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Abstract
A new bound on the amended potential in an n-body system is derived and applied to the
partitioning of energy and angular momentum in a disrupting gravitational aggregate. This
result provides analytic insight into how energy and angular momentum can be lost or par-
titioned between different collections of bodies as they escape from each other. To better
understand the possible outcomes in such a situation, some specific numerical tests are also
performed for systems of N = 3, 4, 5, 6. The results confirm that disrupting systems always
lose energy, with a characteristic stochastic distribution of the lost energy. We also find that
the system loses most of its angular momentum, although individual escaping components
can retain significant nonzero angular momentum vectors that can be uniformly distributed
in space as the number of bodies in the system increases.

Keywords N-body problem · Full body problem

1 Introduction and problem statement

The study of escape trajectories in the n-body problem has a long history and many signifi-
cant results and discoveries. While there is a deep general understanding of the behavior of
solutions asymptotic in time (Saari 1976), especially when we remove collisions between the
point mass bodies, there are relatively few sharp results delineating necessary or sufficient
conditions for the disruption of the n-body problem. The approach to understanding and
constraining such final motions generally involves specifying the total energy and angular
momentum of a system and then working out the limits for these. For example, for a system
with nonzero angular momentum and positive energy, it can be shown that this is a sufficient
condition for at least one component to escape. Going beyond this, if the system satisfies
some specific conditions on relative placement and relative velocities, sufficient conditions
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can also be found for when additional bodies must escape (Patnaik 1975). For these disrupt-
ing systems, it has also been shown that the escaping sub-components may asymptotically
become distinct n-body problems with their own conserved angular momentum and energy
(Marchal and Saari 1976). Necessary conditions for the escape of system components seem
to be more rare for the point-mass problem. The main results here exist for the three-body
problem, where conditions can be found under which two of the bodies are guaranteed to be
trapped in a bound orbit, in the presence of a third body (Marchal and Saari 1975).

For motion in the traditional point-mass n-body problem, the singular nature of the bodies
leads to mathematical difficulties and physically unreal conditions, such as two-body colli-
sions (which canbe addressed) or three- ormore-body collisions (which remain a fundamental
difficulty in the problem).When the n-body problem is reformulated such that finite densities
and rigid bodies are introduced, these singularities are removed and replaced by fundamental
minimum distances between the bodies (Scheeres 2002). This allows for significant changes
to the n-body problem, such as the existence for minimum energy configurations for any
value of n, a result that does not exist in the point-mass problem for n ≥ 3 (Moeckel 1990).
It also introduces new necessary conditions for the escape of components (Scheeres 2020),
which again do not exist in the point-mass n-body problem. In the current paper, some new
results that are relevant for these necessary escape conditions for the finite density (or full)
n-body problem are derived. While these new results also apply to the point-mass n-body
problem, the main motivation and focus of the paper are on the finite density problem.

Previous research has established that a key function for the dynamical analysis of a
collection of rigid mass distributions interacting through gravity and possible contact forces
can be captured by the amended potential, also called theminimumenergy function (Scheeres
2012):

E = H2

2 IH
+ U ≤ E (1)

where H is the total angular momentum of the system, E is the total energy, IH is the total
(instantaneous)moment of inertia of the system about the angular momentum vector, andU is
the instantaneous gravitational potential energy of the system. We note that both the moment
of inertia and the gravitational potential are only functions of the system configuration space
consisting of the relative positions of all of the bodies and their relative orientations with
respect to each other. Given the configuration of a set of known mass distributions and
their total energy and angular momentum, analysis of the amended potential enables one to
find the relative equilibria of the system and their stability, a rigorous lower bound on the
system energy at any time, conditions under which components of the system can escape
due to gravitational interactions, and conditions for when they are bound to each other (see
Scheeres 2002, 2016a, b, 2020).

In a previous paper sharp necessary conditions for the escape of collections of bodies were
derived using this amended potential (Scheeres 2020). However, when using the amended
potential to constrain whether a system can have components escape from each other, one
runs into a practical issue once such an escape has occurred. As one body of the system
asymptotically departs the remaining components, no matter how small it is, we generically
find that IH → ∞. Thus, once escape of any mass occurs the amended potential function
for the system collapses to

E → E∞ = U∞ (2)

where U∞ consists of the gravitational potential energy of all bodies at a finite distance to
each other, but whose terms that mutually escape all go to zero. Thus, once mutual escape of
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any collection of bodies occurs the amended potential loses all of its information encoding
the system total angular momentum.

In this paper we will prove that for an n-body system with m groups of component
collections the amended potential can be bounded by a disaggregated version of the amended
potential that takes the form:

E ≤
m∑

i=1

Ei ≤
m∑

i=1

Ei = E (3)

where E is as defined above and Ei and Ei define a disaggregated version of the amended
potential and energy. Motivated by this result we discuss several implications for N -body
systems and provide some numerical examples that shed light on the disaggregation process.
The significance of this result, as will be shown, is that an individual or multiple clusters can
escape with the separate amended potentials still being well defined, and that the total energy
remaining in the collection of bodies can be precisely tracked. Further, through numerical
examples we provide initial insight into the range of energy and angular momentum that can
be lost by systems as they disaggregate.

The paper is laid out as follows. In Sect. 2 we define the overall model and in Sect. 3 we
introduce and apply the Jacobi transformation to the system. Then in Sect. 4 we present and
prove our main theorem on the disaggregation of the amended potential and demonstrate the
sharpness of the constraint. Following this in Sect. 5, we explore some implications of this
theorem for systems that suffer a mutual escape of components. These results raise some
simple questions about how an escaping component of the n-body problem affects the total
energy and angular momentum of the remaining components in the system. To establish a
better empirical understanding of these effects, we study a series of unstable few-body point-
mass problems as they lose energy and angular momentum due to component ejections in
Sect. 6. Finally, in Sect. 7 we summarize our main findings.

2 Model

We consider the finite-density, multiple-body problem where it is assumed that all of the
component bodies are rigid and can thus rest on eachother to formnewvarieties of equilibrium
(Scheeres 2002, 2016a, b). We consider an arbitrary number of such bodies and borrow some
keydefinitions fromScheeres (2020) to properly pose the system.Wealso choose a numbering
system that leads to a more convenient notation for the main results.

We are given N +1 finite density bodies Pi , each of which has a mass distribution defined

as Bi , where i = 0, 1, 2, . . . , N . Each body has a mass mi , a rigid-body inertia dyadic Ī
R
i , a

position ri , an orientation dyadic T̄i , a velocity vi , and an angular velocity �i , all generally
specified with respect to an inertial frame, except that the orientation dyadic will orient the
i th body frame in inertial space and the i th rigid-body inertia dyadic is specified in the i th
body-fixed frame. Each bodywill contribute its energy and angular momentum to the system,
allowing us to define the total angular momentum, energy and inertia dyadic as

H =
N∑

i=0

miri × vi + T̄i · ĪRi · �i , (4)

E = T + U, (5)

T = 1

2
mivi · vi + 1

2
�i · ĪRi · �i , (6)
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U =
∑

0≤ j≤i≤N

Ui j , (7)

Ī =
N∑

i=0

{
mi
[
r2i Ū − riri

]+ T̄i · ĪRi · T̄T
i

}
, (8)

where Ui j are the mutual gravitational potentials between two rigid bodies and are a function
of the relative position and orientation between the bodies, ri j = r j − ri and T̄i j = T̄T

j · T̄i .

The term Ui i is the self-potential of a given body, Ū is the unity dyadic, the product rr
is a dyad, and the rigid-body angular momentum and rotational inertia are mapped from a
body-fixed frame into the inertial frame with the orientation dyadic T̄i .

One important implication of the finite density rigid-body assumption is that any two
bodies have a constraint on how close their centers of mass can come to each other, denoted
as
∣∣ri j
∣∣ ≥ d(r i j , T i j ), where equality occurs when the two bodies touch. This form of the

constraint implicitly implies that the bodies are mutually convex, although this assumption
can be relaxed. In the simplest model, the individual bodies are spheres with a given size and
density, however the problem is easily generalized to arbitrarily shaped components that exert
gravitational torques on each other and whose rotational dynamics must also be accounted
for Scheeres (2002).

A single collection of bodies can be uniquely specified by a set of integers that specify the
individual bodies. For example, I = {i1, i2, i3, . . . , in} is a list of the bodies Pi where i ∈ I.
Then this collection of bodies is specified as P(I) = {Pi |i ∈ I}.

Given this notation, we can define the global partition of our N + 1-body problem into
M collections Ii , i = 1, 2, . . . , M as IM = {I1, I2, I3, . . . , Ii , . . . , IM }, which is P(I) =
{P(Ii )|Ii ∈ I}. The M subscript will be used when we wish to emphasize the number of
components, but will be suppressed in other situations. Such a partition P(I) is a global
partition if its individual elements P(Ii ) are ordered, non-empty, disjoint and if their union
consists of all the mass in the system. This is discussed in more generality in Scheeres (2020).

3 Jacobi coordinates

A crucial component to establishing our result is to transform the positions and velocities of
the bodies using Jacobi Coordinates, whichmakes them all relative to each other in a recursive
way. We note that the rigid-body components are not affected by this transformation, which
only operates on the centers of mass of each body. Thus, we will generally only discuss the
rigid-body terms when necessary and focus on the locations and velocities of the centers of
mass of the bodies.

