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Abstract
Li and Liao announced (NewAstron 70:22–26, 2019, arXiv:1805.07980v1) discovery of 313
periodic collisionless orbits’ initial conditions (i.c.s), 30 of which have equal masses, and 18
of these 30 orbits have physical periods (scale-invariant periods) T ∗ < 80. We revisited this
work with the intention to improve both, its logical consistency and the numerical efficiency
of the method. We have conducted a new search for periodic free-fall orbits, limited to the
equal-mass case. Our search produced 24,582 i.c.s of equal-mass periodic orbits with scale-
invariant period T ∗ < 80, corresponding to 12,409 distinct solutions, 236 of which are
self-dual.

Keywords Three-body problem · Free-fall periodic collisionless orbits · Numerical search

1 Introduction

Free-fall orbits were perhaps the earliest periodic orbits to be studied in the general, i.e.,
equal- or almost-equal-mass 3-body problem: in the late 1960s and early 1970s, (Szebehely
and Peters 1967; Standish 1970; Hénon 1974). Their search was presumably motivated by
Burrau’s (1913) hypothesis of periodic Pythagorean 3-body motion. Also in the late 1960s
(Agekyan and Anosova 1967, 1968) started the studies of “global” properties, such as the
“lifetimes” before “ejection” of free-fall orbits. Consequently, one might expect a large body
of literature on the subject, which is not the case, rather some special cases of non-periodic
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colliding orbits have been studied (Tanikawa et al. 1995; Tanikawa and Umehara 1999;
Tanikawa and Mikkola 2008; Lehto et al. 2008; Tanikawa and Mikkola 2015; Tanikawa
et al. 2019; Li et al. 2021; Umehara and Tanikawa 2000), presumably for their mathematical
properties.

After some preliminary work by Iasko and Orlov (2014, 2015), it was only in 2019 that
Li and Liao (2019) searched Agekyan–Anosova’s domain D for periodic orbits and found
313 initial conditions (i.c.s) for free-fall (or “brake”) collisionless periodic orbits in the
Newtonian three-body problem, 30 of these 313 i.c.s being for equal-mass case. This number
of discovered and identified free-fall orbits does not compare well/favorably with thousands
of other types of periodic 3-body orbits that have been found over the past decade (Šuvakov
and Dmitrašinović 2013, http://suki.ipb.ac.rs/3body/index.php, Dmitrašinović and Šuvakov
2015; Dmitrašinović et al. 2018; Li and Liao 2017). Why have so few periodic free-fall orbits
been found thus far? Can one do better, and at what cost?

We emphasize here that these 313 were i.c.s, and not 313 distinct orbits, as every periodic
free-fall orbit has two, usually distinct, sets of i.c.s. The 30 equal-mass i.c.s correspond to
28 distinct orbits, while 4 i.c.s contain 2 saries/“duals,” which are not (really) necessary to
specify the orbit. In fact, the 26 sary/dual of the rest i.c.s are easily obtained by following the
time evolution of the primary i.c. through one half-period T /2. The dual initial condition can
be found by computing the position of the body in Agekyan–Anosova’s domain D such that
the initial triangle formed by three bodies is similar to those formed at T /2 for the primary i.c.
This way we easily obtain additional 14 sary i.c.s. The secondary i.c.s are only 14, because
the other 12 of 26 orbits are identified as self-dual(!), which means that the triangles at
t = 0 and t = T /2 are congruent. In this case the time evolution takes an i.c. into its mirror
image (plus possibly a permutation of mass labels), and then back again. These orbits have a
beautiful spatiotemporal symmetry (Montgomery 2023). They are not expected, as, thus far,
the only examples of such self-dual free-fall orbits were certain isosceles orbits. The ratio
12/28 correspond to the large number of ∼ 43% of the found self-dual orbits by Li and Liao.

The Montgomery’s method (Montgomery 1998) of assigning two-symbol symbolic
sequences to periodic orbits is used in Li and Liao (2019). Instead of Montgomery’s method,
we use Tanikawa and Mikkola’s syzygy counting method (Tanikawa and Mikkola 2008,
2015) as a generator of symbolic sequences and that match only for one half-period, as
otherwise one would end up with trivial symbolic sequences. A special case of periodic
free-fall orbits are the self-dual ones, which have particular structure of symbolic sequences,
depending on the number of symbols in a half-period T /2.

