirelessly as part of a large networkwith distributed capabilities. Previous works
investigated the long-term orbital evolution of smart dust in space by studying the combined
effect of gravitational perturbations, solar radiation pressure (SRP) and atmospheric drag.
In the current work, the problem of finding long-term orbital equilibria conditions for smart
dust is recast and extended to include Poynting–Robertson and Solar Wind (PRSW) drag. By
including the PRSW effects and defining new equilibrium conditions on the orbital orienta-
tion, some additional partial equilibrium solutions are found. Moreover, it is shown that even
though PRSW is not dominant compared to SRP or J2, it still influences the evolution of the
relative Sun-orbit orientation. For orbits with higher initial perigee altitudes, where drag and
J2 effects subside, it is shown that PRSW influences long-term orbital behavior, and should
be considered in the orbit design scheme of smart dust devices.

Keywords Poynting–Robertson drag · Solar wind drag · Smart dust · Orbital dynamics

1 Introduction

The dynamics of dust around the Earth are a fascinating aspect of space science, as tiny par-
ticles, ranging from micrometers to millimeters in size, continually orbit our planet. These
dust particles can originate from a variety of sources, including meteoroids breaking up
upon entering Earth’s atmosphere, remnants from cometary tails and even debris from pre-
vious satellite missions. The interaction between these dust particles and the Earth’s gravity,
radiation pressure and magnetic fields, as well as their collision and distribution patterns,
contribute to the complex dynamics of the dust environment around our planet. Researchers
have utilized various techniques, such as space-based instruments like the Cosmic Dust Ana-
lyzer on the Cassini spacecraft and ground-based observatories, to study and monitor this
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dynamic cosmic dust population. Understanding the behavior and characteristics of dust near
Earth is essential for space missions, satellite design and space debris mitigation efforts; see
Grün et al. (1999), Horányi (1996) and references therein.

In the early 1990s, studies at RANDCorporation gave rise to a concept of tiny, inexpensive
systems-on-a-chip platforms capable of sensing, storing and transmitting data wirelessly as
part of a large network with distributed capabilities, residing on a physical footprint of a
fewmillimeters. These devices, reminiscent in size and characteristics to the aforementioned
dust around the Earth, are commonly referred to as smart dust devices. Defense Advanced
Research Projects Agency (DARPA) commissioned a project to study the feasibility of such
systems. A team of researchers from University of California, Berkeley subsequently pro-
posed the first such device to DARPA (Kahn et al. 1999). Barker and Barmpoutis (2007)
proposed autonomous clusters of smart dust for space exploration, which include distribut-
ing large numbers of such sensors, as low-cost and low payload-mass would enable greater
redundancy, which could drive the cost of a mission down. In 2016, a team of researchers
from Cornell University and Stanford University sent a crowd-sourced satellite on a chip
termed ChipSat to a low Earth orbit to study deorbiting characteristics and decay times.1

Zhao et al. (2018) investigated the long-term orbital evolution of smart dust in space by
studying the combined effect of gravitational perturbations, solar radiation pressure (SRP)
and atmospheric drag, extending the work done by Colombo and McInnes (2011), who had
earlier studied the same problem under the effects of SRP and drag only. Lhotka et al. (2016)
studied the effect of Poynting–Robertson and Solar Wind (PRSW) drag on space debris,
focusing on the geosynchronous resonance. The seminal work by Burns et al. (1979) has
been widely used as reference for understanding the physics behind the Poynting–Robertson
effect. Since the area-to-mass ratio (AMR) is high, the orbital dynamics are sensitive to
effects such as SRP and PRSW drag.

The evolution of orbits of smart dust over a considerable interval of time, taking into
account long-periodic terms, can be calculated by semi-analytical techniques, i.e., numerical
integration of a particular set of differential equations obtained through analytical solutions.
This process leads to mean elements or mean differentials that can give insight into the
long-term dynamics of the problem.

In the last decade, many researchers have extrapolated the idea of smart dust into the
field of space exploration (Colombo et al. 2010, 2012; McInnes 2016; Hamilton and Krivov
1996). Smart dust modules can be described as high area-to-mass ratio (HAMR) objects
with coupled orbital and attitude dynamics (Früh and Jah 2014). Ever since the discovery of
HAMR debris by Schildknecht et al. (2005), the orbital dynamics of HAMR objects have
been well studied within the context of planetary, interplanetary or space debris dynamics
(Colombo et al. 2012; Hamilton and Krivov 1996; McInnes et al. 2001).

The dynamics usually evolve under the influence of perturbations such as SRP, atmo-
spheric drag, Poynting–Robertson drag and electrostatic forces. Previous studies have usually
assumed that smart dust devices have a constant AMR. However, observations suggest oth-
erwise. Früh and Schildknecht (2012) considered the variation of AMR in their study using
an enhanced model of CelMech, a custom propagator based on Earth potential models up to
order and degree 12, Earth tides and general relativity corrections. In addition, they employed
a special model for estimating the direct radiation pressure, as a scaling parameter of which
the AMR was determined. Liou and Weaver (2005) used PROP3D, a fast orbit propa-
gator based on the averaging principle that was developed for NASA’s debris evolutionary

1 See http://news.cornell.edu/stories/2019/06/cracker-sized-satellites-demonstrate-new-space-tech, posted
June 3, 2019.
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models, to investigate the HAMR debris problem. PROP3D accounts for the perturbations
from Earth gravity up to the fourth zonal harmonic, low-order lunisolar gravitational inter-
actions, and SRP with consideration of the Earth shadow effect. Through comparisons with
a high-fidelity orbit integrator based on Encke’s method, it was shown that HAMR objects
in GEO are dominated by major perturbations, not those of higher order. They also showed
a correlation between AMR and peak eccentricity.