3.1 The Jacobi transformation

The Jacobi formulation defines a sequence of transformations where the position and velocity
of each body Pi is measured from the collective center of mass of the bodies Pj , j =
0, 1, . . . , i − 1. The numbering of the bodies is arbitrary, a fact we use later, so without loss
of generality we keep the current numbering of the system. To start the sequence, we define:

M0 = m0 (9)

R0 = V0 = 0, (10)
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Fig. 1 Jacobi formulation for a
six-body system

RC
0 = r0, (11)

VC
0 = v0. (12)

Then the remaining Jacobi coordinates are defined as

Ri = ri − RC
i−1, (13)

Vi = vi − VC
i−1, (14)

Mi = Mi−1 + mi , (15)

RC
i = 1

Mi

[
Mi−1RC

i−1 + miri
]
, (16)

VC
i = 1

Mi

[
Mi−1VC

i−1 + mivi
]
, (17)

all for i = 1, 2, . . . , N . We can also find the convenient relationships

ri = Ri + RC
i−1, (18)

vi = Vi + VC
i−1, (19)

RC
i = RC

i−1 + mi

Mi
Ri , (20)

VC
i = VC

i−1 + mi

Mi
Vi . (21)

The center of mass position and velocity vectors RC
i and VC

i are computed accounting for
all bodies with that index and lower. The relative position and velocity vectors Ri and Vi are
of body i relative to the center of mass of all bodies with index i − 1 and lower.

A special point to make is that the vector RC
N is the total center of mass of the entire

system. Keeping with usual practice, we can arbitrarily set this position to zero and have it
remain fixed by the choice RC

N = VC
N = 0. We note that this assumption need not be made,

and then the system center of mass would instead translate uniformly in space, with all other
positions and velocities only providing relative information between each other (Fig. 1).

3.2 Angular momentum, energy andmoments of inertia

The main advantage of the Jacobi coordinates are that they explicitly decouple the key
quantities of angular momentum, moment of inertia and kinetic energy at a given order from
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each other and are only a function of the lower order indices. Applying the transformation
to the single contributions of a body to these quantities yields:

miri × vi = Mi−1mi

Mi
Ri × Vi + MiRC

i × VC
i − Mi−1RC

i−1 × VC
i−1, (22)

1

2
mivi · vi = 1

2

Mi−1mi

Mi
Vi · Vi + 1

2
MiVC

i · VC
i − 1

2
Mi−1VC

i−1 · VC
i−1, (23)

mi
[
r2i Ū − riri

] = Mi−1mi

Mi

[
R2
i Ū − RiRi

]+ Mi

[
RC2
i Ū − RC

i R
C
i

]

−Mi−1

[
RC2
i−1Ū − RC

i−1R
C
i−1

]
. (24)

It is key to note that aswe sum these quantities, the previous center ofmass terms are removed.
When the entire summation is made, the quantity is the sum of the relative only terms plus
the center of mass term at the end. Thus, define

Hi = Mi−1mi

Mi
Ri × Vi , (25)

Ti = 1

2

Mi−1mi

Mi
(Vi · Vi ) , (26)

Īi = Mi−1mi

Mi

[
R2
i Ū − RiRi

]
. (27)

Then the system total angular momentum, kinetic energy and inertia dyadic (ignoring the
rigid-body contributions for the moment) are:

H =
N∑

i=i

Hi + MNRC
N × VC

N , (28)

T =
N∑

i=i

Ti + 1

2
MNVC

N · VC
N , (29)

Ī =
N∑

i=1

Īi + MN

[
RC

N · RC
N Ū − RC

NR
C
N

]
. (30)

Then the total system energy can be defined as

E =
N∑

i=1

Ei + 1

2
MNVC

N · VC
N , (31)

Ei = Ti + Ui , (32)

where Ui = ∑i−1
j=0 U j i . All of these results can also be generalized to the case where each

body is a rigid body. To do this at each order i , we just add to the definition of the quantities

Hi = Hi + T̄i · ĪRi · �i , (33)

Ti = Ti + 1

2
�i · ĪRi · �i , (34)

Īi = Īi + T̄i · ĪRi · T̄T
i , (35)

Ui = Ui + Ui i , (36)

123



Bounds on energy and angular momentum loss in the full n-body… Page 7 of 34 35

Fig. 2 Splitting a six-body system into two- to three-body systems and their interaction

where T̄i is the attitude dyadic that takes the body frame into an inertial frame, �i is the
angular velocity vector of the i th rigid body, ĪRi is the inertia dyadic of the rigid body in a
body-fixed frame and Ui i is the self-potential of the rigid body, which is in general nonzero
for finite density mass distributions.

3.3 Jacobi transformation for multiple clusters

With the above formulation, we can see that a full set of N + 1 bodies can be represented
by its total angular momentum and energy broken into two main terms, an internal term∑N

i=1 Hi and
∑N

i=1 Ti and an external term for the angular momentum and kinetic energy
of the center of mass MNRC

N × VC
N and MN

2 VC
N · VC

N . The internal terms at a given index i
capture all interactions within this group of masses and has no involvement with any bodies
outside of it.

Given this observation, it is simple to generalize the Jacobi transformation to a set of
M collections of bodies, P(Iα) for α = a1, a2, . . . , aM with each collection Pα having nα

bodies. Then the total angular momentum, energy and inertia dyadic for each cluster Pα can
be defined as the sum of the individual bodies in each component Hiα , Eiα and Īiα from
iα = 0, 1, 2, . . . , Nα and yielding a total Hα , Eα and Īα for each cluster.

Having defined the clusters, we describe how they are combined. We will just consider
the case when we can separate our problem into two clusters. The mass and center of mass
of each cluster are Mα and RC

α , respectively, where α = a, b. These two clusters can then be
combined as described in the following and illustrated in Fig. 2.

The total mass of the system is Ma + Mb = M . The total center of mass of the system is
RC = 1

M

[
MaRC

a + MbRC
b

]
and similar for the velocity. The final relative state between the

collections is then

Rab = RC
b − RC

a , (37)

Vab = VC
b − VC

a , (38)

and the associated relative angular momentum, energy and inertia between these collections
are

Hab = MaMb

Ma + Mb
Rab × Vab, (39)
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35 Page 8 of 34 D. J. Scheeres, G. Brown

Eab = MaMb

Ma + Mb

1

2
V 2
ab + Uab, (40)

Īab = MaMb

Ma + Mb

[
R2
abŪ − RabRab

]
, (41)

where we note that Uab = ∑na
ia=1

∑nb
jb=1 Uia jb . This means that the gravitational potential

contains all of the mutual potentials between the bodies in Pa with the bodies in Pb.
Then the total angularmomentum, energy and inertia of the entire system can be expressed

as

H =
b∑

α=a

Hα + Hab, (42)

E =
b∑

α=a

Eα + Eab, (43)

Ī =
b∑

α=a

Īα + Īab. (44)

This can be easily generalized to the combination of multiple clusters.

4 Disaggregated amended potential

Now recall the total angular momentum of the system H = HĤ, where the magnitude and
the unit vector direction of this constant are important to define. Define the projection of an
angularmomentumHi and inertia dyadic Īi onto the total direction of the angularmomentum,
Ĥ.

HHi = Ĥ · Hi , (45)

IHi = Ĥ · Īi · Ĥ. (46)

We note the useful identities which are easily established.

H =
N∑

i=1

HHi , (47)

IH =
N∑

i=1

IHi . (48)

We first prove

Lemma The following inequality can be established:
H2
Hi

2IHi
+ Ui ≤ Ei

Proof We refer to the proof of Theorem 1 in Scheeres (2002) for the approach. We do not
explicitly add in the rigid-body rotation terms, however they can be accommodated as shown

in Scheeres (2002). First note that HHi = Ĥ · Mi−1mi
Mi

Ri × Vi = Mi−1mi
Mi

Vi ·
(
Ri × Ĥ

)
.

Applying the triangle inequality gives us HHi ≤ Mi−1mi
Mi

Vi
∣∣∣Ri × Ĥ

∣∣∣. Squaring this yields

H2
Hi

≤
(
Mi−1mi

Mi

)2
V 2
i

∣∣∣Ri × Ĥ
∣∣∣
2
. However, Mi−1mi

Mi
V 2
i = 2Ti and

Mi−1mi
Mi

∣∣∣Ri × Ĥ
∣∣∣
2 = IHi .
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Thus, H2
Hi

≤ 2Ti IHi . Noting the defined equality fromEq. 32, Ei = Ti+Ui , we can substitute

for the expression Ti and solve to get
H2
Hi

2IHi
+ Ui ≤ Ei . ��

It is important to note that the energy and angular momentum defined here, Ei and HHi , are
not constants of motion and that the bound involves all of the relative positions with respect
to all of the bodies with an index j ≤ i , although they are independent of all bodies j > i .

With this we can prove our main result

Theorem The amended potential can be bounded by a disaggregated summation of amended
potential-like terms, while still retaining its major inequalities.

E = H2

2IH
+ U ≤

N∑

i=1

[
H2
Hi

2IHi

+ Ui

]
≤

N∑

i=1

Ei = E = T + U

Further, this inequality is sharp, meaning that both sides of the inequality can be equal at an
appropriate state.