Here we have revisited this problem, using high-accuracy numerical methods and a high-
performance computer (Nestum cluster, Sofia Tech Park, Bulgaria http://hpc-lab.sofiatech.
bg/). We have found:

(1) 15,738 i.c.s corresponding to 12,409 distinct solutions with T ∗ < 80. We use more
restrictive condition on the periods than Li and Liao: T < min(7, 80/|E |3/2).

(2) When we apply time evolution of the (primary) i.c.s up to one half-period, we easily find
8844 additional i.c.s., bringing the number of i.c.s up to 24,582. Some of the additional
orbits are ones that are missed by the search, but others are with T > 7 and T ∗ < 80.
Therefore by applying this procedure we compensate to some extent that we use the
less time consuming condition: T < min(7, 80/|E |3/2) instead of the ultimate one:
T < 80/|E |3/2. Now only 236 solutions (∼ 2%) are identified as self-dual, which
contrast to the large number ∼ 43% of Li and Liao.

(3) Certain partitioning of i.c.s within Agekyan–Anosova domainD, which are in agreement
with Tanikawa et al.’s division of D by 3-cylinders and 4-cylinders.
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(4) Distinct upper and lower bounds on the periods of orbits as (linear) functions of the length
of symbolic sequence (word length).

As there is still an unknown number of undetected periodic orbits, we are left with a
significant uncertainty regarding the absolute number of periodic orbits with scale-invariant
period smaller than some fixed value. The only thing that one can say with certainty is that
the number of periodic free-fall orbits N with a scale-invariant period T ∗ = T |E |3/2 equal
or shorter than any finite time t is finite: N (T ∗ < t) < ∞. This follows from two assertions.
(I) The length n of the symbolic sequences for T ∗ < t is bounded from above, because the
average time interval between two syzygy for given energy E is bounded from below. (II)
The number Nn of symbolic sequences (words) of length n associated with them is bounded
from above by Nn ≤ 3n/2 (3 is the number of symbols).

As the scale-invariant period T ∗ grows, so does the number of possibly distinct periodic
orbits. Thus, the only/best hope of a successful exhaustive search for periodic orbits is at small
values of the scale-invariant period T ∗. As we will see later in Sect. 3.5, the results suggest
a more precise form of the dependence of T ∗ on n, namely that the scale-invariant period
T ∗ = T |E |3/2 of an orbit is bounded from above and below by bounds linearly proportional
to the number of symbols n.

The present paper falls into four sections. After the present Introduction, in Sect. 2 we
present the preliminaries, such as the definition of Agekyan–Anosova’s domain, of the shape
sphere, and of the symbolic sequences used to describe three-body orbits. In Sect. 3, we
present the results. In Sect. 4, we summarize and draw conclusions.

2 Preliminaries

There are certain general features of three-body problem, as well as some features specific
to the free-fall case, that need to be specified.

2.1 Three-body Jacobi variables

Because the return proximity function is a function of twelve variables, it is difficult to
systematically vary all twelve initial conditions to find a periodic solution. Therefore we
eliminate all constants of themotion, and thus reduce the number of variables of the proximity
function. One way to do this is by changing the three-body Cartesian variables to relative
(Jacobi) ones and to the shape sphere.We shall use the latter for classifying periodic solutions.
As most of these variables remain unchanged for arbitrary masses, we discuss the general
case here.