Valk and Lemaître (2008) studied the long-term perturbations of geosynchronous space
debris by including Earth’s shadowing effects based on a semi-analytical theory previously
developed by the same authors. Their averagedmodel included short-period effects including
radiationpressure, J2, combined third-body effects and the 1:1 resonance long-termeffects for
geosynchronous objects. In their framework, the nonsingular mean longitude was computed
at every shadowentry and shadowexit for every revolution,which is not a common formalism.
Pardini and Anselmo (2008) performed numerical investigations of the problem by mapping
out dynamics over long timespans (54 years). They propagated the orbit using a model based
on all relevant perturbations, such as geopotential harmonics, lunisolar effects and SRP. They
found a correlation between AMR and oscillations that dominate eccentricity evolution. Früh
and Jah (2014) studied the orbit-attitude coupling effects of HAMR objects. They described a
new model of self-shadowing, departing from the traditional cannonball model for radiation
pressure.Rosengren andScheeres (2013) studied the long-termdynamics ofHAMRobjects in
highEarth orbits. Theirmodel includedSRP,Earth oblateness and lunisolar perturbations.The
study also gave a first-order averagedmodel in terms ofMilankovitch orbital elements, which
is faster to numerically integrate than the non-averaged version, while retaining accurate
long-term characteristics.

The study presented in this paper investigates the stand-alone dynamics of Poynting–
Robertson and Solar Wind drag and its influence on the long-term evolution of the model
developed by Zhao et al. (2018). Averaging the effects of PRSW drag in the presence of
eclipse leads to interesting and non-trivial equilibria. Such equilibria are studied for different
values of initial perigee height and eccentricity. These parameters are then investigated to
reveal Sun-Earth geometries in which the perturbations including gravitational perturbations,
SRP, drag and PRSW are mitigated, thus enabling to find potentially long-lived orbits, which
can be exploited for various mission requirements.

2 Preliminaries

2.1 Frames and transformations

The expression for Poynting–Robertson drag is calculated originally in a Sun rest reference
frame. To analyze the perturbations using quantities in a standard spacecraft-fixed radial,
along-track, cross-track (RSW) frame (Gurfil and Seidelmann 2016), we must provide a
valid coordinate transformation. The base frame is chosen as the Heliocentric Aries Ecliptic
(HAE) Fränz and Harper (2002) whose plane lies in the Earth mean ecliptic plane, and
the x-axis points toward the first point of Aries as shown in Fig. 1. There are two reasons
for selecting this frame: Firstly, this frame shares the same direction reference as the Earth
Centered Inertial (ECI) frame; and the velocity of Earth with respect to the Sun is well defined
in this frame. The orbital velocity of the Earth is given by

vE,H AE = vo[cos(λgeo + 90◦), sin(λgeo + 90◦), 0]T , (1)
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Fig. 1 Frame visualization of
Heliocentric and Earth-centered
systems

where vo = 29.7859 km/s is the mean orbital speed of the Earth in the HAE frame, and λgeo

is the Earth ecliptic longitude calculated as per Fränz and Harper (2002). The transformation
to the ECI frame is given by a rotation about the x-axis (Fränz and Harper 2002),

T (EC I , H AE) =
⎡
⎣
1 0 0
0 cos ε0 sin ε0
0 − sin ε0 cos ε0

⎤
⎦ , (2)

where ε0 is the obliquity angle of the Earth with respect to the ecliptic, and both the HAE
and ECI frames are referenced to the Julian date J2000. The final transformation from the
ECI to the RSW frame as given by Vallado (2001) is

T (RSW , EC I ) =
⎡
⎣

cucΩ − suci sΩ cusΩ + sucicΩ susi
−sucΩ − cuci sΩ −susΩ + cucicΩ cusi

si sΩ −sicΩ ci

⎤
⎦ , (3)

where ω is the argument of periapsis, f is the true anomaly, u = ω + f is the argument of
latitude, Ω is the right ascension of ascending node, i is the inclination, and the shorthand
notation c(·) ≡ cos(·) and s(·) ≡ sin(·) has been used.

2.2 Variational equations

In this study, as in previous studies (Zhao et al. 2018), we focus on orbits that lie in the eclip-
tic plane for mathematical simplicity. Hence, only the planar orbital elements are required
to propagate the orbit. The variational equations are written using the Lagrange form for
conservative specific forces,

da

dt
= 2

na

∂R

∂M

de

dt
= 1 − e2

na2e

∂R

∂M
−

√
1 − e2

na2e

∂R

∂ω

dω

dt
=

√
1 − e2

na2e

∂R

∂e
− cot i

na2
√
1 − e2

∂R

∂i

(4)
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where a is the semimajor axis, e is the eccentricity, M is the mean anomaly, R is a perturbing
potential, and n = √

μ/a3 is the mean motion. For non-conservative specific forces, the
Gauss variational equations (GVE) are used. The GVE are written with the true anomaly f
as the independent variable in the RSW frame (Fortescue et al. 2011),

da

d f
= 2pr2

μ(1 − e2)

(
e sin f ar + p

r
as

)

de

d f
= r2

μ

[
sin f ar +

(
1 + r

p

)
cos f as + e

r

p
as

]

dω

d f
= r2

μe

[
− cos f ar +

(
1 + r

p

)
sin f as

]
(5)

where p is the semilatus rectum, r is the orbital radius, μ is the gravitational constant of the
Earth, and ar , as are the respective radial and along-track components of the specific force.