Proof First note that
∑N

i=1 Ei = E is established by the property of the Jacobi Transfor-
mation, under the assumption that the total center of mass is stationary at the origin. Also
from the Lemma we see that the last inequality on the right holds. In addition, we note that
U =∑N

i=1 Ui ; thus, the gravitational potential can be removed from the remaining inequality.
Thus, it is only necessary to prove the following inequality:

H2

IH
≤

N∑

i=1

H2
Hi

IHi

. (49)

Substituting IH =∑N
j=1 IHj and H2 =

(∑N
i=1 HHi

)2
and rearranging a bit, we get

(
N∑

i=1

HHi

)2
≤
⎛

⎝
N∑

j=1

IHj

⎞

⎠
N∑

i=1

H2
Hi

IHi

. (50)

On the left-hand side, we have the identity:
(

N∑

i=1

HHi

)2
=

N∑

i=1

H2
Hi

+ 2
N−1∑

i=1

N∑

j=i+1

HHi HHj . (51)

On the right-hand side, we pull out the j = i term of the IHj sum to get
⎛

⎝
N∑

j=1

IHj

⎞

⎠
N∑

i=1

H2
Hi

IHi

=
N∑

i=1

H2
Hi

+
N∑

i=1

⎛

⎝
N∑

j=1, j 	=i

IHj

⎞

⎠ H2
Hi

IHi

, (52)

=
N∑

i=1

H2
Hi

+
N−1∑

i=1

N∑

j=i+1

[
IHi

IHj

H2
Hj

+ IHj

IHi

H2
Hi

]
. (53)

The sums of the H2
Hi

cancel on each side of the inequality, and reordering the inequality,
we find

0 ≤
N−1∑

i=1

N∑

j=i+1

[
IHi

IHj

H2
Hj

− 2HHi HHj + IHj

IHi

H2
Hi

]
. (54)
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Finally, this is easily factored, leading to

0 ≤
N−1∑

i=1

N∑

j=i+1

(√
IHi

IHj

HHj −
√

IHj

IHi

HHi

)2
, (55)

which is trivially true, establishing the result.
To establish that these inequalities are sharp, we need to evaluate the system at a condition

that yields
√

IHi
IH j

HHj =
√

IH j
IHi

HHi for all i and j . We must also find a condition where
∑N

i=1 Ei = ∑N
i=1 Ei . Such conditions can be conveniently found when the system is in a

relative equilibrium, which as established in Scheeres (2002) can occur for a finite density
system at any given value of angular momentum.

When in a relative equilibrium, the system will act as a single body with all components
rotating at a uniform rate� about a single axis Ĥ. Thus, the individual terms HHi = Ĥ ·Hi =
Ĥ · Īi · Ĥ� = IHi �. Substituting this into the sharpness condition then yields

√
IHi IHj � =

√
IHj IHi �, trivially true and establishing the sharpness of the lower bound, or E =∑N

i=1 Ei
when in a relative equilibrium. For the energy terms, the gravitational potentials are trivially

equal and we just need to note the following equalities:
H2
Hi

2IHi
= 1

2 IHi �
2 = 1

2 Ĥ · Īi · Ĥ�2 =
1
2� · Īi · �, as the shared angular velocity rotates about the angular momentum direction.
Thus, the equality Ei = Ei is established, and the upper sharpness condition.

For an even shorter version of the proof, we can use the fact that when a system is in a
relative equilibrium the equality E = E must hold. ��

5 Implications

For convenience we define the individual amended potential Ei as

Ei = H2
Hi

2IHi

+
i∑

j=0

U j i . (56)

It is tempting to give this function some dynamical meaning; however, while this expression
is bounded by Ei , this individual “amended potential” does not have all of the same properties
as the full system amended potential E . First, the quantities Hi and Ei are not constant and
vary with the entire system, with only the total H and E remaining constant. Further, the
function Ei does not only depend on body i alone, but also has terms that involve the positions
and attitudes for j ≤ i . What can be asserted, to benefit, is that Ei is independent of all terms
j > i , and thus these higher-order terms do not directly affect the current Ei term.

Where this result becomes more powerful is if some collection of bodies escape from the
system. To start with we will explore what constraints we retain when a single body escapes.
Then we will give the generalizations for when rigid bodies are involved. Finally, we will
consider what happens when clusters mutually escape.

5.1 Escape of a single body

As explained in Scheeres (2020), if the system energy is sufficiently high it is possible for a
single body to escape, separating the N + 1-body system into two collections escaping from
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each other, a system with N bodies and a single body, with their relative distance becoming
arbitrarily large and asymptotically approaching ∞ in the limit. Conditions for this to occur
have been worked out in detail for the point-mass n-body problem (Patnaik 1975). It is
important to note that such escapes can occur even if the total system energy is negative.

As our ordering of the Jacobi coordinates was arbitrary, and the coordinates can be
reordered at will, we will do so making the body i = N mutually separating from the
other N bodies, which for the moment we assume remain at finite distance from each other.
We can then split the system into two components (Marchal and Saari 1976)

E1→N−1 =
N−1∑

i=1

Ei , (57)

EN = H2
HN

2IHN

+
N−1∑

j=0

U j N . (58)

The position and velocity RN and VN are, by definition, the mutual position and
velocity of body N with respect to the center of mass of the other N bodies. Thus by
definition we see RC

N = 0 = 1
MN

[
MN−1RC

N−1 + mn(RN + RC
N−1)

]
which simplifies to

1
MN

[
MNRC

N−1 + mNRN
] = 0. Then the position of the remaining N -body center of mass

and the relative position of the single body areRC
N−1 = − mN

MN
RN , and similarly for the veloc-

ities VC
N−1 = − mN

MN
VN . It is significant to note that neither RC

N−1 or V
C
N−1 are included in

the inequality, and thus they don’t impact it at all.
Whenmutual escape occurs between body N and the remainder N bodieswe have |RN | →

∞ and |VN | → V∞, but that in general all other |Ri<N | < ∞. Thus, the mutual potentials
between body N and the other collection all collapse to zero in the limit. Thus, U j N → 0 for
all j < N . As IHN → ∞ in addition, we see that EN → 0.

We note that the total potential energy of the system then approaches U →∑
0≤ j<i≤N−1 U j i = U0≤ j<i≤N−1, with the potential energy relative to body N disappearing.

Also, since IHN → ∞, we also have IH → ∞ and the amended potential function reaches
the limiting form E → U0≤ j<i≤N−1.

The energy and angular momentum of the mutual system have a well defined limit,
however, which we find from the standard two-body problem:

EN → 1

2

MN−1mN

MN
V 2∞, (59)

HN → MN−1mN

MN
b∞V∞, (60)

where V∞ is the hyperbolic excess speed and b∞ is the hyperbolic semi-latus rectum, also
called the “impact parameter.” Recall thatMN−1 =∑N−1

i=0 mi andMN = MN−1+mN ; thus,
the mass term is the reduced mass of the system computed between the two collections of
bodies. Here we are also using an “osculating” two-body hyperbola to describe themagnitude
of the angular momentum, using the parameters V∞ and b∞ which are only defined when the
distance between the components is in the limit. We note that the mutually escaping bodies
will also have a direction to the angular momentum, ĤN . All of the values V∞, b∞ and ĤN

cannot be predicted so long as escapewas possible; however, it is possible to place constraints
on the energy and angular momentum that can be lost using the limits defined by the amended
potential. Given the chaotic nature of the n-body problem, the values within these bounds can
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at best be described in a probabilistic sense, or found from specific numerical simulations as
shown later in the paper.

It is instructive to rewrite the theorem in the asymptotic escape limit. This gives us

E = U1→N−1 ≤ E1→(N−1) ≤ E1→(N−1) + 1

2

MN−1mN

MN
V 2∞ = E . (61)

Weexplore each inequality individually. First isU1→N−1 ≤ E1→(N−1) =∑N−1
i=1

H2
Hi

2IHi
+Ui .

Noting that U1→N−1 = ∑N−1
i=1 Ui this yields the trivial inequality 0 ≤ ∑N−1

i=1

H2
Hi

2IHi
, which

provides no useful information.
The next inequality is E1→(N−1) ≤ E1→(N−1) + 1

2
MN−1mN

MN
V 2∞, however in the Lemma

we have already proven that E1→(N−1) ≤ E1→(N−1), meaning that the escape energy term
is extraneous. Thus, we can rewrite this inequality into a more useful form:

E1→(N−1) ≤ E1→(N−1) = E ′ = E − 1

2

MN−1mN+1

MN
V 2∞. (62)

This explicitly shows that the total energy of the remaining N -body cluster is reduced by the
mutual escape energy. If this process repeats itself, one ejected mass at a time, it is possible
for the remaining bodies to eventually have a low enough energy so that they cannot escape
(if they are of finite density), see Scheeres (2020).

The argument is not as simple for the angular momentum. The mutual angular momentum
of the escaping system approaches a limiting value

HN = MN−1mN+1

MN
b∞V∞ĤN (63)

which represents a “loss” of angular momentum from the total H. If the single body carries
no angular momentum with itself (which will not be the case if it is a rigid body or if it is
a collection of escaping bodies), then the remaining bodies will carry the remaining angular
momentumH′ = H−HN . As the angularmomentum is a vector, this new angularmomentum
can actually increase, decrease or stay the same in magnitude. Also, its direction in inertial
space can also shift, depending on what the angular momentum of the escaping hyperbola
is. There will be limits on what the final angular momentum and energy can be, shown with
examples later.

One issue is that the new “remaining” amended potential E1→(N−1) is computed with the
original angular momentum magnitude and direction, and thus is not the proper value to be
used for the amended potential to find the sharpest limits. Nonetheless, from the Lemma the
inequality Ei ≤ Ei still holds.