The center-of-mass (CM) two-vector RCM is defined for arbitrary masses as

RCM = m1r1 + m2r2 + m3r3
∑3

i=1 mi
. (1)

RCM is a constant of the motion if the total linear momentum P = m1ṙ1 + m2ṙ2 + m3ṙ3
equals zero. The three-body dynamics is simplified by using the two relative coordinate
vectors introduced by Carl Jacobi:

ρ = 1√
2
(r1 − r2) and λ = 1√

6
(r1 + r2 − 2r3), (2)
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Fig. 1 The initial position of
three bodies in the configuration
space. The initial positions of
mass no. 2 and mass no. 3 are
located at points A(−0.5, 0) and
B(0.5, 0), respectively. The
initial position of mass no. 1 is at
the point P(x, y) in the region D

which are applicable even for unequal masses. We solve the equations of motion using
Cartesian coordinates and then use ρ and λ to graphically represent the solutions.1 Thus, we
reduce the number of variables in the proximity function d(X0, T0) from twelve to eight.

2.2 Agekyan–Anosova’s initial condition space for the free-fall problem

As per definition of the free-fall orbit, there is at least one instance in time when all three
bodies are at rest.Weuse that instance as our initial time t0 = 0, to define the initial conditions,
which only concern the three bodies coordinates, i.e., the shape and the size of the triangle
subtended by the three bodies. The historically accepted convention, due to Agekyan and
Anosova (1967, 1968) (see also Tanikawa et al. (1995), Tanikawa and Mikkola (2015)), for
these variables is distinct from the shape sphere and the hyper-radius defined in 2.3. That
leads to certain complications, discussed below.

The definition of the initial condition (i.c.) space for the free-fall 3-body problem was
given by Agekyan and Anosova. They put body number 2, with mass m2 at A(−0.5, 0) and
body number 3 with mass m3 at B(0.5, 0) both on the x-axis of the (x, y)-plane. The body
number 1 with mass m1 is put at any place P within the circular segment

D = {
(x, y) : x ≥ 0; y ≥ 0; (x + 0.5)2 + y2 ≤ 1

}
. (3)

This is the Agekyan–Anosova domain D (see Fig. 1).
As Tanikawa et al. (1995) noted, this is not a unique choice, as can be seen by the fact

that the vertical x axis in Fig. 1 describes isosceles triangles, but so does also the circular
boundary of the Agekyan–Anosova domain D.

There are three other similar (in the sense that they can be obtained by reflections, about
the x , and/or the y axis, from this one) domains, another four compact and four infinite

1 Themass-weighted Jacobi vectors are not necessary for solving the equations ofmotion, nor do they represent
the true geometry of the three-body trajectories. Consequently, they can be avoided altogether.
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Fig. 2 Tanikawa et al.’s triangle shape space. D11 corresponds to the D-shaped domain in Fig. 1. The other
Di j are obtained by reflections. For example, D21 is the mirror image of D11 with respect to the y-axis; D12
is the mirror image of D11 with respect to their boundary circle (cf. Tanikawa and Mikkola 2015)

domains (12 in toto). They correspond to spatial reflections and different permutations of
mass labels (1,2,3) of the three bodies, see Fig. 2.

Permutation symmetry is perhaps most easily seen/illustrated on the shape sphere (see
Fig. 3) in Sect. 2.3, where cyclic permutations correspond to rotations through 2π/3 around
the z-axis, whereas two-body permutations correspond to reflections about three Eulermerid-
ians. These meridians partition the shape sphere into six “slices”/wedges, each one having a
half “north” and “south” of the equator. These 12 sectors correspond to Tanikawa et al.’s 12
sectors in the (x, y) plane (see Fig. 2).

Anapparent advantageof theAgekyan–AnosovadomainD over someof the other domains
is that it is finite, but that may, in certain cases be an actual disadvantage, considering the fact
that there are (probably) infinitely many periodic orbits located in a finite area. That means
potentially high or even infinite density of periodic orbits, at least near the two-body collision
points in the Agekyan–Anosova domain D.

2.3 The shape space of triangles

There are three independent scalar three-body variables: λ2, ρ2, and ρ · λ. The hyperradius
R = √

ρ2 + λ2 characterizes the overall size of the orbit and removes one of the three scalar
variables. We may relate the three scalar variables to the unit three-vector n̂ defined by the
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Fig. 3 Figure-eight orbit (solid
closed curve) on the shape-space
sphere. Three two-body collision
points (red), singularities of the
potential, lie on the equator

Cartesian components

n̂ =
(
2ρ · λ

R2 ,
λ2 − ρ2

R2 ,
2(ρ × λ) · ez

R2

)

. (4)

The domain of these three-body variables is a sphere with unit radius, (Montgomery 1998) as
illustrated in Fig. 3. The (shape) sphere coordinates depend only on the shape of the triangle
formed by the three bodies, not on R or on its orientation. The equatorial circle corresponds to
collinear three-body configurations (degenerate triangles). The three points shown in Fig. 3
correspond to two-body collisions, that is, singularities in the potential (see also Fig. 4).