3 Poynting–Robertson and solar wind drag

In this paper, we extend the model used by Zhao et al. (2018) through the inclusion of PRSW
drag in the dynamicalmodel. This section includes the derivation of the semi-analyticalmodel
for the PRSW effect. The solar wind component of the PRSW drag is known to potentially
have a net acceleration outward of the solar system on particles which experience greater
SRP forces than gravity in sizes < 0.1μm, as noted by Burns et al. (1979).

3.1 Model

Following Burns et al. (1979), Liou et al. (1995) expressed the PRSW drag acceleration in
RSW coordinates as

aPRSW ,RSW = aSRP

[
−(1 + α)

v · rs
c rSun

r̂Sun,RSW − (1 + α)
vRSW
c

]
, (6)

where aSRP is the magnitude of the SRP acceleration vector which is inversely proportional
to the distance from the Sun, α is the solar wind factor, c is the speed of light, rSun is the
orbital distance to the Sun, v · rs is the radial velocity in the Sun rest frame transformed into
the RSW frame, and vRSW is the velocity in the Sun rest frame transformed into the RSW
frame.

The total velocity of the smart dust around any planet’s orbit is the combination of the
velocity due to the planet’s revolution around the Sun vp , and themotion of smart dust around
the planet, and can be written in the RSW frame as

vRSW = ‖vp‖
⎡
⎣

A cos(ω + f ) + B sin(ω + f )
−A sin(ω + f ) + B cos(ω + f )

C

⎤
⎦ +

√
μ

p

⎡
⎣

e sin f
1 + e cos f

0

⎤
⎦ , (7)

where the constants are A = cos(λgeo + 90◦), B = sin(λgeo + 90◦)(cos2 i − sin2 i) and
C = − sin i sin(λgeo + 90o).
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3.2 Averaged equations of motion

Let λsun be the solar ecliptic longitude. We define λ as the angle between ω and λsun , i.e., the
geocentric angle between the perigee and the sun vector. The averaged elements are studied
over a fixed inclination (cf. Eq. 3), which affects the vector vRSW . To ascertain the long-term
effects of PRSW drag, the averaged elements are calculated. Elements of interest are the
semimajor axis, eccentricity and argument of perigee. The shorthand notation c(·) ≡ cos(·)
and s(·) ≡ sin(·) has been used. Given the structure of Eq. (6), we average the contributions
of the total and radial velocity terms separately, as denoted by the subscripts v and v · rs ,
respectively, using the averaging procedure

f̄(x) = 1

T

∫ T

0
f(x, t)dt (8)

where T is the period of the vector-valued periodic function f(x, t) and f̄ denotes an averaged
value. To facilitate computations, we perform a transformation of the independent variable
from true to eccentric anomaly using the relation

d f = a
√
1 − e2

r
dE (9)

Denoting vp ≡ ‖vp‖, the resulting expressions are

Δav = 2a3
√
1 − e2

μ
aSRP (1 + α)

{
vp

c

[
(Acω + Bsω)

(
2cE + ( 1e − e) ln(1 − ecE )√

(1 − e2)

)

+ (−Asω + Bcω)

(
sE − eE

1 − e2
− 2 tan E

2

1 + tan2 E
2

− E

e

)

+
(
2e − 2

e

) ( arctanh(
√

e+1
e−1 tan

E
2 )

√
e2 − 1

)]
+

√
μ/p

c
(E + esE )

}∣∣∣∣
Eentry

Eexit

(10)

Δev = a2(1 − e2)3/2

μ
aSRP (1 + α)

{
vp

c

[
(Acω + Bsω)

1 + e

(1 − e2)3/2

×
(

− e

2
cos2 E +

(
1 − e + 1

e

)
cE +

(
1

e2
+ 3

e
− e − 1

)
ln(1 − ecE )

)

+ (−Asω + Bcω)

(
2 tan E

2

e(1 + tan2 E
2 )

+ E

e2
+

(
2

e2
− 2

) arctanh
(√

e+1
e−1 tan

E
2

)

e2 − 1

)]

+
√

μ/p

c

(
2 tan E

2

e(1 + tan2 E
2 )

+ E

e2
+

(
2

e2
− 2

) arctanh
(√

e+1
e−1 tan

E
2

)
√
e2 − 1

)}∣∣∣∣
Eentry

Eexit

(11)

Δωv = a2

μe

√
1 − e2aSRP (1 + α)

{
vp

c

[
(Acω + Bsω)

(
−3E

2
+ sEcE

2
+ esE

)

+ (−Asω + Bcω)√
1 − e2

(
sin2 E

2
+ ecE

)]

+
√

μ/p/c

1 − e2

(
sEcE + (e3 − 3e)sE +

(
e2

2
+ 2

)
E +

√
1 − e2

(
cos2 E

2
− ecE

))}∣∣∣∣
Eentry

Eexit

(12)
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Δav·rs = −2a3
√
1 − e2

μ
aSRP (1 + α)

vRSW · rSun
c‖rSun‖

{
(cE +

(
2

e
− 2

)
ln(1 − ecE ))

cλ√
1 − e2

+
(
2

tan E
2

1 + tan2 E
2

− 4

e
arctanh

(
tan

E

2

)
+

(
4e − 4

e

) arctanh
√

e+1
e−1 tan

E
2√

e2 − 1

)
sλ

}∣∣∣∣
Eentry

Eexit

(13)