Still, to restart the analysis we can restate the problem with the new total angular momen-
tum. Given the new n-body system (for this example with N bodies) with a total energy and
angular momentum E ′ and H′, the new amended potential can be stated as:

E ′ = H ′2

2IH ′
+ U ′ ≤ E ′ = E − 1

2

MN−1mN+1

MN
V 2∞. (64)

Starting from this, the system can be analyzed as before, the amended potential can be split
again, following the Theorem, and the analysis can continue until the next escape occurs.
This whole argument is justified by the results shown in Marchal and Saari (1976).

The point is clear, however, in that the energy and angularmomentumbetween the escaping
components is lost to the system, especially to the remaining collection of N bodies. And
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that the overall energy for the remaining system to evolve has been reduced, independent of
what its change in angular momentum has been.

5.2 Consideration of rigid bodies

If we extend this scenario to involve finite densities and hence rigid-body rotations, then
nothing is essentially changed except that the remaining collection of N bodies will also
have internal dynamics involving rotational motion, and that the escaping body can now
retain some energy and angular moment in and of itself. In the limit when the bodies undergo
their mutual escape, body N will also carry with it an energy EN = 1

2�N · ĪN · �N + UNN

and will also carry with it some angular momentum HN = T̄N · ĪN · �N . In the limit the
single rigid body will conserve these quantities as it will be isolated, and thus the energy
retained by the remaining collection will be E ′ = E− 1

2
MN−1mN

MN
V 2∞ − 1

2�N · ĪN ·�N −UNN

and the angular momentum will be H′ = H − MN−1mN+1
MN

b∞V∞ĤN − T̄N · ĪN · �N . Each
of the terms in these equations will be constant in the limit, discounting energy dissipation
effects in the rotating rigid body and the remaining collection of masses. We note that for
asteroid pairs, this sort of constraint can lead to a body rotating slowly after being ejected
from an asteroid system (Pravec et al. 2010, 2018).

5.3 Escape of a collection of bodies

The above analysis holds for a single particle ejection, or for multiple particle ejections,
so long as the bodies all escape from each other and from the remaining mass collection.
However, it is also possible for collections of bodies Pα to escape from each other yet the
bodies remaining in each collection remain bound to each other as a group, as discussed in
Marchal and Saari (1976).

We analyze the case if two collections of bodies escape from each other, but themselves
stay relatively bound. First, both collections are aggregated into two disjoint groupswe call Pa
and Pb, and each of these collections have their total masses, Ma and Mb, and their centers of
mass and velocity,RC

a ,R
C
b ,V

C
a , andV

C
b . Forming the system center of mass, which is chosen

to lie at zero, gives us the constraint MaRC
a + MbRC

b = 0, and similarly for the velocities.
The relative position of the two collections is then called Rab = RC

b −RC
a and similarly for

the velocities. The final angular momentum term becomes Hab = MaMb
Ma+Mb

Rab × Vab and

the energy term becomes 1
2

MaMb
Ma+Mb

V 2
ab + Uab. The gravitational potential Uab are the mutual

potentials between all of the Pa bodies with the Pb bodies. Finally, the additional amended

potential-like term becomes Eab = H2
H ,ab

2IH ,ab
+ Uab.

When escape occurs we have |Rab| → ∞ leading to Uab → 0 and IH ,ab → ∞. Then the
inequality will become:

E = Uaa + Ubb ≤ Ea + Eb ≤ Ea + Eb + 1

2

MaMb

Ma + Mb
V 2∞ = E . (65)

In this situation the three energy terms on the right are all decoupled from each other and
independently constant. Even though we cannot predict what they will in general be, they
must sum to the total energy. Thus, the system can be decoupled into two separate terms,
leading to

Ea ≤ Ea, (66)
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Eb ≤ Eb, (67)

with the constraint that Ea + Eb = E − 1
2

MaMb
Ma+Mb

V 2∞. Each of the collections Pa and Pb
will have complex internal dynamics that can consist of coupled translational and rotational
motions. In this initial form, the new inequalities will not be sharp. They can be modified
after defining the new decoupled angular momentaHa andHb, defined such thatHa +Hb =
H − MaMb

Ma+Mb
Rab × Vab, as described above.

6 Evaluations of the energy and angular momentum loss

While the inequalities defined and applied above provide real constraints on the systems,
there are elements of the final terms that cannot be predicted analytically. This because the
escape process is inherently chaotic and in general cannot be predicted. This is an extremely
important point and raises questions about what the likely statistical properties of the energy
and angular momentum that are “lost” when escape occurs.

In the following we present some definite scenarios that allow us to accumulate some
statistics on this question. To simplify the process, we only look at the interactions of a
traditional point-mass n-body problem with equal masses. However, we apply many of the
observations defined above in our simulations, including the use of Jacobi coordinates that are
reordered once escape occurs, and explicitly tracing the energy and angular momentum that
is removed from the remaining bodies. The simulations provide useful insight into the likely
amount of energy and angular momentum that may be shed from a system when components
are ejected.

6.1 Initial system configuration

To simulate an n-body system, an initial condition for the system is needed. In an attempt to
obtain consistent results for analysis between n-body systems with different values of n, the
same approach was used to define the initial system configuration used in the simulations. To
avoid confusion where systems of N + 1 masses were considered earlier, a n-body system
here will have N + 1 bodies.

6.1.1 Symmetric central configuration

For each n-body system, the positions of each body were generated by placing the bodies at
the vertices of a symmetric n-polygon where each body was separated from the two bodies
next to it by a length of lcc = L . This choice was made as this is an inherently unstable
central configuration, implying that random deviations from it will also be unstable, allowing
us to explore different possible evolutions for the same system. The value of L was selected
to be the same value for all systems. The polygon was generated so that all the vertices
were located in the xy-plane of an arbitrary coordinate system with unit vectors î in the
x-direction, ĵ in the y-direction, and k̂ in the z-direction. Based on the specified value of
L and n, the positions of each body at some initial time t0 were calculated using Eq.68. A
diagram showing the locations of the vertices for the symmetric n-polygons generated using
Eq.68 is provided in Fig. 3.

r i = rcc

[
cos

(
π

2
+ 2π(i − 1)

n

)
î + sin

(
π

2
+ 2π(i − 1)

n

)
ĵ + 0k̂

]
(68)
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Fig. 3 Vertex positions of
symmetric n-polygons for
3 ≤ n ≤ 6

where

rcc = lcc√
2
(
1 − cos

( 2π
n

)) (69)

The system was given a central configuration spin rate �k̂ which can be calculated using
Eq.70 (Scheeres and Vinh 1991). The initial velocities for each body were then calculated
using vi = r i × �k̂.

� =
√√√√GM

L3

4sin3
(

π
n

)

n2
∑

1≤ j<i≤n

csc
(π

n
(i − j)

)
(70)

6.1.2 Nondimensionalization

The dimensional quantities of length, time, and mass were nondimensionalized by some
constant, i.e., q = Cq̄ and q̄ = C−1q where q is the dimensional quantity, q̄ is the nondi-
mensional quantity, and C is the constant. Length was nondimensionalized by the initial
distance between the masses, i.e., d = Cdd̄ where Cd = L is the initial distance between the
masses before the perturbation. Time was nondimensionalized by the initial central config-
uration spin rate, i.e., t = Ct t̄ where Ct = �−1 is the initial central configuration spin rate.
Mass was nondimensionalized by the total system mass, i.e., m = Cmm̄ where Cm = M is
the total system mass. Based on these three conversions, some additional conversions are:
CR = L for position, CV = L� for velocity, CA = L�2 for acceleration, CE = ML2�2

for energy, CSE = L2�2 for specific energy, CH = ML2� for angular momentum, and
CSH = L2� for specific angular momentum.

Up to this point, all quantities have been presented in their dimensional form. For the
remainder of this paper the majority of quantities will be presented in their nondimensional
form. The relevant dimensional form can be obtained by using the nondimensionalization
constants presented in the previous paragraph.
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6.1.3 Initial condition variations

Each system was then given a unique initial condition by shifting the position of one of the
bodies. No change was made to the initial velocities. As a result, for all simulations in this
analysis VC

N = 0. The perturbation was implemented so that the position of PN was shifted
to a new position within a uniformly distributed sphere with a radius of L/2 centered at the
original position of PN . The positions of the bodies were then translated so that the COM of
the perturbed initial system was at the origin, i.e., RC

N = 0. The resulting initial condition
was then used to generate a simulation for the motion of the perturbed system. Aggregate
statistics for each n-body system were generated by repeating this process multiple times for
each n-body system.

While a random perturbation was applied in this analysis, there is not expected to be
any significant changes between these results and the results that would be obtained from
simulations where a systematic perturbation is applied. This expectation is based on the
randomness of n-body motion and was confirmed based on preliminary results obtained
from analysis on three-body systems where a systematic perturbation was applied to one of
the masses first in the y-direction in one set of simulations and then in the z-direction in
another set of simulations. The results for these two sets of simulations were similar to the
results for the random sets for 3 ≤ n ≤ 6.

In the “Appendix” we describe the integration routine used for the simulations. We also
detail the conditions used to determine when a single or multiple set of bodies have been
mutually ejected.