Two angles parametrizing the shape sphere together with the hyperradius R define the
three-dimensional configuration space of the planar three-body problem.

The Smith–Iwai permutation-adapted (hyper)spherical angles (α,φ) are defined as follows

n̂ = (sin α cosφ, sin α sin φ, cosα) . (5)

which leads to

cosα =
(
2ρ × λ

R2

)

, (6)

tan φ =
(
n

′
x

n′
y

)

=
(

2ρ · λ

ρ2 − λ2

)

. (7)

We see that the sign of cosα changes every time the trajectory crosses the equator, or, equiva-
lently, whenever the triangle passes through a syzygy (collinear configuration). Permutations
are directly related to rotations around z-axis, i.e., to changes of the meridional angle φ (see
below).

The natural domain of the permutation symmetric 3-body variables is a circle with unit
radius (see Fig. 4). The points on the unit circle correspond to collinear configurations (“tri-
angles” with zero area), or syzygies.
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Fig. 4 Contour plot of the logarithm of the sum of Newton’s two-body potentials for any fixed value of the
hyper-radius R in the equatorial plane of the shape sphere. The two straight dashed red lines at angles of
± 2π

3 , and the vertical axis are the symmetry axes, i.e., the s2 subgroups of the s3 permutation group. The
three collinear configurations in which one pair of particles has vanishing separation (“collision points”) are
denoted by big solid circles, and the three collinear (“Euler points”) configurations in which one particle has
equal separations from the other two are denoted by small solid circles. As one approaches the two-body
collision points (three large solid points on the big circle), the equipotential contour lines become increasingly
dense, finally reaching infinite density at these points, due to the singularities/poles present

The permutation group on three objects s3 consists of 6 elements, divided into 3 conjugacy
classes; see textbooks, such as Stancu’s (Stancu 1996) §4 Permutation group sn and in Elliott
and Dawber’s (1984) §17 Permutation group sn .

The two straight lines at angles of ± 2π
3 , together with the vertical axis in Fig. 4, are

the three (reflection) symmetry axes; these reflections correspond to the three “two-body
permutations”/transpositions in the s3 permutation group. The two cyclic permutations of
the s3 permutation group correspond to the rotations through ± 2π

3 .
The six points where the symmetry axes cross the big circle in Fig. 4 correspond to either

a) three collinear configurations (“shapes”) in which one pair of particles has vanishing sep-
aration (big solid circles), i.e., “sits on top of each other,” or b) three collinear configurations
(“shapes”) in which one particle has equal separation from the other two, i.e., “sits in the
middle between the other two” (small solid circles). The center of the circle corresponds to the
equilateral triangle configuration (“shape”), which turns into a point when the hyper-radius
R → 0.

Note how the equatorial circle is divided into six identical “pizza slices”/wedges, which
number is doubled on the shape sphere, as, for each “pizza slice” in the equatorial plane there
are two (equal-area) parts on the shape sphere: one “north” and one “south” of the equator,
which are each other’s mirror image.