Δev·rs = −2a2(1 + e)

μ
aSRP (1 + α)

vRSW · rSun
c‖rSun‖

{[
e

2
cos2 E +

(
e + 1

e
− 3

)
cE

+
(

1

e2
− 1

e
+ e − 1

)
ln(1 − ecE )

]
cλ +

[
(e3 − 2e2 + e)E +

(
2

e
− e − 6

)
tan3 E

2

(1 + tan2 E
2 )2

+
(
e + 2

e
− 6

)
tan E

2

(1 + tan2 E
2 )2

+
(
7e − 2e2 − 2

e
+ 2

e2

)
arctanh(tan

E

2
)

+
(

2

e2
− 2

e
+ 6e − 2e2 − 2

) arctanh
√

e+1
e−1 tan

E
2√

e2 − 1

]
sλ√
1 − e2

}∣∣∣∣
Eentry

Eexit

(14)

Δωv·rs = − a2

μe
aSRP (1 + α)

vRSW · rSun
c‖rSun‖

{[
e

2
cos2 E +

(
e + 1

e
− 3

)
cE

+
(

1

e2
− 1

e
+ e − 1

)
ln(1 − ecE )

]
(1 + e)cλ

+
[(

(−2e3 + 2

e
+ 5e + 4

)
tan3 E

2

(1 + tan2 E
2 )2

+
(

−2e3 + 3e + 4 − 2

e

)
tan E

2

(1 + tan2 E
2 )2

+
(

−2e2 − 5e + 2e3 − 2

e2

)
arctanh

(
tan

E

2

)

+
(
2e4 − 6e2 + 6 − 2

e2

) arctanh
(√

e+1
e−1 tan

E
2

)
√
e2 − 1

+ 2E

]
sλ√
1 − e2

}∣∣∣∣
Eentry

Eexit

(15)

where E denotes the eccentric anomaly, so that Eentry and Eexit are the eclipse entry and
exit eccentric anomalies (cf. Fig. 8 for the eclipse geometry). Equations (10)–(12) and (13)–
(15) form the mean element differentials for the PRSW effect by utilizing the mean angular

velocity, ¯̇f , obtained using the averaging operator as in Eq. (8):

ΔaPRSW = ¯̇f [
Δav + Δav·rs

]
(16)

ΔePRSW = ¯̇f [
Δev + Δev·rs

]
(17)

ΔωPRSW = ¯̇f [
Δωv + Δωv·rs

]
. (18)

These equations are not valid for very low eccentricities.

3.3 Standalone effects

Variations of the mean semimajor axis over one orbit, under the influence of Poynting–
Robertson and Solar Wind drag only, assuming a constant λ, for different periods of time,
are compared in Fig. 2. The graphs are shown for an AMR of A/m = 1m2/kg, an initial
semimajor axis of a0 = 42167 km and i = 2◦. The PRSW effect depends on λ; it is positive
in the interval λ ∈ {3π/2, π/2} and negative in the remaining interval. At λ = 0 or π , an
orbit under eclipse is symmetric, which is when the maximum effect is observed, while the
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Fig. 2 Δa for quarter, half and full year due to PRSW drag for all λ with A/m = 1m2/kg, a0 = 42167 km
and i = 2◦

minimum occurs near λ = π/2, 3π/2. Consequently, as previous studies indicated (Lhotka
et al. 2016), the generally dissipative nature of the PRSW effect exhibits strong dependence
on the orbital regime and orbital resonances, and, hence, may become relevant for large
area-to-mass ratio object.

Other studies portrayed PRSW to have only a dissipative effect. Our results indicate that
this is more nuanced for orbits and depends highly on λ.

Variations of themean eccentricity over one orbit, under the same conditions, are compared
in Fig. 3. The eccentricity variation is positive in the interval λ ∈ {π/2, 3π/2} and negative
in the remaining λ values. At λ = 0 or π , an orbit under eclipse is symmetric, which is
when the maximum effect is observed. Variations of the mean argument of perigee over one
orbit, under the same conditions, are compared in Fig. 4. Contrary to the semimajor axis and
eccentricity, variations in the argument of perigee due to PRSWdrag are always positive, with
the minima occurring at λ = 0, π . It is slightly higher in the first half of the λ interval than
the second, owing to an unequal eclipse averaging for such Sun-Earth geometries. However,
λ is not constant and is bound to change. Due to the presence of a finite perigee drift, λ

constantly evolves. No model in existing literature takes this into account.
To find the actual change, a new element called Δœtrue is defined, which represents the

actual variation in the element, given a time period, as a function of a drifting λ. For any given
period of time, the cumulative change in an orbital element can, therefore, be calculated by
adding the individual differential of the element per orbit, given that its variation as a function
of λ is known.
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Fig. 3 Δe for quarter, half and full year due to PRSW drag for all λ with A/m = 1m2/kg, a0 = 42167 km
and i = 2◦

Figures 5, 6 and 7 show the above-defined true variation in mean semimajor axis, eccen-
tricity and argument of perigee, respectively, given an initial λ for a period of 1 year.