6.2 Final system configuration

As mentioned previously, a n-body system with n > 2 can have bodies that are ejected from
the system. As the total system energy was negative for all simulations based on the initial
system configuration used, bodies will be ejected, but at least one pair of bodies must remain
together as complete disaggregation requires a positive or zero total energy (Marchal and
Saari 1976). For this reason, a simulation was considered to have reached a “complete” end
condition when n − 2 bodies had been ejected from the system. If less than n − 2 bodies
were ejected up to the point the maximum integration time was reached, the simulation was
considered to have reached an “incomplete" end state. It is possible to have cases where
nejc < n − 2 but the “remaining" system is a long-period system with nrem > 2 bodies. In
some cases, these remaining systems with nrem > 2 appear somewhat “stable" over the time
scale considered in this analysis. For that reason, any simulation where at least one body
was ejected from the system were included in the results presented in this paper. However,
often times the results from the “incomplete" simulations and the results from the “complete"
simulations are distinguished from each other.

There were also a few cases where the integration tolerance could not be met over the
time range considered, due to close approaches between the bodies. The simulations where
this occurred were considered to have reached a “failed" end state. In these cases, if any
bodies had been ejected before the integration tolerance could not be met, the ejection was
included in the results as part of the “incomplete" simulations. However, the characteristics
of the “remaining" system in these cases were not included.

A subscript of C will be given to terms related to the separation of the two clusters, and a
subscript of S will be given to terms related to the internal interaction of a cluster. Please refer
to the “Appendix” for more detail on this notation. If there were multiple system ejections
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Fig. 4 Positions of each body for the initial conditions used in the simulations for 3 ≤ n ≤ 6

Fig. 5 Energy and angular momentum of the systems used in the simulations for 3 ≤ n ≤ 6

detected at the same time, the bodieswere ordered so that the bodies in the ejected systemwith
the highest energy ES were given the highest indexes when reordering the bodies. While any
“ejected system" could technically be considered the “remaining system" by reordering the
bodies so that the indices of the bodies in the ejected systemwere 1 and 2, the order where the
bodies in earlier detected system ejections are given the highest indexes was used. In terms of
implementation, if nrem = 3 only single ejection events were allowed to occur so that there
was always a remaining binary system. As a result, system ejections were not considered for
the n = 3 systems because if a system ejection event was detected, the bodies in the ejected
system were reordered as P1 and P2 and therefore were viewed as the “remaining" system.

6.3 Computational performance and end conditions identified

In this analysis n-body systems for n = 3 to 6 were considered, with 1000 simulations for
n = 3 to 5 and 400 simulations for n = 6. The aggregate statistics resulting from these
simulations were analyzed to determine if there were any similarities in the results between
n-body systems with different values of n.

Several MATLAB scripts were written to generate and analyze the simulation results.
These scripts can be classified as those related to integrating the system and those related to
processing the results from the integration.

6.3.1 Initial system states

The procedure discussed in Sect. 6.1 was used to generate the initial conditions used in the
simulations. The position space representation of the initial conditions used in the simulations
is provided in Fig. 4 . Plots showing the total energy and total angular momentum for the
systems used in each simulation are provided in Fig. 5.
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Table 1 Computation times and final system conditions identified in the simulations for 3 ≤ n ≤ 6

Bodies n = 3 n = 4 n = 5 n = 6

Execution

Simulations 1000 1000 1000 400

Integration time 3h 1m 59s 21h 5m 52s 59h 44m 24s 40h 9m 53s

Processing time 1m 6s 2m 1s 3m 6s 1m 52s

End conditions

Complete simulations 869 654 561 183

nejc = n − 2 869 654 561 183

Incomplete simulations 131 338 428 209

1 ≤ nejc < n − 2 N/A 270 377 198

nejc = 0 131 68 51 11

Failed Simulations 0 8 11 8

1 ≤ nejc < n − 2 N/A 4 11 5

nejc = 0 0 4 0 3

6.3.2 Program execution time

Data related to the execution time of both the integration and processing routines used to
generate and analyze the results, as well as the number of simulations that achieved each end
condition, are provided in Table 1.

As expected, the execution time for the integration routine was much longer than the
execution time for the processing routine. It should be noted that even though parallel loops
were used in both the integration and processing routines, a small number of the simulations
accounted for a considerable portion of the total integration time. In the n = 5 simulations,
six of them had an integration execution time that were at least 5% of the total execution
time for all 1000 of the n = 5 simulation. In the n = 6 simulations, this was true for 16 of
the 400 simulations.

Regarding the number of simulations that achieved each end condition, as the number
of bodies in the system increased, the percentage of simulations where a complete end
condition was reached decreased, as did the percentage of simulations where no bodies were
ejected. Also, no simulations reached a failed end state for n = 3. For the other values of n,
around 1% of the simulations reached a failed end state. One possible explanation for these
simulations reaching a failed end state is a close approach between two of the bodies that
is too small to meet the predefined integration tolerance. While this could be remedied by
using a regularization approach, the numbers involved were small enough to not do this.

6.3.3 Timing of ejection events

As anywhere from13% to 52%of the simulations reached an incomplete end condition, itmay
be natural to wonder if this number could be decreased by simply increasing the maximum
allowed propagation time so more ejections can be detected. To evaluate whether extending
the integration time would yield a useful number of additional results, an exponential curve
was fit to the number of cumulative ejections detected at each time across all simulations
for each value of n with a model of the form f (τ ) = a

(
1 − e−bτ

)
. The data used in the
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Fig. 6 Number of bodies ejected over time for 3 ≤ n ≤ 6 simulations. The red line is the fit for all ejections,
and the blue line is the fit for the second half of the expected ejections. The dashed blue line shows theminimum
ejection limit of the data in the second fit

Table 2 Fit functions coefficients and performance for the cumulative number of bodies ejected over time for
3 ≤ n ≤ 6

n 3 4 5 6

R2 0.9938 0.9976 0.9928 0.9910

a 0.8520 0.7822 0.7617 0.7545

(0.8497, 0.8542) (0.7812, 0.7832) (0.7604, 0.7630) (0.7524, 0.7566)

b 0.001342 0.001623 0.001675 0.001522

(0.001331, 0.001352) (0.001616, 0.001630) (0.001665, 0.001686) (0.001508, 0.001536)

The fit function is of the form f (τ ) = a
(
1 − e−bτ

)
and represents the number of ejections at some time τ

normalized by the total number of theoretically expected ejections. Only the data corresponding to the second
half of expected ejections were used in the fit. The 95% confidence interval for the values of the coefficients
are given in parentheses

fit function was normalized by the total number of bodies that should be ejected across all
simulations for each value of n, i.e., the number of cumulative ejections for each collection
of n-body simulations was divided by s(n − 2) where s is the number of simulations for that
particular value of n. Using this form, the coefficient a should be a number between 0 and 1
that represents the fraction of bodies that were ejected compared to the number of bodies that
were expected to be ejected.As the number of ejections later in timewere ofmore interest than
when ejections occurred on a shorter time-scale, another fit of the same form was determined
using only the data corresponding to the second half of all expected ejections. The results
from the second fit were selected and will be referred to as the “final fit". The coefficient b
acts as a time scaling parameter. While the fit analysis did yield slightly different coefficients
for different values of n, the values of the coefficients were in similar ranges. Also, the R2

value for the final fits were at least 0.99 for all values of n considered in this analysis. The fits
are provided in Fig. 6, and the coefficients for the final fit are provided in Table 2. The results
indicate that increasing the simulation time may not result in significantly more ejections, as
the number of ejections is predicted to slow exponentially. Thus, we consider the stopping
conditions we’ve chosen to be a reasonable compromise.

Bymanipulating the fit models for an n-body systemwith fit coefficients a and b, the addi-
tional time required for �nejc more bodies to be ejected in s simulations can be determined
based on time using Eq.71a or Eq.71b if the number of bodies that have been ejected nejc
across the s simulations is already known. Based on the form of these equations, as the num-
ber of ejected bodies increases, the expected time for the next body to be ejected increases
as well. For example, using the coefficients for the n = 6 systems, once one body has been
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ejected, the expected additional time until the next body is ejected is �τ = 326. However,
for the same system, once three bodies have been ejected, the expected additional time until
the fourth body is ejected is �τ = 3624, more than ten times the original expected time
and on a similar scale as the original total propagation time used in this analysis. It should
be noted that these calculations are based on the aggregate statistics used for the fit data
and as such there is no guarantee that these results directly apply to any single simulation or
accurately represent the behavior of ejections that occur relatively early on in the simulations.
Also note that these equations do not extend to situations where nejc > as(n − 2) or where
nejc + �nejc > n − 2.

�τ = ebτ

ab

�nejc
s(n − 2)

(71a)

�τ = �nejc
b(as(n − 2) − nejc)

(71b)

Several simulations were run for systems with n = 8. The computation time required for
these simulations was significantly longer than the simulations for n ≤ 6. Not enough of
these simulations were completed to present aggregate statistics, but of the five simulations
for n = 8, only one reached a complete end state and that simulation had only single-body
ejection events. We note that these exponential fits are only to guide our choice of total
integration time, and do not have any implications about the long-term behavior of such
chaotic dynamical systems.

6.4 Characteristics of ejected bodies and systems

The characteristics of the orbits related to the ejected bodies and the remaining systems
will now be analyzed. Note that for all histograms in this subsection where the y-axis is the
percent of simulations, that percentage is with respect to the number of simulations that met
the conditions to be plotted, not the total number of simulations.