Note also that unlike many “conventional” periodic orbits, the free-fall orbits do not close
a loop on the shape sphere (see Fig. 5), but rather form an open section of a curve, with two
open ends (see Fig. 5).2

2 Wemay consider that the full orbit traverses these segments twice and corresponds to a closed curve enclosing
zero area. However, in order that this idea is useful, we need to have a one-parameter continuous family of
periodic orbits whose enclosing areas tend from non-zero to zero as the parameter changes. For the moment,
we have no idea of having this kind of family.
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Fig. 5 A free-fall periodic orbit
(solid red curve) on the
shape-space sphere. Notice the
two open ends, one above and
another below the equator

2.4 Syzygies as symbolic sequences for free-fall periodic orbits

As stated in the Introduction,we use Tanikawa andMikkola’smethod (Tanikawa andMikkola
2008, 2015) of associating a (finite) sequence w(0, T ) = s1s2s3 . . . of three symbols si , say
the numbers 1, 2 and 3 with each periodic orbit with period T . The three symbols/numbers
(1,2,3)/ correspond to one of the three segments on the equator of the shape sphere wherein
the orbit crosses the equator (which is guaranteed to happen byMontgomery’s theorem 2007
Montgomery 2007).

Of course, that still leaves us with an ambiguity regarding permutations. Moreover, we
shall only associate symbolic sequences with one half of the period w(0, T /2), as the
second half of a periodic orbit is represented by the (exact) inverse symbolic sequence
w(T /2, T ) = w−1(0, T /2), leaving a trivial (“unity”) sequence for (every) complete peri-
odic orbit w(0, T ) = w(0, T /2)w(T /2, T ) = 1.

Each time a triple system becomes collinear, a symbol is given according to the rule
described at the top of this subsection. Therefore, an orbit, except the one which terminates
at triple collision, represented by an infinite continuous curve in the phase space is replaced by
a bi-infinite (corresponding to the past and future) symbol sequence. We denote the symbols
by si and the boundary between the past and future (zero time t = 0 initial condition) by
a period (•), the present state being just after the period. Here we only consider the future
symbol sequences. Then a (future) symbol sequence s starting at the present can be written
as

s = •s1s2s3 . . . (8)

Now, suppose that all the points in the initial condition plane have their own symbol
sequences (8), that is, the orbits starting at points of the initial condition plane are all integrated
to the future. Of course, triple collision orbits have finite symbol sequences. If we truncate
the symbol sequences at the n-th digit, there are a finite number of possible combinations of
symbols in these length-n “words.” The point set of the initial condition plane whose symbol
sequences contain a particular initial word of length n is called an “n-cylinder.” For each
n, a finite number of n-cylinders divide the initial condition plane into different sections.
Boundaries of the cylinders are formed with binary collision curves (BCCs) (Tanikawa and
Mikkola 2015; Tanikawa et al. 2019).
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We use the shape sphere, as defined in 2.3 and in Šuvakov and Dmitrašinović (2014), to
define the equator and syzygies.

3 Results

3.1 The return proximity function

The return proximity function d(X0, T0) in phase space is defined as the absolute minimum
of the distance from the initial condition by d(X0, T0) = mint≤T0 |X(t) − X0|, where

|X(t) − X0| =
√

∑3

i
[ri (t) − ri (0)]2 +

∑3

i
[pi (t)]2 (9)

is the distance (Euclidean norm) between two 12-vectors in phase space (the Cartesian coor-
dinates and velocities of all three bodies without removing the center-of-mass motion).
Searching for periodic solutions with a period T smaller then a parameter T0 is equiva-
lent to finding zeros of the return proximity function. In this work, the value of T0 is taken
to be T0(x, y) = min(7, 80/|E(x, y)|3/2). The numerical algorithm that we use for finding
periodic orbits is an optimized version of those used in, Li and Liao (2017). This is the
grid-search algorithm in combination with Newton’s method (Abad et al. 2011), where the
computing of the coefficients of the linear system at each step of Newton’s method is done
with the high order Taylor series method used with high precision floating point arithmetic
(Barrio et al. 2011). The obtained better efficiency from us can be explained with the use of
a finer search grid, the use of a modification of Newton’s method with a larger domain of
convergence (Hristov et al. 2021), and some technical improvements. The numerical method
will be given in much detail elsewhere.