4 Modeling orbital dynamics

The standard model for the planeto-orbital dynamics of HAMR objects has mostly been
studied in the context of space debris dynamics (Colombo and McInnes 2011). Since smart
dust falls in the category of HAMR objects, the dynamics are non-Keplerian, arising from
perturbations due to SRP, atmospheric drag and electrostatic forces. The main environmental
forces that are most sensitive to the AMR are the likes of SRP and atmospheric drag in low
Earth orbits. Zhao et al. (2018) also included the effects of gravitational perturbations into
the model. The model used by Zhao et al. (2018) is reviewed in this section, further additions
to which are described in subsequent sections.

4.1 Gravitational potential

The perturbing potential can be written in the form (Vallado 2001):
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Fig. 4 Δω for quarter, half and full year due to PRSW drag for all λ with A/m = 1m2/kg, a0 = 42167 km
and i = 2◦

R = μ

r

∞∑
l=2

m∑
m=0

(re
r

)l
Plm(sin ϕ)[Clm cos(m�) + Slm sin(m�)]

+μ

r

∞∑
l=2

Jl
(re
r

)l
Pl(sin ϕ), (19)

where Jl are the zonal potential coefficients, re is the average equatorial radius of the Earth,
ϕ is the latitude, � is the longitude, Clm and Slm represent tesseral and sectorial coefficients,
Pl and Plm(x) are the associated Legendre polynomials of degree m and order l. The first
term on the right hand side of Eq. (19) refers to the tesseral part, while the second term refers
to the zonal part.

Zhao et al. (2018) substituted the secular and long-periodic terms separately to yield
averaged differential orbital equations up to J4 as follows:

dāsec
dt

= 0

dēsec
dt

= 0

dω̄sec

dt
= A2

p2
n

(
2 − 5

2
sin2 i

)
+ A4

p4
n

[(
12

7
+ 27

14
e2

)
− sin2 i

(
93

14
+ 27

4
e2

)

123



Orbital dynamics of smart dust... Page 11 of 26    12 

+ sin4 i

(
21

4
+ 81

16
e2

)]
, (20)

dālong
dt

= 0

dēlong
dt

= 0

dω̄long

dt
= − A3

p3
n

1

e sin i

[
3

8
sin2 i(4 − 5 sin2 i) − 3

8
e2(4 − 35 sin2 i + 35 sin4 i)

]
sinω

+ A4

p4
n

[
sin2 i

(
9

14
+ 3

4
sin2 i

)
− e2

(
9

14
− 15

4
sin2 i

)
+ 21

4
sin4 i

]
cos 2ω

(21)

where p is the semilatus rectum, n is the mean motion, and the remaining coefficients are
defined as

A2 = 3

2
J2r

2
e , A3 = −J3r

3
e , A4 = −35

8
J4r

4
e . (22)

The tesseral and sectorial harmonics of degree 2 and order 2 have a periodicity of half a day
and must be considered. The averaged differential rates due to these harmonics are (Zhao
et al. 2018)

dātess,long
dt

= 0

Fig. 5 Δatrue per year due to PRSW drag only with A/m = 1m2/kg, a0 = 42167 km and i = 2◦
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dētess,long
dt

= 0

dω̄tess,long

dt
= 3n2re2 J22(1 − e2)3/2

8π p2ne
(3e2 + 2 − 5 sin2 i)

×
[
sin 2

(
Ω − 2neπ

n

)
− sin 2Ω

]
, (23)

where ne is the Earth rotational rate and J22 is the gravitational coefficient of degree 2 and
order 2.

4.2 Atmospheric drag

Atmospheric drag is a non-conservative force dominant in low Earth orbits. The perturbing
acceleration due to atmospheric drag can be written as

adrag = −1

2

cD Adrag

m
ρ|vrel |2v̂rel , (24)

where cD is the drag coefficient, Adrag is the effective cross-sectional area of the spacecraft,
m is the mass, vrel is the velocity relative to the rotating atmosphere, and v̂rel is the direction
of the relative velocity vector.

The greatest challenge in modeling drag is the determination of the correct atmospheric
density. The exponential atmospheric model is based on the assumption of an exponentially-

Fig. 6 Δetrue per year due to PRSW drag only with A/m = 1m2/kg, a0 = 42167 km and i = 2◦
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Fig. 7 Δωtrue per year due to PRSW drag only with A/m = 1m2/kg, a0 = 42167 km and i = 2◦

varying density with altitude in finite strata for a time-independent spherically-symmetric
atmosphere. If h is the altitude at which density is to be determined, then for a given altitude
there exists a reference altitude h0 at which density is ρ0 and H represents the scale height
within which the density varies according to (Vallado 2001)

ρ = ρ0 exp

(
−h − h0

H

)
. (25)

Blitzer (1970) provided expressions for Δadrag and Δedrag ,

Δadrag = −2πδρpa
2 exp(−γ )

[
I0 + 2eI1 + 3e2

4
(I0 + I2) + e3

4
(3I1 + I3) + O(e4)

]

Δedrag = −2πδρpa exp(−γ )

[
I1 + e

2
(I0 + I2) − e2

8
(5I1 − I3)

− e3

16
(5I0 + 4I2 − I4) + O(e4)

]
, (26)

where ρp is the density at the orbit perigee, computed using Eq. (25), the factor γ = ae/H ,
Ik are modified Bessel functions of the first kind of order k and argument γ (Abramowitz
et al. 1988), and δ = QcD Adrag/m. The drag coefficient cD is considered to be constant,
and the factor Q is equal to 1 for a static atmosphere. These equations are valid only for the
eccentricity range 0.01 ≤ e ≤ 0.8 (Colombo and McInnes 2011).
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Fig. 8 Definition of λ and eclipse
geometry