6.4.1 Hyperbolic orbital parameters of ejected bodies and systems

Whether a single body or a system are ejected, there will be a part of the total system
energy that can be used to describe a two-body orbit between the ejected body(ies) and the
remaining bodies. If the ejected body(ies) are not to return to the remaining system, then
this orbit must be parabolic or hyperbolic. For this reason, the hyperbolic excess velocity
and impact parameter of these orbits were calculated for every detected ejection and the
aggregate results are provided in Figs. 7and 8 . Note that these histograms are normalized
based on the total number of ejections detected for each value of n. As can be seen in Fig. 7,
the distributions of V∞,C and b∞,C are similar for simulations with different values of n.
The peaks in the V∞,C distributions were around approximately 0.2 to 0.5 for n = 3 and
0.4 to 0.6 for 4 ≤ n ≤ 6 and the peaks in the b∞,C distributions were around approximately
2 to 6 for 3 ≤ n ≤ 6. Also, the b∞,C distributions tended to have longer tails than the
V∞,C distributions. When considering the ejections across all simulations for a single value
of n, the distributions of the parameters for single-body ejections and system ejections were
similar to the overall distribution depicted in Fig. 7. This similarity was also identified when
analyzing the parameters based on the order of the ejection event.
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Fig. 7 V∞,C (top) and b∞,C (bottom) for 3 ≤ n ≤ 6 simulations. Note that the x-axis ranges for the n = 3
and n = 6 plots are different than for the n = 4 and n = 5 plots

Fig. 8 Hyperbolic angular momentum b∞,CV∞,C (top) and hyperbolic energy 1
2V

2∞,C (bottom) for 3 ≤ n ≤
6 Simulations. Note that the x-axis ranges for the n = 3 and n = 6 plots are different than for the n = 4 and
n = 5 plots

In Fig. 8 the b∞,C and V∞,C terms are combined into the hyperbolic angular momentum
b∞,CV∞,C and escape energy 1

2V
2∞,C to track these quantities in the ejected bodies. We see

that the n = 3 distributions are unique relative to n > 3, and that the distributions look similar
for the larger numbers of bodies. The prevalence of low angular momentum and low energy
in these ejections is clear and will show up later when the total system angular momentum
and energy is considered.

6.4.2 Characteristics of ejected and remaining systems

When a system is ejected, there will be another part of the total system energy that can be
used to describe a two-body orbit between the ejected body(ies). If the ejected body(ies)
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Fig. 9 Semi-major axis aS (top) and eccentricity eS (bottom) for 3 ≤ n ≤ 6 simulations. The distributions
for the ejected systems are in green. The distributions for the remaining systems are in blue for the complete
simulations and light blue for the incomplete simulations. Note that system ejections were not possible for
n = 3 simulations, and that the x-axis ranges may be different

are not to be ejected from each other, then this orbit must be circular or elliptical. As the
ordering of the masses is arbitrary, the orbits of a remaining system consisting of just P1 and
P2 in the updated order of bodies were included in these results. These two-body remaining
systems were included for all simulations except for those that had failed end conditions, or
the orbit of those two bodies was parabolic or hyperbolic. The subscript of S in these results
reference the collection of these two-body remaining systems and the ejected systems, not
just the ejected systems. Note that these histograms are normalized based on the sum of the
number of system ejections detected and the number of these two-body remaining systems
considered for each value of n. The semi-major axis and eccentricity of these orbits were
calculated for every detected system ejection and the aggregate results are provided in Fig. 9
.

The distributions of aS and eS were similar for simulations with different values of n. The
distributions of aS had a longer tail on the right-hand side of the peaks than the left-hand
side, most likely in part due to the minimum allowed value of zero. The eS distributions
were in the range of 0 ≤ eS < 1 as expected, and as the value of eS increased the relative
rate of occurrence increased. However, even though the distributions of the semi-major axis
values and the distributions of the eccentricity values had similar shapes for different values
of n, only the eccentricity distributions covered the same range of values for all three types
of systems described in the figures. Looking at Fig. 9, it is apparent that the distributions of
the remaining systems in both the complete and incomplete simulations span similar ranges
while the distributions of the ejected systems spans a different range. For this reason, and
because system ejections were not possible in n = 3 simulations, the semi-major axis values
in Fig. 9 were separated, with the values for both the complete and incomplete simulations
and the values for the ejected systems provided in Fig. 10.

As before, in Fig. 11we combine the semi-major axis and eccentricity of the binary systems
to compute the energy and angularmomentum of the binary systems. Again, the case of n = 3
and n > 3 shows distinct distributions, with the larger number of bodies showing similarities
between their results.
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Fig. 10 Semi-major axis aS for the Remaining Systems (top) and for the Ejected Systems (bottom) in the
4 ≤ n ≤ 6 Simulations. The distributions for the remaining systems are in blue for the complete simulations
and light blue for the incomplete simulations. Note that the x-axis range for the n = 4 plot is different than
for the n = 5 and n = 6 plots

Fig. 11 Orbital energy −μ
2aS

(top) and angularmomentum

√
μaS
(
1 − e2S

)
(bottom) for 3 ≤ n ≤ 6Simulations.

Note that the x-axis ranges for the n = 3 plot is different than for the n = 4, n = 5, and n = 6 plots
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Fig. 12 Graphic showing the vector geometry between the total, ejected and remaining angular momentum
(left) and the sum of the total, ejected and remaining system energy (right)

Fig. 13 Taken energy for 3 ≤ n ≤ 6 simulations. The distributions for the complete simulations are in red
and the distributions for the incomplete and failed simulations with at least one ejection are in pink. Note that
the x-axis range for the n = 3 plot is different than for the n = 4, n = 5, and n = 6 plots

6.5 Partitioning of conserved quantities

The partitioning of the total energy and total angular momentum will now be discussed.
Figure12 shows the basic geometry and constraints between the total energy and angular
momentum, the energy and angular momentum lost to the ejection processes, and the energy
and angular momentum that remains in the final orbiting systems.

6.5.1 Partitioning of energy

With respect to energy, looking at the total amount of energy in the EC terms for each
ejection corresponds to the energy lost due to ejections. The total of the ES terms related
to the remaining system and the ejected systems (if applicable) is the amount of energy
that is kept active in the system. Note that the sum of these two energies should equal to
the total system energy. The percent of the total energy taken by the ejected bodies in each
simulation is shown in Fig. 13 . This is computed by dividing the energy EC by the total
initial energy E and multiplying by 100. Note that the values are negative as the total system
energy was negative for all simulations and the taken energy was always positive. In this
figure red represents the results for the completed simulations. For both the incomplete and
failed simulations where at least one body was ejected, there is an amount of energy that
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Fig. 14 Taken angular momentum for 3 ≤ n ≤ 6 simulations. The distributions for the complete simulations
are in red and the distributions for the incomplete and failed simulations where at least one body was ejected
are in pink. Note that the x-axis range for the n = 3 plot is different than for the n = 4, n = 5, and n = 6 plots

is taken, but it is not the final amount of energy that would be taken if the other nrem − 2
bodies are eventually ejected. For this reason the value of taken energy in these simulations
are included in the results, and are represented by the pink bars in the figure to distinguish
them from the values for the complete simulations.

The distribution of the percent of total energy taken by the ejected bodies is similar between
systems with different values of n. However, as the number of bodies in the system increased,
the percent of total energy taken by the ejected bodies appeared to increase slightly. For all
values of n examined here, as the magnitude of the energy taken increased (i.e., the percent
of energy taken got more negative), the number of simulations that produced that result
decreased. As expected, the magnitude of energy taken by the ejected bodies was generally
smaller for the incomplete simulations than for the complete simulations. Also, for the n > 3
systems, there were a few simulations where the taken energy was larger in magnitude than
the magnitude of the total system energy.

6.5.2 Partitioning of angular momentum

For the angular momentum, the sum of the HC vectors for each ejection was computed, and
the magnitude of that resulting vector was the amount of angular momentum taken by the
ejected bodies. The vector sum of the total taken angular momentum, the angular momentum
in the remaining system, and the angular momentum stored in ejected systems should equal
the total system angular momentum vector. Note this does not mean the sum of the scalar
magnitudes of those vectors will equal the magnitude of the total system angular momentum.
With that being said, the magnitude of the taken angular momentum vector was compared
to the magnitude of the total system angular momentum vector when computing the percent
of the total angular momentum taken. The total angular momentum taken in each simulation
is shown in Fig. 14 . In this figure red represents the results for the completed simulations
and pink represented both the incomplete and failed simulations where at least one body was
ejected.

As was the case for the taken energy, the distribution of the percent of total angular
momentum taken by the ejected bodies is similar between systems with different values of
n. The distributions of the taken angular momentum appear to be more Gaussian in nature
with peaks between 80 and 105% of the total angular momentum. It is interesting to note that
for a considerable number of the simulations, the magnitude of the taken angular momentum
was larger than the magnitude of the total angular momentum. These distributions had a
longer tail on the left-hand side of the peaks due to the incomplete and failed simulations.
This behavior was expected for these simulations as the taken angular momentum could still
increase as more bodies are ejected at later times. We also note that for n > 3, as the systems
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Fig. 15 Angle between the remaining h and total H for 3 ≤ n ≤ 6 Simulations. The distributions for the
complete simulations are in blue, and the distributions for the incomplete simulations are in light blue

eject more bodies their distribution becomes more focused about total (100%) loss of angular
momentum. We note that this can occur while the ejected orbital systems still have nonzero
angular momentum due to the vectorial nature of angular momentum.