3.2 Distribution of i.c.s in Agekyan–Anosova’s domainD

As a result of the search in Agekyan–Anosova’s domainD with the restriction for the periods
T (x, y) < min(7, 80/|E(x, y)|3/2), we find 15,738 i.c.s corresponding to 12,409 distinct
solutions. 9080 i.c.s turn out not to be in pairs (a distinct dual i.c. with the same T ∗ does not
exist). Simulating these 9080 i.c.s up to T /2 and finding the i.c.s such that the triangle formed
from the three bodies is similar to the triangle formed at T /2 (plus possibly a permutation of
mass labels), we find 8844 sary i.c.s, bringing the number of i.c.s up to 24,582. This way we
find together with some missed by the search i.c.s, also i.c.s for T > 7 and T ∗ < 80. These
i.c.s can’not be found directly by our search, because we consider periods T < 7. Hence
this is a cheap way to compensate (to some extent) that we use the condition T (x, y) <

min(7, 80/|E(x, y)|3/2) instead of the ultimate but much more time consuming condition
T (x, y) < 80/|E(x, y)|3/2. Additionally, this procedure is a way to identify the self-dual
i.c.s, whichmeans that the triangles at t = 0 and t = T /2 are congruent and the time evolution
takes an i.c. at T /2 into its mirror image (plus possibly a permutation of mass labels), and
then back again. We obtain 236 = 9, 080 − 8, 844 such solutions. We will discuss them in
Sect. 3.4.

All 24,582 i.c.s ordered by T ∗ and given in the form of four numbers (x, y, T , T ∗)with 80
correct digits can be downloaded from http://db2.fmi.uni-sofia.bg/3bodyfree/. All symbolic
sequences (“words”) discussed in 2.4 with their half-length n/2 and the plots in the real-
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Fig. 6 The 24,582 initial
conditions of 12,409 free-fall
orbits, including 236 self-dual
ones

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.5 0 0.5

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 7 The simplest (n/2 = 5) asymmetric orbit represented by two i.c.s, i.c. 1 (left), i.c.2 (right)

space of some hundreds of the first orbits can be also found in http://db2.fmi.uni-sofia.bg/
3bodyfree/.

The distribution of i.c.s can be seen in Fig. 6. It is to be noted here that the structure of
the picture is very similar to the pictures for ejection times and homology map in Lehto et al.
(2008) and also the picture for escape regions, binary collision curves, and triple collision
points in Umehara and Tanikawa (2000). Particularly it is seen from Umehara and Tanikawa
(2000) that the distribution of i.c.s avoids the fast escape regions and is along the binary
collision curves.
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Fig. 8 The simplest (n/2 = 5) asymmetric orbit (zoomed), i.c. 1 (left), i.c.2 (right)

The plots in the real-space for the simplest asymmetric solution (with minimal T ∗ and
n/2 = 5), represented by two distinct i.c.s, is given in Fig. 7. The initial triangle for this
solution is very closed to equilateral triangle, which corresponds to the Lagrange’s triple
collision solution. Although one can suppose a symmetry in this solution by observing its
plots, it is not the case, as seen from the zoomed versions of the plots in Fig. 8. The data
(x, y, T , T ∗) for this simplest solutions with 35 correct digits (approximately quadruple
precision) can be seen in Table 1 (i.c.1 and i.c.2). Note that the scale-invariant periods T ∗
for dual i.c.s are equal. The second simplest asymmetric solution is presented in Fig. 9 (i.c.3
and i.c.4 in Table 1).

3.3 The role of binary collision curves in the Agekyan–Anosova’s domainD

We insist on our orbits being collisionless, and this condition implies certain “selection rules.”
Tanikawa et al. have long studied binary collision curves (BCCs) for the Newtonian free-fall
3-body problem, mostly with regard to 3-body collisions and not with regard to periodic
orbits. But, their results are equally valid and applicable to periodic orbits. The big picture
is that the BCCs partition the Agekyan–Anosova domain into smaller compact subdomains,
which form a pattern suspiciously similar to the pattern appearing in the pictures of ejection
times and of the homology map in Lehto et al. (2008).

After computing the symbolic sequences of all found i.c.s, we partition (separate) them
into different sets depending on the different starting 3 or 4 symbols. This way we want
to match (to agree) the results for the initial symbols of found i.c.s with Tanikawa et al.’s
division of D by 3-cylinders and 4-cylinders (Tanikawa and Mikkola 2015; Tanikawa et al.
2019).