4.3 Solar radiation pressure

SRP is one of the most important environmental forces for studying the evolution of smart
dust. For an Earth-centric orbit lying in the ecliptic plane, the acceleration due to SRP in the
RSW frame can be expressed as

aSRP = pSR cR As

m

⎡
⎣
cos(λ + f )
sin(λ + f )

0

⎤
⎦ , (27)

where pSR = 4.56 × 10−6 N/m2 is the solar pressure constant; cR is the reflectivity coef-
ficient; As is the area exposed to the Sun; and the angle λ = ω − λSun is the relative angle
between the perigee and the anti-Sun vector direction (since both ω and λSun are measured
with respect to a fixed reference direction). Figure8 shows the eclipse geometry and angle λ.

To determine the mean variation of orbital elements, the eclipse geometry must be calcu-
lated such that the parallax of the Sun is negligible; fenter and fexi t can be determined by
solving two independent equations,

p sin(λ + fenter ) = −re(1 + e cos fenter )

p sin(λ + fexi t ) = −re(1 + e cos fexi t ),
(28)

Note that for each λ there exist distinct solutions for fenter and fexi t .
Colombo and McInnes (2011) derived the primitive functions, defined formally as

funx (a, e, ω − λSun) =
∫

dx

d f
d f + const. (29)

by integrating with respect to true anomaly. Assumptions used in the derivation were that the
orbit lies in the ecliptic plane, and that the disturbing accelerationmagnitude aSRP is constant
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Fig. 9 Determination of sun-synchronous conditions at h p = 700 km

Fig. 10 Evolution of first equilibrium point of Δa = 0 for different perigee altitudes
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Fig. 11 Evolution of second equilibrium point of Δa = 0 for different perigee altitudes

while the smart dust is in sunlight. The resulting primitive functions (with the integration
constants omitted) are

funa(a, e, ω − λSun) = −2a3(1 − e2)

μ
aSRP

(
cos(ω − λSun) + e sin(ω − λSun) sin f

e(1 + e cos f )

)

fune(a, e, ω − λSun) = −a2(1 − e2)2

μ
aSRP

[
sin(ω − λSun)

(
−3

2

E

(1 − e2)3/2

+ sin f (cos f (−8e4 + 10e2 − 2) + 6e(1 − e2))

4(1 − e2)2(1 + e cos f )2

)
− cos(ω − λSun)

2e2(1 + e cos f )2
(1 + 2e cos f + e2)

]

funω(a, e, ω − λSun) = −a2(1 − e2)2

μe
aSRP

[
cos(ω − λSun)

(
3

2

E

(1 − e2)3/2

− e sin f

(1 − e2)(1 + e cos f )
− 1

2

(e + cos f ) sin f

(1 − e2)(1 + e cos f )2

)
+ sin(ω − λSun)

1 + 2e cos f

2e2(1 + e cos f )2

]

(30)

In the current study, the primitive function for eccentricity was replaced by an eccentric-
anomaly averaged version, to avoid numerical inconsistencies seen at high-eccentricity cases.
The newprimitive function developed for eccentricity is obtained by substituting the relations

sin f =
√
1 − e2 sin E

1 − e cos E
, cos f = cos E − e

1 − e cos E
(31)
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Fig. 12 Evolution of first equilibrium point of Δe = 0 for different perigee altitudes

into Eq. (30):

fune = a2
√
1 − e2

μ

{
sin(ω − λSun)

(
3

2
E + cos E sin E

2
− 2e sin E

)

− cos(ω − λSun)
√
1 − e2

(
sin2 E

2

)} . (32)

To calculate the total mean variation of orbital elements over an entire orbit, the functions
are evaluated over two arcs: [0, fenter ], [ fexi t , 2π ]. Then, the mean variation in semimajor
axis, eccentricity and argument of perigee can be given as

ΔaSRP (a, e, λ, fexi t , fenter ) = ¯̇f
∫ fenter

0

da

dt
dt + ¯̇f

∫ 2π

fexi t

da

dt
dt

ΔeSRP (a, e, λ, fexi t , fenter ) = ¯̇f
∫ fenter

0

de

dt
dt + ¯̇f

∫ 2π

fexi t

de

dt
dt

ΔωSRP (a, e, λ, fexi t , fenter ) = ¯̇f
∫ fenter

0

dω

dt
dt + ¯̇f

∫ 2π

fexi t

dω

dt
dt .

(33)
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Fig. 13 Evolution of second equilibrium point of Δe = 0 for different perigee altitudes

5 Orbital equilibria

5.1 Equilibrium conditions

To investigate the orbital dynamics of smart dust under the influence of Earth’s gravitational
potential, SRP, atmospheric drag and PRSW drag, we use the secular and long-periodic
variations of semimajor axis, eccentricity and argument of perigee over one orbital period.
We also account for eclipse through averaging, in the SRP and PRSW models.