The direction of the angular momentum is also of interest. H1 is the angular momentum
corresponding to the interaction between just P1 and P2 in the updated order of the bodies
if all other bodies are ejected. For that reason, the angle between H1 and H (represented by
θ ) was calculated for each completed simulation in order to analyze how the ejections affect
the direction of the angular momentum in the remaining system. If the system ejected some
bodies but did not reach completion and had m bodies left, the angle θ is computed as the
angle between Hm−1 and H . The results for both sets of angles are provided in Fig. 15. The
angles resulting from complete simulations are in blue. The angles resulting from incomplete
simulations where at least one body was ejected are shown in light blue. It’s important to note
that the manner in which this quantity is tracked means that the orientation of any ejected
binary system is not represented.

Unlike for the taken energy and angular momentum, the distribution of θ was not the
same between systems with a different value of n. For the n = 3 systems, almost none
of the simulations produced a result where θ > 90◦, and the majority of the simulations
produced a result where θ ≤ 30◦ which was the most common result. This is likely related
to the well-known restrictions on inclination for the three-body problem (Marchal and Saari
1975). As n increased, the distribution of θ shifted rightward and flattened out. For n = 4,
the most common result was θ ≤ 30◦, but this only occurred in approximately a quarter of
the simulations considered where for n = 3, θ ≤ 30◦ in approximately two-thirds of the
simulations considered. The most common result for 40◦ ≤ θ ≤ 70◦ for n = 5 and 70◦ ≤
θ ≤ 100◦ for n = 6. Also, there were a considerable number of simulations where θ > 90◦
for systems where n > 3. As a result of the initial conditions used in the simulations, the
total angular momentum vector had a large +z-component and smaller x- and y-components.
While the z-component was not the only non-zero component, as the total angularmomentum
was close to being perpendicular to the plane where the bodies were initially located, if θ

was greater than approximately 90◦, then H1 had a negative z-component, implying that it
was rotating in the opposite sense of the initial configuration.

6.6 Summary of results for systems with different n

For the majority of the quantities examined in this analysis, there was a consistent pattern in
the distributions between systems with different values of n for 3 ≤ n ≤ 6. First, the energy
always decreased when bodies or systems were ejected. This is explicitly predicted by the
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bounds derived earlier and indicates that ejections will systematically decrease the level
of energy in the remaining systems, thus potentially allowing them to stabilize by shedding
particles.While the total percentage of initial energy lost is not ameaningful scientific term, it
does track themagnitude of energy that can be lost in thisway.While thereweremany systems
that reduced their energy by a significant amount, the most common outcome is clearly for
the systems to only decrease their energy by a relatively minor amount, with the taken energy
near zero but negative. This can provide a potentially useful analytical approximation when
considering ideal cases of ejection. When rigid bodies effects are included in these systems it
is significant to note that many ejected systems will take rotational energy from the rotating
bodies to enable escape. This has been predicted analytically and has been seen in clusters
of asteroids that have undergone mutual escape, and which have the signature of a slower
rotation rate (Pravec et al. 2018).

While the energy had a systematic change due to body ejections, it is notable that the
angular momentum has no such constraints. The lack of a constraint on angular momentum
“loss” was noted analytically, however the numerical results clearly demonstrate this fact.
The range of angular momentum that was taken by the system spanned the entire theoretical
possibility for n > 3, with the extremes being no angular momentum lost up to 200% being
lost (meaning that the lost angular momentum is completely reversed in its direction and
magnitude from the initial system). For the case of n = 3 there seem to be stricter constraints
on the angular momentum loss, with the most likely loss value being a bit less than 90% (see
Marchal and Saari 1975). For the n > 3 case the most likely case was to lose 100% of the
angular momentum. For both cases, it is important to note that the direction of the angular
momentum loss was also quite variable, meaning that the individual systems could have a
final angular momentum with a direction randomly distributed relative to the initial, total
angular momentum.

Here it is relevant to talk through the angular momentum results. First consider a n = 3
case, where one body is ejected. The ejected body in our computation carries no angular
momentum with it, so the total angular momentum equals the sum of the final angular
momentum in the remaining binary system and the “lost” angular momentum of the mutual
orbit of the escaping components. For the most typical n = 3 body case, the remaining binary
contains around 10% of the initial angular momentum magnitude, and 90% of the angular
momentum is taken by the mutual hyperbolic orbit, with these two being aligned (the case
when θ = 0). If instead, we have a case where θ = 60◦, with the taken magnitude being 90%
again, then the angular momentum remaining in the binary would have amagnitude of 74.5%
of the initial value. As we go to n > 3, we see the most likely value approach 100% and
the final direction becoming more uniformly distributed, with a notable excess emerging at
90◦ as n increases to 6. Here, for an n = 6 case, consider that 4 single ejection events occur,
leaving a final binary asteroid and four separate loss angular momentum vectors that must be
summed to equal a net lost angular momentum of 110% and with the final binary system’s
angular momentum pointing perpendicular to the original angular momentum (θ = 90◦).
Then the angular momentum in the final system must have a magnitude 45.8% of the initial
magnitude. For the same system, if the lost angular momentum magnitude equals the total
angular momentum magnitude, and the final angle of the bound system is 60◦, then the
diagram forms an equilateral triangle and the angular momentum HS will be equal to the
original angular momentum magnitude. What both of these examples show is that a large
loss of angular momentum does not mean that the final angular momentum in the ejected or
binary systems need be small. Thus ejection does not have a systematic effect on the final
angular momenta of the bodies, even though energy does.
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As a final comment, we recall that in the two-body problem there is a simple constraint
between energy and angular momentum. For a given binary system defined by an energy ES ,
an angular momentum magnitude HS and its total mass parameter μ we have

ES ≥ − μ2

2H2
S

(72)

Fromour above examples and discussionwenote that the energy ES is consistently decreased,
potentially by a large amount. On the other hand, we note that the angular momentum HS is
not necessarily systematically driven to a small value, and can retain an appreciable fraction
of the initial system angular momentum. The combination of these effects should push these
systems closer to the circular orbit condition (consistentwith the equality), or for finite density
bodies potentially to a resting configuration. The manifestation of these constraints for finite
density systems is an interesting question and should be investigated in future research. A
question of specific interest is how these mechanics influence the creation of rubble pile
bodies in the aftermath of cataclysmic collisions, which is the currently accepted model for
how these bodies are created (Fujiwara et al. 2006).

7 Conclusions

In this paper constraints on the energy and angular momentum of an n-body system undergo-
ing mutual escape are derived and studied. The paper presents and proves rigorous analytical
constraints between the energy and angular momentum of the total system and sub-sets of
the system. Then it provides some specific examples related to these results, filling in details
where analytical constraints are not possible due to the chaotic nature of n-body dynamics.
The results show that energy is systematically lost during the ejection process, thus decreas-
ing the overall energy available in any remaining n-body clusters that are not disrupted. In
contrast, the examples and theory indicate that there are not such strong constraints on system
angular momentum, due in part to its vectorial nature. Arising from this balance we show
that ejections should in general stabilize remaining orbital systems.

Acknowledgements The authors acknowledge support in part from NASA grant 80NSSC22K0240. DJS
expresses his gratitude to Kyushu University and Prof. Mai Bando, and to Prof. Yuichi Tsuda at ISAS/JAXA
for providing support and a space to carry out the final stages of writing this paper. The authors declare that
they have no competing interests related to this work. The simulation datasets presented in this paper are
available from the corresponding author on reasonable request.

Author Contributions DJS performed the analytical research. GMB performed the numerical simulations.
Both authors contributed to the writing.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Bounds on energy and angular momentum loss in the full n-body… Page 29 of 34 35

Appendix

Integration

When integrating the EOM starting with the initial condition used for each simulation, all
calculations were performed using nondimensional parameters. If a specific equation is refer-
enced in this section, the nondimensional form of the equation was used in the computations.
MATLAB’s ode113 function, a variable-step variable-order numerical integrator that imple-
ments the Adams–Bashforth–Moulton methods using a predictor-corrector (Shampine and
Reichelt 1997), was used with a tolerance of 10−10. The time span of the integration was
predefined and started at an initial time of t0 = 0 to a specified final time of t f that was set
to a similar value for all simulations.

The change in total system energy and angular momentum between the initial and final
times were evaluated. Theoretically these values should be zero for all simulations, so the
magnitude of this change was assessed as a validity check for the implementation of the
integrator function and integration tolerances used. The change in energy was on the order
of 10−5 to 10−7 and the change in magnitude of angular momentum was on the order of
10−7 to 10−9 for all simulations. This validity check as well as all ejection analysis and other
results processing was performed after the integration.

Mass ejections

If a system consists of n > 2 bodies, then the system is in general unstable and body(ies)
can be ejected until only single or pairs of bodies remain. With that in mind, a method to
detect when a single body was ejected and when pairs of bodies were ejected was developed.
A single body being ejected will be referred to as a single-body ejection event and a pair of
bodies being ejected will be referred to as a system ejection event. While a much simpler
evaluation is conducted in this analysis, conditions for detecting ejections of a body in the
three-body problem and different system end states are discussed in Marchal (1974).