In the case of considering the first three symbols we obtain three sets of i.c.s: starting with
“132,” “131,” “113.” We color them in different colors - green, red, black, respectively. The
binary collision curve (BCC) constituted the boundary of the 3-cylinders “132” and “131”
from Tanikawa and Mikkola (2015); Tanikawa et al. (2019) exactly separates the points with
green and red color, meaning agreement (see Fig. 10(left)). There is a small number of red
and black points (“131,” “113”-points) very close to the y-axis that make an exception (they
lie in the “132” - side of the BCC). This suggest that there is a structure of small scale close
to the y-axis with |x | < 0.01. Computing the BCCs in this region has not yet been done, as
mentioned in Tanikawa et al. (2019), it will be considered elsewhere.
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Fig. 9 The second simplest (n/2 = 6) asymmetric orbit represented by two i.c.s (i.c 3, i.c. 4)

The case of starting 4 symbols is considered analogously. Now we have 5 sets of points:
startingwith “1323,” “1321,” “1312,” “1313,” “1132.”We color them in blue, green, red, cyan,
black, respectively. The four binary collision curves (BCCs) constituted the boundary of the
4-cylinders from Tanikawa and Mikkola (2015), Tanikawa et al. (2019) exactly separates the
points with different colors (see Fig. 10(right)), with the small exception mentioned above.

In the 4-cylinder 1132 close to the y-axis with |x | < 0.01 (these are almost isosceles
triangles close to the Euler point) there are several examples of periodic orbits (13 i.c.s) that
appear as the long awaited “stutter” orbits of Moeckel et al. (2012); we hope to return to this
subject elsewhere.

3.4 Self-dual (symmetric) orbits

The self-dual orbits are those for which the triangles formed by the three bodies at t = 0 and
t = T /2 are congruent, i.e., dual i.c.s coincide. We obtain 236 self-dual solution (∼ 2% from
all 12,409 solutions), which contrast to the large number of ∼ 43% (12 from 28) of Li an
Liao. This ambiguity can be explained by the assumption that these solutions are generally
easier to be caught numerically. Also the percent of self-dual solutions among all solutions
may depend on the considered value of T ∗.

The beautiful spatiotemporal symmetry of the self-dual solutions was for the first time
discussed in Montgomery (2023). Here we present the 8 simplest ones (with minimal T ∗),
found by us. Their initial conditions with 35 correct digits is given in Table 2. The corre-
sponding plots in real-space are given in Figs. 11, 12, 13 and 14. For all solutions, the map
that gives on what vertex (mass label) each mass label in the initial triangle maps at T /2,
is computed. For this map two possibilities are observed - or is an identity, or two indices
are permuted. All self-dual solutions have the property that if we read the first half of the
symbolic sequence from back to front and apply the map of vertices, the same sequence is
obtained. The symbolic sequences in their first half, their half-length n/2, the maps of the
mass-labels and the permutations of mass-labels are given in Table 3.

According to the type of symmetry, the solutions are divided into two types. The first type
of symmetry is a reflection with respect to a line. In this case the initial triangle have to be
flipped in order to match the second one in the plane. These are solutions with i.c.s 4, 5, 6,
7. In the case of this type of symmetry n/2 can be either even or odd. In the case of odd n/2
the map of the mass label is identity, and at T /4 the bodies lie on the axis of symmetry, in
particular they are in syzygy (see i.c.s 4, 5, 6 for example). In the case of even n/2 two of
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Fig. 10 Partitioning of i.c.s inD by 3-cylinders (left) and 4-cylinders (right). Boundaries of the cylinders are
formed with binary collision curves (BCCs) (the black curves inside D)
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Fig. 11 The simplest free-fall symmetric orbits (i.c.s 1,2, n/2 = 5, 9)

the labels are always in permutation and in T /4 the body, which is not in permutation, lies
on the axis of symmetry, and the other two do not lie, but are symmetrically located with
respect to the axis (see i.c. 7 for example).