Manymissions require a specific orbit orientation relative to the Sun. The original equilib-
rium criterion by Zhao et al. (2018) was extended herein by including a modified condition
on Δω, leading to the new equilibrium conditions

Δa = 0 (34a)

Δe = 0 (34b)

Δω + ΔΩ cos i = ΔλSun, (34c)

where all the orbital elements considered are mean elements averaged per orbit, considering
eclipse fractions. Each mean differential element in Eq. (34) is due to the influence of all per-
turbations combined. These equilibrium equations are searched for by propagating the GVE
using the following initial orbital elements: perigee height h p , eccentricity e and argument
of perigee ω. For the smart dust, the selected area-to-mass ratio is 32.6087 m2/kg, consistent
with the value chosen by Zhao et al. (2018).

To determine full equilibrium conditions, the search for Sun-synchronous cases is imper-
ative. Selecting a perigee altitude, h p , one dimension is fixed, while eccentricity and λ are
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Fig. 14 Equilibrium plot with both partial equilibria Δa = 0 and Δω + ΔΩ cos i = ΔλSun , and a full
equilibrium at e = 0.4629 and λ = 180◦ for h p = 600 km

varied to reveal eccentricities where Eq. (34c) holds. Each side of the equation represents
a surface. The points of intersection of these two surfaces are the solutions for Eq. (34c).
Solutions occur in a very narrow corridor of eccentricity for any given orbit. Figure9 shows
such a surface plot for the perigee altitude case of 700km. For this case, it was found that
Sun-synchronous conditions lie in the eccentricity range e = 0.446 to e = 0.474. It can be
noticed that the condition occurs such that the curveΔω+ΔΩ cos i intersectsΔλSun at least
two λ values. In other words, multiple solutions for λ might exist even in this small range of
eccentricity.

Because the parameter space for the investigation is {h p, e, λ}, the simulations are executed
for the following conditions: (i) initial perigee height h p from 500 to 5000km; (ii) the
eccentricity e ranges from0.05 to0.8; (iii)λ from0◦ to 360◦.A static atmosphere is considered
for calculating perturbations due to drag. Perturbed elements in the plane of motion are first
considered, while some out-of-plane perturbations that are significant are also discussed later
on. The elements are then propagated using semi-analyticalmethods.λSun is set for a calendar
day of the year that yields the solar ecliptic longitude, and the perigee is varied from 0◦ to
360◦ to yield a variation in λ.

5.2 Equilibrium solutions

The solutions for the first two parts of Eq. (34) exist for all perigee heights and eccentricity
values in the simulation. However, for the third condition, solutions exist only for a certain
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Fig. 15 Equilibrium plot with both partial equilibria Δa = 0 and Δω + ΔΩ cos i = ΔλSun , and a full
equilibrium at e = 0.4629 and λ = 180◦ for h p = 1200 km

region in the phase space shown in Fig. 9. A full equilibrium condition can only be found
by studying where such solutions occur concurrently. Below, we study equilibrium results
owing to each individual condition; all elements described henceforth are mean elements
unless mentioned otherwise.

The PRSW drag contribution is quite weak, and would cause the smart dust to spiral
inwards for heliocentric orbits. Due to the weak relativistic effects (v/c), the SRP dynamics
remain dominant in the ecliptic plane over PR and SW components. However, requiring
that the semimajor axis and eccentricity remain fixed entails that the eclipse averaging must
be equal on both sides of the perigee, which happens at two points only. This explains the
existence of two equilibria for each case.

Before focusing on the equilibrium solutions, we must first clarify that in both models
we compare with, namely Colombo and McInnes (2011) and Zhao et al. (2018), only planar
elements were propagated. The current paper also takes into account the contribution of nodal
precession ΔΩ , because PRSW drag has a finite out-of-plane component that affects apsidal
rotation.

The variation of mean semimajor axis due to PRSW drag alone has a maximum effect
occurring at λ = 0◦ and λ = 180◦, which counteracts SRP (cf. Fig. 2). Since it is weaker
compared to SRP, the latter remains dominant among all other forces.Drag causes a consistent
secular decrease in semimajor axis, while SRP can either increase or decrease the semimajor
based on the Sun-relative orientation of the orbit.

123



Orbital dynamics of smart dust... Page 21 of 26    12 

Fig. 16 Equilibrium plot with both partial equilibria Δa = 0 and Δω + ΔΩ cos i = ΔλSun , and a full
equilibrium at e = 0.4629 and λ = 180◦ for h p = 5000 km

When λ = 0◦, 180◦, the eclipse divides the orbits symmetrically, resulting in null semi-
major axis perturbations at such λ. Figure10 shows how the first equilibrium point evolves
with eccentricity for different perigee altitudes. The variation of the second equilibrium point
shown in Fig. 11 only slightly varies with perigee altitude. However, the model is less accu-
rate for lower eccentricities (e < 0.1). Variations in semimajor axis over one orbit under the
influence of SRP and drag are also seen to occur at similar λ values as indicated by Colombo
and McInnes (2011). When compared to the model without PRSW drag, as in Zhao et al.
(2018), the equilibrium solutions lie in two groups: One satisfying λ = 0, and the other for
λ = π . This indicates that PRSW drag hardly affects semimajor axis equilibrium solutions.

Variations in eccentricity due to PRSW drag are also opposite to that of SRP, with the
minima occurringwhenλ = π/2 or 3π/2. Conversely, SRP hasmaxima at the same locations
as λ. This relationship might be explained through the physical concept that whereas SRP
pushes the smart dust device away from the Sun, PRSW drag attempts to attract it inwards
toward the Sun.