Single-body ejection events

For a n-body system, if one of the bodies is sufficiently far away from the other bodies, then
the remaining n − 1 bodies can be approximated as a single body with the combined mass
and averaged position and velocity of those n − 1 bodies. In this discussion of single-body
ejections, “System A” and “System B” will refer to BA comprising of P0, . . . , PN−1 and
BB comprising of PN , respectively. If the two-body system of BA and BB has a specific
energy Eab(2) ≥ 0, then it can be concluded that PN has been ejected from the system and
will not return to influence the motion of the other bodies. Granted, this is assuming that the
ejected body PN is sufficiently far away from the remaining masses so that the two-body
approximation is valid. The Jacobi formulation vectors are particularly useful in this ejection
analysis as RN and V N are the position and velocity of PN relative to the COM of the
other bodies. Therefore, RN and V N can be used as the position and velocity vectors in the
two-body specific energy equation in Eq.73.

Eab(2) = 1

2
|V ab|2 − G (Ma + Mb)

|Rab| (73)

To determine if PN had been ejected, three conditions were evaluated:

123



35 Page 30 of 34 D. J. Scheeres, G. Brown

1. Q1 ≥ 0 where Q1 = Ēab(2)

Ēab(2) = 1

2
|V̄ N |2 − GM

L3�2

M̄N

|R̄N |
2. |Q2| ≤ tol where Q2 = ŪN

ŪN = GM

L3�2

∑N−1

j=0
− m̄N m̄ j

|R̄N − R̄ j |
3. Q3 ≥ 0 where Q3 = ĒN

ĒN = 1

2

M̄N−1m̄N

M̄N
|V̄ N |2 + GM

L3�2

∑N−1

j=0
− m̄N m̄ j

|R̄N − R̄ j |
Condition 1 is the most important criteria to determine if a single body has been ejected

because when this condition is true, PN is on a parabolic or hyperbolic orbit with respect
to the COM of the remaining n − 1 bodies. Condition 2 is used to ensure that the two-body
assumption used in Condition 1 is valid. Ui is a function of only the Jacobi Formulation
vectors Rk for k = 1 to i as can be seen in Eq.74. Please note that the form of Eq.74
assumes i > j .

r i − r j = −Mj−1

Mj
R j +

i−1∑

k= j+1

mk

Mk
Rk + Ri (74)

If none of the masses P1 through Pi−1 have been ejected, then as Pi is ejected, Ri will
be much larger than Rk for k = 1 to i − 1. Considering Eq.74, in this case Ri − R j can

be approximated as Ri , and Ui → −GMi−1mi
|Ri | which is similar to the form of the potential

energy for a two-body system. Condition 3 provided an additional check that was similar to
Condition 1. Note that under this ejection assumption with i = N , MN

MN−1mN
EN → Eab(2). If

all three of these conditions were met, then PN was considered to have been ejected from the
system. If PN is ejected, EN and HN at that time step were treated as the energy and angular
momentum taken by the ejected body. The parameters V∞,C and b∞,C were calculated for
the orbit of the two-body system of BA and BB . These parameters are given a subscript C in
the results to indicate they are associated with ejection orbits.

Once PN is ejected the “remaining" system consists of the remaining nrem = n−1 bodies.
To determine if any of the remaining bodies are ejected at a later time, the same process can be
repeated. However, instead of considering bodies P0 through PN , the remaining system of P0
through PN−1 can be analyzed as once PN has been ejected, the gravitational potential terms
associated with the interaction between that ejected mass and the remaining nrem masses in
the system go to zero. Once PN−1 is ejected, nrem = nrem − 1 and the “remaining" system
consists of P0 through PN−2. This process can be repeated until nrem ≤ 2, i.e., the number
of bodies ejected is nejc = n − 2. A figure depicting this process is shown in Fig. 16.

As the initial ordering of the bodies is arbitrary, there is no guarantee that the body initially
ordered as PN will be the first body ejected which adds an additional level of complexity
to the problem. However, because the order of the bodies is arbitrary, at a particular time
the bodies can be reordered in any way without loss of generality or accuracy. The ejection
analysis can then be conducted on this reordered system and then parts of the new order
can be kept, or the old order can be reinstated. As all integration was performed before the
ejection analysis was conducted, this reordering process does not affect the results obtained
from the integration of the system. As the simple relationship between the Jacobi formulation
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Fig. 16 Single-body ejection event for a n-body system with N = 6

Fig. 17 Reordering process in single ejection analysis for a n-body system with N = 6. The old order 012345
is rearranged as 401253

vectors and the two-body position and velocity in the specific energy equation are only valid
for an n-body system if the body being considered is PN , the system can be reordered n times
(including the original order) such that each of the n bodies is considered as the PN with
respect to the other n − 1 bodies in the reordered system. In order to determine if a body has
been ejected, the bodies are reordered at each time step so that each body Pi is treated as PN ,
i.e., P1 was treated as PN , then P2 was treated as PN ,…then PN was treated as PN . A figure
depicting this process for an initial system where n = 6 and i = 3 is shown in Fig. 17. Note
that the order of the other bodies Pj for 0 ≤ j < N in the reordered system do not matter.

If Pi is ejected, the order used in future analysis is updated so that Pi is reordered as
PN . This process is repeated at future time steps and each time a mass is ejected the order
is updated so that the newly ejected mass is ordered as PNrem−1 and the remaining masses
are considered as a system with nrem = nrem − 1. This process is repeated until only two
bodies remain or a maximum integration time limit is reached. So, in a system where only
single-body ejection events occurred (i.e., no system ejection events occurred) the i th ejected
body would be ordered as PN+1−i in the final order of the bodies.

Multiple-body ejection events

The case for a system ejection event is similar to the case for a single-body ejection event.
For a n-body system, if two of the bodies are close to each other but are sufficiently far away
from the other bodies, then the remaining n−2 bodies can be approximated as a single mass
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with the combined mass and averaged position and velocity of those n − 2 bodies. In this
discussion of single-body ejections, “System A” and “System B” will refer to BA comprising
of P0, . . . , PN−2 and BB comprising of PN−1, PN , respectively. If the two-body system of
BA and BB has a specific energy Eab(2) ≥ 0, then it can be concluded that both PN and PN−1

have been ejected from the system and will not return to influence the remaining bodies.
A process similar to the one used in the single-body ejection analysis was performed when
analyzing system ejection events. However, there were several key differences. BB in this
analysis contains two masses while earlier BB contained only one mass. As a result, there
is a certain amount of energy and angular momentum stored in the orbit between PN−1 and
PN . Also, the third evaluation criterion was changed to ensure that PN−1 and PN would not
be ejected from each other.

1. Q1 ≥ 0 where Q1 = Ēab(2)

Ēab(2) = 1

2
|V̄C

b − V̄
C
a |2 − GM

L3�2

M̄a + M̄b

|R̄C
b − R̄

C
a |

2. |Q2| ≤ tol where Q2 = ŪN−1 + ŪN − ŪN−1,N

ŪN−1 + ŪN − ŪN−1,N = GM

L3�2

(∑N−2

k=0
− m̄N−1m̄k

|R̄N−1 − R̄k |
+
∑N−2

k=0
− m̄N m̄k

|R̄N − R̄k |
)

3. Q3 < 0 where Q3 = Ēb(2)

Ēb(2) = 1

2
|V̄ N − V̄ N−1|2 − GM

L3�2

m̄N−1 + m̄N

|R̄N − R̄N−1|
Condition 1 is the main criteria used to determine if a system has been ejected, and is

functionally the same as Condition 1 in the single-body ejection analysis. Condition 2 is used
to ensure that the two-body assumption used in Condition 1 is valid. The first and second
summation terms are to ensure that PN and PN−1 are both sufficiently far away from P0
through PN−2. Condition 3 serves a different purpose than the third condition used in the
single-body ejection analysis. This condition is used to ensure that PN and PN−1 will remain
in an elliptical or circular two-body orbit about each other, i.e., this condition ensures that
PN will not be ejected from PN−1. If all three conditions are satisfied, the resulting values for
Eab and Hab were considered the energy and angular momentum taken by those two ejected
bodies in System B. ES and H S (the quantities associated with the internal interactions in
System B) were considered the energy and angular momentum stored by those two ejected
bodies. The parameters V∞,C and b∞,C were calculated for the orbit of the two-body system
of BA and BB . Regarding the orbit of the two-body system comprising of PN−1 and PN , the
semi-major axis and eccentricity will be represented as aS and eS , respectively. Note that the
S subscript is also used for quantities related to the “remaining” system, not just “ejected”
systems. A figure depicting this process is shown in Fig. 18.

While there is no guarantee that the pair of bodies initially ordered as PN−1 and PN will be
the first bodies ejected, the bodies can be reordered arbitrarily. The system can be reordered
multiple times such that every pair Pi and Pj of the n bodies have the two highest indexes
in the system (i.e., N − 1 and N ) in the reordered system. A figure depicting this process
for an initial system where n = 6, and analyzing if P5 and P3 are ejected as a pair, is shown
in Fig. 19. Note that the order of the other bodies Pk for 0 ≤ k < N − 1 in the reordered
system do not matter. Also, whether Pi or Pj is ordered as PN (and the other as PN−1) does
not matter. As a result, for a n-body system there are 1

2n(n − 1) orderings that need to be
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Fig. 18 System ejection event for a n-body system with n = 6

Fig. 19 Reordering process in system ejection analysis for a n-body system with n = 6. The old order 012345
is rearranged as 4012(35)

considered (including the original order). With that in mind, each pair is analyzed where
Pi is reordered as PN for i = 1 to N and the corresponding Pj is reordered as PN−1 for
j = 0 to i − 1.
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