The second type of symmetry is a central symmetry with respect to a point (see i.c.s 1,
2, 3, 9 in the shown figures). In this case the triangles at t = 0 and t = T /2 are obtained
from each other with a rotation of 180◦. In this case n/2 is always odd and we always have
a permutation of the labels of two of the bodies. At T /4, the bodies are in a syzygy, more
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Fig. 12 The simplest free-fall symmetric orbits (i.c.s 3,4, n/2 = 9, 9)
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Fig. 13 The simplest free-fall symmetric orbits (i.c.s 5,6, n/2 = 9, 9)
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Fig. 14 The simplest free-fall symmetric orbits (i.c.s 7,8, n/2 = 10, 13)
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Table 3 The symbolic sequence, the maps of the mass-labels, the corresponding permutations and the half-
length of the sequence for the first 8 simplest self-dual (symmetric) solutions

i.c Symbolic sequence at T /2 Maps of the labels Permutations n/2

1 13,213 1 → 3, 2 → 2, 3 → 1 (13) 5

2 131,321,313 1 → 3, 2 → 2, 3 → 1 (13) 9

3 131,231,232 1 → 2, 2 → 1, 3 → 3 (12) 9

4 131,323,131 1 → 1, 2 → 2, 3 → 3 e 9

5 131,323,131 1 → 1, 2 → 2, 3 → 3 e 9

6 131,232,131 1 → 1, 2 → 2, 3 → 3 e 9

7 1,321,321,321 1 → 1, 2 → 3, 3 → 2 (23) 10

8 1,313,132,131,313 1 → 3, 2 → 2, 3 → 1 (13) 13

precisely in “Euler configuration.” The body in the middle is at the center of the symmetry
and is the one that is not in permutation.

The properties of symmetric solutions described above are valid not only for the presented
8 of them, but for all 236 of them.The symmetry types for these 8 solutions are all the observed
types. The plots of all self-dual solutions and the maps of mass-labels can be downloaded
from http://db2.fmi.uni-sofia.bg/3bodyfree/.

3.5 Scale invariant period as function of symbolic sequence length

The scale-invariant periods turn out to be bounded from above and from below by linear
functions of symbolic sequence (“word”) length (see Fig. 15). This linear dependence is in
rough agreement with the linear dependence of closed-loop orbits first observed in Dmitraši-
nović and Šuvakov (2015) and later discussed in Dmitrašinović et al. (2018), Dmitrašinović
et al. (2017) with the distinction of a larger/wider spread of the data from a straight line. That
spread can be understood in terms of the argument based on the analyticity/holomorphy of
the action integral, as exposed in Dmitrašinović et al. (2018), Dmitrašinović et al. (2017).

4 Concluding remarks and outlook

Now we summarize, conclude, and suggest future research.

(1) The database of i.c.s for periodic collisionless equal-mass free-fall orbits is significantly
expanded from 30 to 25,582 and up to 80 significant digits.

(2) The distribution of i.c.s in the Agekyan–Anosova’s D domain shows a similar structure
with many previously investigated properties of the problem inD. Indeed there is a close
correspondence with BCCs which correspondence ought to be explored further.

(3) We found 236 self-dual (symmetric) solutions, which are only ∼ 2% from all solu-
tions. These 236 symmetric orbits ought to be of particular interest to mathematicians
(Montgomery 2023).

(4) We found several examples of periodic orbits in the 4-cylinder 1132 (almost isosceles
triangles close to the Euler point) that look like the long awaited “stutter” orbits of
Moeckel et al. (2012). More about them elsewhere.
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Fig. 15 T ∗ = T |E |3/2 versus n/2 for all collisionless free-fall orbits

(5) We obtain an agreement of computed symbolic sequences of the found i.c.s. with
Tanikawa et. al. ’s division of Agekyan–Anosova’s domain D by 3-cylinders and 4-
cylinders. This correspondence ought to be extended to higher n-cylinders

(6) The results suggest that the scale-invariant periods are bounded from above and from
below by linear functions of symbolic sequence length, which is in agreement with
previous results regarding closed-loop periodic orbits. This can/should be studied in
greater detail.

(7) Stability of orbits is of particular interest, both because of the Birkhoff–Lewis theorem
and of itself.
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