In our study, the solution for Δe = 0 is given by two points: One near λ = 0◦, and one
near λ = 180◦. Figure12 shows the variation of the equilibrium point with eccentricity for
different perigee altitudes. The variation of the second equilibrium point shown in Fig. 13
only slightly varies with perigee altitude. In Colombo and McInnes (2011), variations of
eccentricity due to SRP and drag are in the interval π ≤ λ ≤ 2π , since drag causes a
constant decrease in mean eccentricity. Zhao et al. (2018) considered J2 effects with long-
periodic and secular terms, yielding results similar to Colombo and McInnes (2011) (see
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Fig. 17 Phase portrait of λ for a = 42167 km, i = 2◦ and A/m = 32.6708m2/kg

Eqs. 20, 23). However, for the model in this study, which includes effects of PRSW drag, the
zero points are different from Colombo and McInnes (2011).

The orbital element on which PRSW drag has the maximum effect is ω. The fact that
Zhao et al. (2018) included long-periodic and secular J2 effects made a significant impact,
and, therefore, a marked departure from the results of Colombo and McInnes (2011) for the
solution of Δω = ΔλSun . At lower perigee altitudes, h p < 2000 km, both J2 perturbations
and SRP are dominant, as shownbyZhao et al. (2018). The current study extends themodel by
accounting for the nodal component of apsidal rotation, which facilitates finding additional
solutions, as described in the Sun-synchronous conditions discussed earlier (cf. Eq. 34c).
Figures14, 15 and 16 show solutions that exist for perigee altitudes h p = 600, 1200, 5000
km at varying eccentricities.

Colombo andMcInnes (2011) showed that the conditionΔωSRP,2π = ΔλSun,2π can only
be obtained in the range 90◦ ≤ λ ≤ 270◦. Zhao et al. (2018) conclusively showed that as
J2 effects become weaker with increase in perigee altitude, partial equilibrium solutions (as
originally defined by Colombo and McInnes (2011)) merge toward λ = 180◦. The current
study sheds new light on such solutions, obtained by a different method of averaging, which
averages over the actual interval for every λ. At h p = 600 km, a full equilibrium solution,
i.e., one that satisfies all three constraints of Eq. (34), exists at λ = 180◦. At h p = 1200
km, the full equilibrium solution still exists at λ = 180◦, while solutions satisfying only
Sun-synchronous conditions exist in the range 10◦ ≤ λ ≤ 340◦. However, at h p = 5000 km,
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Fig. 18 Linearized phase portrait of saddle point about λ = −1.89 rad

we see divergence, such that the full equilibrium solution has now shifted to λ = 0◦, and at
λ = 180◦ the solution is met at e = 0.

5.3 Stability analysis

Analysis suggests that the variable which is key to understanding the equilibrium of the entire
system is λ. As a dependent variable, λ itself changes due to the perturbations in ω and Ω .
The equilibrium of λ can be determined from its phase portrait by determining λ̇. Using
Eq. (34c), these quantities were estimated for a particular semimajor axis, inclination and
AMR. Figure17 is the phase portrait for λ̇–λ, which shows four equilibrium points, out of
which, two are stable nodes and two are unstable saddle points. To understand the behavior
of each equilibrium point, the system is linearized around each type of equilibrium to study
behavior around these regions. Figures18 and 19 show a magnified version of Fig. 17 at
regions of interest.

The unstable saddle points occur at λ = −1.89 rad and λ = 1.23 rad. Figure18 shows the
linearized phase portrait around λ = −1.89 radwhere trajectories that originate on either side
of such λ, move away from the saddle point. The two stable nodes occur at λ = −1.16 rad and
at λ = 1.98 rad. Figure19 shows the linearized phase portrait about the stable equilibrium
at λ = 1.98 rad, around which all trajectories evolve toward the node. This analysis leads
to one of the most important observations in this study. It proves that passive control can
be exercised over λ for targeting specific regions, which over time would evolve to settle at
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Fig. 19 Linearized phase portrait of saddle point about λ = 1.98 rad

the stable nodes, either collocated or located at opposite stable points, in order to maintain a
formation of smart dust modules.

6 Conclusions

The problem of finding long-term equilibria conditions for smart dust was recast by extend-
ing previous studies to include Poynting–Robertson and SolarWind (PRSW) drag. Upgrades
made to previous studies include extending the phase space by solving the equilibrium equa-
tions for every varying λ (the geocentric angle between the perigee and the sun vector),
without assuming a constant λ, which eventually led to studying the phase-space dynamics
of λ̇−λ, and studying the averaged variation of PRSW drag over an orbit and corresponding
effects on the orbital parameters around a planetocentric orbit for every λ. Since the phase
space was extended to study all possible sun-orbit geometries, it resulted in cognizance of
the variation of all parameters with respect to λ. Given the size and shape of the orbit, this
enabled estimating themean changes in semimajor axis, eccentricity and argument of perigee
for each case. The problem of finding long-term equilibrium conditions for smart dust was
thus recast by extending previous work to include PRSW drag. By including the effect and
defining new equilibrium conditions on the orbital orientation, some additional partial equi-
librium solutions, constituting orbits with fixed rate of perigee change with respect to the
longitudinal rate of change,were found.Moreover, the study shows that even though PRSW is
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not dominant as compared to solar radiation pressure or J2, it still influences the evolution of
the relative Sun-orbit orientation. For orbits with higher initial perigee altitudes, where drag
and J2 effects subside, PRSW definitely influences long-term orbital behavior and should be
considered in the orbit design scheme for smart dust devices.
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